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ABSTRACT
Recognizing speech, gestures, and visual features are im-
portant interface capabilities for future embedded mobile
systems. Unfortunately, the real-time performance require-
ments of complex perception applications cannot be met by
current embedded processors and often even exceed the per-
formance of high performance microprocessors whose energy
consumption far exceeds embedded energy budgets. Though
custom ASICs provide a solution to this problem, they incur
expensive and lengthy design cycles and are inflexible. This
paper introduces a VLIW perception processor which uses a
combination of clustered function units, compiler controlled
dataflow and compiler controlled clock-gating in conjunction
with a scratch-pad memory system to achieve high perfor-
mance for perceptual algorithms at low energy consumption.
The architecture is evaluated using ten benchmark applica-
tions taken from complex speech and visual feature recogni-
tion, security, and signal processing domains. The energy-
delay product of a 0.13µ implementation of this architecture
is compared against ASICs and general purpose processors.
Using a combination of Spice simulations and real processor
power measurements, we show that the cluster running at
1 GHz clock frequency outperforms a 2.4 GHz Pentium 4
by a factor of 1.75 while simultaneously achieving 159 times
better energy delay product than a low power Intel XScale
embedded processor.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems—Real-time and embedded
systems; C.1.1 [Computer Systems Organization]: Pro-
cessor Architectures—RISC/CISC, VLIW architectures; C.-
1.3 [Computer Systems Organization]: Processor Ar-
chitectures—Data-flow architectures; C.1.4 [Computer Sys-

tems Organization]: Processor Architectures—Mobile pro-
cessors
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1. INTRODUCTION
The term Perception Processing encompasses processor

support for technologies that can enable computers to per-
ceive the world the way we humans do with our sensory fac-
ulties. It targets areas like object detection, recognition and
tracking, speech and gesture recognition and multimodal
abilities like lip reading to support speech recognition. The
applications for perception processing are both immense and
diverse. More and more computing devices are being invis-
ibly embedded into our living environment and we notice
their existence only when they cease to serve us. For this
fledgling computing fabric to develop into tomorrows ubiq-
uitous computing environment, the primary means of inter-
acting with it should be human friendly ones like speech
and gesture. Future mobile embedded environments need
to at least support sophisticated applications such as speech
recognition, visual feature recognition, secure wireless net-
working, and general media processing.

By their very nature perception applications are likely to
be most useful in mobile embedded systems like intelligent
PDAs, unmanned robots and prosthetic devices for vision
and hearing impaired people. A fundamental problem that
plagues these applications is that they require significantly
more performance than current embedded processors can
deliver. Most embedded and low-power processors, such as
the Intel XScale, do not have the hardware resources and
performance that would be necessary to support a full fea-
tured speech recognizer. Even modern high performance
microprocessors are barely able to keep up with the real
time requirements of sophisticated perception applications.
Given Moore’s law performance scaling, the performance is-
sue is not by itself a critical problem. However two signifi-
cant problems remain. First, the energy consumption that
accompanies the required performance level is often orders
of magnitude beyond typical embedded power budgets. Fur-
thermore, the power requirements of new high performance
processors is increasing. The conclusion is that technology
scaling alone cannot solve this problem. Second, perception
and security interfaces are by nature always operational.



Figure 1: Coprocessor Organization

This limits the processor’s availability for other compute
tasks such as understanding what was perceived.

The usual solution to reducing power consumption while
increasing performance is to use an ASIC. Given the com-
plexity and the always on nature of perception tasks, a more
relevant approach would be to use the ASIC as a coproces-
sor in conjunction with a low power host processor. In the
initial phase of this research, an ASIC coprocessor for one of
the dominant phases of the CMU Sphinx speech recognition
system was investigated [17]. This effort reinforced the view
that ASICs are costly and inflexible. Their high fabrication
cost coupled with the costs associated with a lengthy design
cycle are difficult to amortize except in high volume and
margin situations. The inherent ASIC specialization makes
it extremely difficult to support multiple applications, new
methods, or even evolutionary algorithmic improvements.
Given that embedded applications evolve rapidly and that
embedded systems are extremely cost sensitive, these prob-
lems motivate the search for a more general purpose ap-
proach. The use of reconfigurable logic and FPGA devices
is another common approach [5]. The inherent reconfig-
urability of FPGAs provides a level of specialization while
retaining significant generality. However, FPGAs have a sig-
nificant disadvantage both in performance and power when
compared to either ASIC or CPU logic functions.

