The Impact of Optics on HPC System Interconnects

Mike Parker and Steve Scott

Will cost-effective optics fundamentally change the landscape of networking?

Yes.

- Changes the relationship between cost, cable length and signaling speed
- Opens the door to a new class of cost-effective topologies based on high-radix routers

It's Been a Long Time Coming...

The Massively Parallel Processing Using Optical Interconnects conference series was started in 1994.

Some Conclusions from that 1997 Talk

- Optics are really expensive compared to electrical signaling
- Copper's doing just fine for current MPPs and for the foreseeable future
- Optics are useful where you need distance (I/O and networking), and not really anyplace else
- The primary metrics of interest are
 - \$/Gbps
 - Gbps per inch of board edge
 - Potential bandwidth off an ASIC
- I'll use optics when it can (without blowing some other metric)
 - approach copper on cost (wins on cable bulk, distance, etc.)
 - remove a bandwidth bottleneck based on connector density, ASIC I/O, electrical bandwidth ceiling, or (harder to quantify) mechanical feasibility

That time is now arriving...

HPC Systems at Cray

- Scalable multiprocessors for running capability scientific/technical apps
 - Thousands to tens of thousands of compute nodes
 - Tens to a few hundred cabinets (racks)

Cray's Interconnect Needs

- Driven by applications
- Communication characteristics
 - Point-to-point traffic
 - Broadcast used only very occasionally
 - Collectives can be performed with virtual spanning trees
 - Both message passing and global-address-space applications
 - ⇒ Both bulk data transfer and small packet performance are important
 - ⇒ We care about 53-byte packets
 - Mix of nearest (logical) neighbor, and "long-distance" communication
 - Logical→physical mapping means that communication is rarely really NN
 ⇒ We focus a lot on *global bandwidth*
- Network performance
 - Per-node bandwidth of O(10 GBytes/s), scalable to large numbers of nodes
 - Latency matters, and is O(1us) across large networks
 - Both performance and price-performance matter
 - Meet your performance goals, at minimal cost, subject to various technology constraints

HPC Router Bandwidth Increasing Over Time

- ◆ Torus Routing Chip
- Intel iPSC/2
- ▲ J-Machine
- \times CM-5
- X Intel Paragon XP
- Cray T3D
- + MIT Alewife
- **♦ IBM Vulcan**
- ☐ Cray T3E
- ♦ SGI Origin 2000
- X AlphaServer GS320
- △ IBM SP Switch2
- **X** Quadrics QsNet
- Cray X1
- Velio 3003
- O IBM HPS
- SGI Altix 3000
- Cray XT3
- **YARC**

This Motivates High-Radix Routers

- During the past 20 years, the total bandwidth per router has increased by nearly four orders of magnitude, while packet size has remained roughly constant
 - ⇒Changes the optimal router design
- Latency = (# hops)*(T_{hop}) + serialization_time
- Bandwidth/node = (# wires/router)*(signaling rate) / (# hops)
- By increasing the radix of the router, both the latency and the cost of bandwidth can be reduced
- ⇒ Utilize bandwidth by building networks with *many narrow* links rather than fewer fat links
 - See Kim, et al, ISCA 2005 for details

Advantage of Higher Radix

Consider a set of 16 nodes, each with L lanes (one signal in each dir) of pin bandwidth, signaling at B bits/sec

If wired as a radix-16 1D torus with link width L/2 lanes:

- Bisection bandwidth = 2L*B
- Average distance = 4 hops

If wired as a radix-4 2D torus with link width L/4 lanes:

- Same number of pins per router
- Takes advantage of ability to use longer cables
- Bisection bandwidth = 4L*B
- Average distance = 2 hops

High Radix Router Microarchitecture

- Regular array of tiles
 - Easy to lay out chip
- No global arbitration
 - All decisions local
- Excellent performance
 - Non-blocking
 - Micro-pipelined
 - Internal speedup
- Simple routing
 - Small routing table per tile
 - High routing throughput for small packets
- See Scott, et al, ISCA 2006

Good Network Topologies for High Radix Routers

- Folded Clos (aka fat-tree)
 - Can scale global bandwidth linearly with processor count
 - Can load balance across network
 - Route any permutation conflict free; eliminate hot-spots
 - Low diameter compared to torus and hypercube
 - Many redundant paths (part of a balanced resiliency approach)
- Flattened butterfly
 - Like a butterfly, but all stages collapsed into single router

Flattened Butterfly Topology

- Collapse multiple ranks of butterfly routers into a single rank of high-radix routers
- Links that had connected ranks of butterfly switches now connect routers within the single rank
- Each of these becomes a separate dimension in the flattened butterfly

Good Network Topologies for High Radix Routers

- Folded Clos (aka fat-tree)
 - Can scale global bandwidth linearly with processor count
 - Can load balance across network
 - Route any permutation conflict free; eliminate hot-spots
 - Low diameter compared to torus and hypercube
 - Many redundant paths (part of a balanced resiliency approach)

Flattened butterfly

- Like a butterfly, but all stages collapsed into single router
- Half the global wire utilization of a fat-tree on uniform traffic, equal on worstcase traffic
- Requires high radix router
- Allows adaptive routing and load balancing (and really needs it)
- See Dally, et al, ISCA 2007 for details

Dragonfly

- A variation on the flattened butterfly
- Uses extra (inexpensive) local hops to reduce (expensive) global hops
- Very large systems with only a single optical hop for well-balanced traffic
- Still allows adaptive routing and global load balancing
- See Kim, et al, ISCA 2008 for details

High Radix Networks Require Longer Cables

Example 128-cabinet system

Assume 10% slack in cables, and 2m drops inside cabinets

Network	Longest cable (m)
3D torus	7
Flattened Butterfly	25
Folded Clos	25
Dragonfly	34

Cost per Gbps for Optics and Copper

Feedback to Optical Vendors/Researchers

From the perspective of an HPC system vendor

- What really matters:
 - Cost per Gbps (over some physical path)
 - Gbps per inch of board edge
 - Potential bandwidth off an ASIC
 - Integrated silicon photonics could be a big win!
 - Watts per Gbps (this one is new since 1997)
- Matters a bit:
 - Cable bulk and bend radius (already very good here)
 - Hard error rate (component reliability)
- Doesn't matter much:
 - Bandwidth per fiber
 - Bandwidth per cable
 - Transient bit error rate (below 1e-9 or so)
- And really not interested in:
 - Broadcast-based networks
 - Have the expense of listening to everyone, but most traffic is not for you!
 - Anything that requires tuning a receiver (and thus is slow)
 - Optical switching (electrical switching is just fine, thanks)
 - Free-space optics

Summary and a Look to the Future

- Optical links are finally making sense for HPC system interconnects
 - Cray is now designing our first hybrid electrical/optical network
- Performance and price-performance of optical networks is relatively insensitive to distance
 - This enables a new class of high-radix networks with low network diameter
 - ⇒ lower latency
 - ⇒ more cost-effective global bandwidth
- Driving down the cost of optical links will further strengthen this argument
- Expect incremental improvement over the next several years
 - Optical/electrical price-performance crossover distance will continue to drop
 - Shorter cables.... backplane.... on-board..... on module... on chip (?)
- Next big advancement will be integrated optics directly off package (die?)
 - Has the potential to provide a major increase in off-chip bendwidth, and significantly reduce signaling power

Thank You.

Questions?