This paper describes a specialized processor architecture
that can provide high performance for perception applica-
tions in an energy efficient manner. Our research addresses
the rapid automated generation of low-power high perfor-
mance VLIW processors for the perception domain. Such a
domain optimized processor is intended to be used as a co-
processor for a general purpose host processor whose duty is
to act on what the coprocessor perceives. A high level view
of the architecture is shown in Figure 1. The host processor
moves data into or out of the coprocessor via double buffered
input and output SRAMs. Local storage for the cluster is
provided by the scratch SRAM and the microcode program
that controls the operation of the cluster is held in the u-
Code SRAM. The execution cluster can be customized for a
particular application by the selection of function units. In
fact the type and number of function units, SRAMs, address
generators, bit widths and interconnect topology are speci-
fied using a configuration file. The hardware design (Verilog
HDL netlist) and a customized simulator are automatically

generated by a processor generator tool. Henceforth the
term perception processor refers to the generic architecture
behind any domain specific processor created using the pro-
cessor generator tool.

Perception algorithms tend to be stream oriented, i.e.,
they process a sequence of similar data records where the
data records may be packets or blocks of speech signals,
video frames or the output of other stream processing rou-
tines. Each input packet is processed by a relatively sim-
ple and regular algorithm that often refers to some limited
local state tables or history to generate an output packet.
The packets have fixed or variable but bounded sizes. The
algorithms are typically loop oriented with dominant com-
ponents being nested for loops with flow-dependent bodies.
Processors which are optimized for this style of computation
are called stream processors [21]. The perception processor
is a low-power stream processor optimized for speech recog-
nition and vision. However, general applicability to other
stream oriented algorithms will be shown in Section 6.

Energy efficiency is primarily the result of minimized com-
munication and activity. The compiler uses fine-grain clock
gating to ensure that each function unit is active only when
required. Compiler controlled dataflow permits software to
explicitly address output and input stage pipeline registers
of function units and orchestrate data transfer between them
over software controlled bypass paths. Data values are trans-
ported only if necessary and the compiler takes care to en-
sure that value changes are visible on heavily loaded wires
and forwarding paths only if a unit connected to that path
needs the data value. By explicitly enabling pipeline regis-
ters the compiler is able to control the lifetime of function
unit outputs and directly route data to other function units
avoiding unnecessary access to a register file. The result-
ing dataflows or active datapaths resemble custom compu-
tational pipelines found in ASICs, but have the advantage of
flexibility offered by software control. This may be thought
of as a means of exploiting the natural register renaming
that occurs when a multistage pipeline shifts and each indi-
vidual pipeline register gets a new value. However the active
datapath in the cluster will utilize multiplexer circuits that
provide generality at the cost of power, area and perfor-
mance. These muxes and the associated penalties will not
be present in a custom ASIC design.

The resultant architecture is powerful enough to support
complex perception algorithms, at energy consumption lev-
els commensurate with mobile device requirements. The
approach represents a middle ground between general pur-
pose embedded processors and ASICs. It possesses a level of
generality that cannot be achieved by a highly specialized
ASIC, while delivering performance and energy efficiency
that cannot be matched by general purpose processor archi-
tectures. In support of this claim, the approach is tested on
ten benchmarks that were chosen both for their importance
in future embedded systems as well as for their algorithmic
variety. Seven represent key components of perception sys-
tems and the other three were chosen from the encryption
and DSP domains to test generality of the approach out-
side of the perception domain. The perception processor
is evaluated using Spice simulations of a 0.13µ CMOS im-
plementation operating at 1 GHz [3, 4]. Its effectiveness is
compared against the obvious competition: general purpose
processors and ASICs. Comparison against conventional
processors is problematic because energy efficient embedded



Figure 2: Perception Processor Organization

processors often do not have the performance and the float-
ing point support required for perception applications while
mainstream processors are optimized for performance rather
than energy consumption. This paper therefore compares
the perception processor against both a Pentium IV and an
Intel XScale processor. For a subset of the benchmarks we
also compare against custom ASIC implementations of the
respective algorithms.

2. PERCEPTION PROCESSOR
ARCHITECTURE

Figure 2 shows the internal organization of the percep-
tion processor. It consists of a set of clock gated function
units, a loop unit, 3 dual ported SRAMs, 6 address genera-
tors (one for each SRAM port), local bypass paths between
neighboring function units as well as a cluster wide inter-
connect. A register file is conspicuously absent because the
combination of compiler controlled dataflow and a technique
called array variable renaming makes a register file unneces-
sary [15]. Though none of the clusters described here need
a register file it is possible to incorporate one into a func-
tion unit slot. Clusters can be configured to maximize the
performance of any particular application or set of applica-
tions. Typically there will be a minimum number of integer
ALUs as well as additional units that are more specialized.
Hardware descriptions for the cluster and the interconnect
are automatically generated by a cluster generator tool from
a configuration description.

To understand the rationale behind this organization it is
important to know that typical stream oriented loop kernels
found in perception algorithms may be split into three com-
ponents. They consist of control patterns, access patterns
and compute patterns. The control pattern is typically a
set of nested for loops. Access patterns seen in these al-
gorithms are row and column walks of 2D arrays, vector
accesses and more complex patterns produced when simple
array accesses are interleaved or software pipelined. Com-
pute patterns correspond to the dataflow between operators
within the loop body. For example, the compute pattern of
a vector dot product is a multiply-accumulate flow where a
multiplier and an adder are cascaded and the adders output
is fed back as one of its inputs.

Previous research showed that traditional wide issue out
of order processors are unable to exploit the high levels of
ILP available in perception algorithms on account of load
store ports saturating before all the function units can be
put to use [17, 16]. Improving IPC without significantly in-
creasing hardware complexity is an important technique for
reducing dynamic power consumption [14]. Hence, architec-
tural solutions that improve data delivery to function units
are beneficial in this situation. We are able to satisfy the
twin goals of high performance and low power consumption
by creating programmable primitives that accelerate each of
the three patterns found in loops. The details of how the
loop units and address generators implement control and ac-
cess patterns in a generic VLIW processor are the subject
of another publication [15]. Only a high level description
of these units is provided here. This paper concentrates on
energy efficient acceleration of compute patterns and the
overall operation of the perception processor. The creative
contribution of both papers are distinct though benchmarks
and experiments are shared.

The loop unit accelerates the control patterns of algo-
rithms. Encoded descriptions of nested for loops may be
stored in context registers contained in this unit. A com-
piler can transfer a loop description into a context register
using a single cycle instruction. Run-time loop variable val-
ues corresponding to various loops are maintained in loop
count registers. Once a loop description has been entrusted
to the loop unit, the unit works semi-autonomously. It pe-
riodically updates the loop variables and makes the loop
counts available to other units. It is aware of nested loops,
modulo scheduling, loop unrolling and software pipelining
and can handle complicated update patterns to loop vari-
ables arising when such scheduling optimizations are done.
The loop unit is similar to the control state machine of a cus-
tom circuit except that it is programmable. When a loop
pattern is too complex to be handled in the loop unit, it
may be implemented in software on the function units or al-
ternately the loop unit may be extended to handle the new
pattern.

A large number of SRAM ports are required to ensure
data delivery to the execution units. Increasing the num-
ber of ports on a large SRAM increases power consump-
tion and worsens access time. The traditional solution is
to bank large SRAM structures like caches. The same rea-
soning motivates our choice of multiple software managed
scratch SRAMs. To use these SRAM resources efficiently,
it is necessary to generate addresses for each SRAM port
with high throughput. Since there are 6 SRAM ports in the
configuration shown in Figure 2, a large number of function
units may be occupied for address calculation leaving inade-
quate resources to do the actual computation. The situation
may be improved by attaching dedicated address generators
to each SRAM port. These address generators use loop vari-
ables maintained by the loop unit to autonomously compute
address expressions for 2D array accesses, vectors and indi-
rect vectors of the form A[B[i]]. As in the case of the loop
unit, the compiler stores descriptions of access patterns into
context registers within the address generators. Thereafter,
with the help of the loop unit, the address generators pump
data at a high rate into the execution cluster to ensure high
function unit utilization. They handle common access pat-
terns found in perception algorithms. In uncommon cases
the generic A[B[i]] pattern may be used to implement the



Figure 3: Pipeline Structure

access pattern. For example, by storing bit-reversed indices
in B[ ], bit-reversed access of A[ ] is possible for FFT compu-
tations. It is also possible to use function units to compute
and issue addresses like in a traditional architecture.

3. PIPELINE STRUCTURE
The perception processor architecture was designed to be

able to emulate dataflows that typically occur within cus-
tom ASIC accelerators. To this end, it has a simple and
rather different pipeline structure from a traditional proces-
sor. In sharp contrast to the typical five stage Instruction
Fetch/Instruction Decode/Execute/Memory/Write Back (
IF/ID/EX/MEM/WB ) pipeline of a MIPS like RISC pro-
cessor, the perception processor pipeline consists of just 3
stages: Fetch/Decode/Execute [9]. The number of actual
stages in the final execute phase depends on the function
unit. The pipeline structure is shown in Figure 3. Conspic-
uous departures from the RISC model include the absence of
register lookups in the decode stage and the lack of memory
and write back stages.

In the perception processor, the microinstructions are fetc-
hed from a very wide instruction memory which is more than
200 bits wide. The decode stage is minimal and is limited to
performing sign or zero extensions to constants, generating
NOPs for function units while the memory system is being
reconfigured and generating clock enable signals for active
function units. The wide instruction is then dispatched to
a set of function units, a loop unit and a set of address gen-
erators. All resources including actual function units and
SRAM ports appear as peers in the EX stage. The final
output of all these peer units can be transferred back to

the input of the units by an interconnect network. Nearest
neighbors can be reached in the same cycle while reaching a
non-neighboring unit incurs an additional cycle of latency.

In the MIPS RISC execution model, every single instruc-
tion implicitly encodes a path through the pipeline. An inte-
ger instruction takes the IF/ID/EX/MEM/WB path, while
a floating point instruction takes a detour through the FPU
in the EX stage. There is also an implicit hardware con-
trolled timing regime that dictates the relative cycle time at
which an instruction reaches each stage subject to depen-
dences checked by interlocks.

In the perception processor, instructions do not encode
any such implicit paths. The instructions are called mi-
crocode because they serve the traditional horizontal mi-
crocode function where individual bits directly control hard-
ware functions like mux selects and register write enables.
To get the functionality implied by a MIPS instruction, the
stage by stage functionality of the MIPS instruction must
be identified and the equivalent microinstruction bits set
in several successive microinstruction words. The advan-
tage of this lower level approach is that the hardware can
be controlled in a fine grained fashion which is impossible
in the MIPS case. For example, interconnect muxes may
be set to route data between selected function units and
memory in a manner which directly represents the dataflow
graph of an algorithm and data may be streamed through
the dynamically configured structure. The ability to recon-
figure the structure through microcode on a cycle by cycle
basis means that the function units may be virtualized to
map flow-graphs which are too large to fit the processor.
This manifests itself as higher loop initiation intervals and
larger number of temporary results that need to be saved



or rerouted when compared to a processor that has enough
physical resources to allocate to the entire flow-graph. Per-
formance degrades gracefully under virtualization. The per-
ception processor supplants the instruction centric RISC ex-
ecution model with a data centric execution model which
lends it the flexibility to efficiently mimic the styles of com-
putation found in VLIW and vector processors as well as
custom ASIC datapaths.

3.1 Function Units
Function units follow the generic organization shown in

Figure 4. Their operands may be the output of their own
final stage or the output of their left or right neighbor. In
addition an operand may also arrive over the interconnect in
which case the transferred value is first latched in a register.
Several types of function units are used in this study.

Figure 4: Function Unit Architecture

Integer ALUs perform common operations like add, sub-
tract, xor etc. ALUs also have compare instructions which
not only return a value, but also set condition codes local
to the particular ALU. Conditional move operations may be
predicated on the condition codes set by previous compare
instructions to route one of the two ALU inputs to the out-
put. This makes if-conversion and conditional data flows
possible. All ALU operations have single cycle latency.

FPUs support floating point add, subtract, multiply, com-
pare and integer to floating point convert operations. While
the FPU is IEEE 754 compatible at its interfaces, for mul-
tiply operations it internally uses a reduced precision of 13
bits of mantissa since it has been demonstrated that our tar-
get applications work well with this precision [17]. Reduced
precision in the multiplier contributes significant area and
energy savings. All FPU operations have 7 cycle latency.

Multiply units support 32-bit integer multiply opera-
tions with 3 cycle latency.

In order to illustrate the advantages of fine grain pipeline
control and modulo support and to demonstrate our gener-
ality claims, no application specific instructions have been
added to the function units with two exceptions: the reduced
precision of floating point multiplies and byte select/merge
instructions which select an individual byte from a word.
The latter is similar to the pack/unpack instruction in Intel’s

IA-64 architecture or the AL/AH register fields in the IA-
32 architecture. These instructions significantly ease dealing
with RGB images.

3.2 Interconnect
As CMOS technology scales, wire delays get relatively

worse. The cluster interconnect reflects our belief that fu-
ture architectures will need to explicitly address communi-
cation at the ISA level. The local bypass muxes in each
function unit are intended for fast, frequent communication
with the immediate function unit neighbors. The intercon-
nect supports communication with non-neighbor function
units and SRAMs. Such communications have a latency of
one cycle. In a multicluster configuration, intercluster com-
munication will incur even larger delays. Values transferred
via the interconnect to the input registers of a function unit
may be held indefinitely which is useful for caching common
constants.

In modulo scheduled loops, each resource may be used
only during one modulo period. Reusing a resource later
will render the loop body unschedulable. It is common to
find a lot of data reads early in the loop body and a few
stores toward the end that correspond to computed values
graduating. Conflicts in the interconnect often make mod-
ulo scheduling difficult. We found it useful to partition in-
terconnect muxes by direction so as to reduce scheduling
conflicts. Incoming muxes transfer data between function
units and from SRAM ports to function units while outgo-
ing muxes are dedicated to transferring function unit out-
puts to SRAM write ports. Another common occurrence is
that two operands need to be made available at a function
unit as part of a dataflow but interconnect conflicts make
such a transfer impossible. In such cases it might be pos-
sible to transfer one operand in an earlier cycle and freeze
its destination pipeline register using clock gate control till
both operands arrive and can be consumed. The conflict
can thus be resolved and a feasible schedule attained, but
latency and loop initiation interval increase somewhat as
congestion increases.

3.3 Compiler Controlled Clock Gating
A distinguishing feature of the architecture is that a com-

piler can manage pipeline activity on a cycle by cycle basis.
Microinstructions contain an opcode field for each function
unit in the cluster. The fetch logic enables the pipeline shift
and clock signals of a function unit only if the corresponding
field is not a NOP. It can also generate a NOP when the op-
code field is used for another purpose. The net result is that
a function unit pipeline makes progress only during cycles
when operations are issued to it and stalls by default. The
scheme provides fine grain software control over clock gat-
ing while not requiring additional bits in the instruction to
enable or disable a function unit. When the result of an N-
cycle operation is required, but the function unit is not used
after that operation, dummy instructions are inserted by the
compiler into following instruction slots to flush out the re-
quired value. To avoid excessive power-line noise a compiler
may keep a function unit active even when it has nothing
to compute. The regular nature of modulo scheduled loops
make them good candidates for analytical modeling and re-
duction of power-line noise [26].

Fine grain compiler directed pipeline control has two main
purposes. Firstly, the compiler has explicit control over the



Figure 5: Inner Product Accelerator

life times of values held in a pipeline unlike a traditional
architecture where values enter and exit the pipeline under
hardware control and only quantities held in architected reg-
isters may be explicitly managed. Pipeline registers and the
associated bypass paths may be managed as if they were a
small register file and dataflows found in custom hardware
can be easily mimicked. Secondly, it lets the compiler con-
trol the amount of activity within a cluster. Software control
of dynamic energy consumption makes energy vs ILP trade-
offs possible. The resulting activity pattern is similar to the
ideal condition where each function unit has its own clock
domain and runs with just the right frequency.

4. PROGRAMMING EXAMPLE
This section illustrates the operation of the perception

processor using a simple kernel which is mapped into mi-
crocode. The algorithm to multiply two 16 × 16 floating
point matrices is shown in Figure 6. The control pattern
consists of 3 level nested for loops. Assuming that the ma-
trices are stored in row major order, the inner product com-
putation will access array A along the row while B will be
accessed along the column causing a base stride access pat-
tern. The compute pattern consists of multiply accumulate
operations which form the core of the inner product func-
tion.

Figure 5 outlines a simple custom hardware accelerator
for this algorithm. Address generator A fetches the rows of
matrix A. Address generator B generates the base stride
pattern for the columns of matrix B. Corresponding rows
and columns are fetched and applied to the floating point
multiplier. The output of the multiplier is accumulated in a
scratch register by the floating point adder. When an inner
product sum is ready it is written to a result SRAM which
is not shown in the figure.

In theory, this simple pipeline could compute one inner
product every 16 cycles. However, the final accumulation of
the inner product value creates a performance bottleneck.
The floating point add takes 7 cycles and since the output
is accumulated, a new multiply value can only be handled
every 7 cycles. Hence inner products take 16 × 7 cycles.
Interleaving the computation of 7 or more inner products
relieves this bottleneck. The cost is: a) address generator
B needs to be able to generate multiple interleaved base-
stride patterns b) address generator A needs to hold each
row element long enough for all the interleaved inner prod-
ucts and, c) Several scratch registers are required to hold
the intermediate sums.

Efficient compilation for any architecture attempts to max-
imally utilize execution units while minimizing storage pres-

def inner_product(A, B, row, col):

sum = 0.0

for i in range(0,16):

sum = sum + A[row][i] * B[i][col]

return sum

def matrix_multiply(A, B, C):

# C is the result matrix

for i in range(0, 16):

for j in range(0, 16):

C[i][j] = inner_product(A, B, i, j)

Figure 6: Matrix Multiply Algorithm

i_loop = LoopContext(start_count=0,

end_count=15,

increment=1, II=7 )

A_ri = AddressContext(port=inq.a_port,

loop0=row_loop,

rowsize=16,

loop1=i_loop, base=0)

B_ic = AddressContext(port=inq.b_port,

loop0=i_loop,

rowsize=16,

loop1=Constant,

base=256)

for i in LOOP(i_loop):

t0 = LOAD( fpu0.a_reg, A_ri )

for k in range(0,7): # Will be unrolled 7x

AT(t0 + k)

t1 = LOAD(fpu0.b_reg, B_ic,

loop1_constant=k)

AT(t1)

t2 = fpu0.mult( fpu0.a_reg,

fpu0.b_reg )

AT(t2)

t3 = TRANSFER( fpu1.b_reg, fpu0 )

AT(t3)

fpu1.add( fpu1, fpu1.b_reg )

Figure 7: Microcode for Interleaved Inner Product

sure. The same is true for our cluster architecture but the
fine grain control provides more options. Figure 7 shows
cleaned up assembly code for the interleaved inner product
for the cluster architecture. For brevity the outer loop which
invokes the interleaved inner product is not shown. This
code is capable of sustaining the same throughput (7 inner
products every 16×7 cycles) as the refined custom hardware
accelerator. Performance and energy efficiency are achieved
by a combination of techniques.

The inner product loop i loop is marked for hardware
modulo loop acceleration and its parameters are configured
into a free context in the loop unit. Two address contexts
A ri and B ci are allocated and the address generators at-
tached to the input SRAM ports are reconfigured. Both
contexts are tied to the loop i loop. B ci is set to generate
a column walk indexed by i loop, with the starting offset
specified in a constant field in the load opcode. A ri is
set to access the matrix row by row in conjunction with an



outer loop. The address contexts effectively implement ar-
ray variable renaming functions, a fact which is not evident
in the code.

On entering i loop the previous loop is pushed on a stack,
though its counter value is still available for use by the ad-
dress contexts, particularly A ri. The new loop updates its
counter every 7 cycles and admits new loop bodies into the
pipeline. This is not a branch in a traditional sense and
there is no branch penalty.

Communication is explicit and happens via load/store
instructions or via interfunction unit data transfers both
of which explicitly address pipeline registers. In the ex-
ample A[r][i] and B[i][c] are allocated to pipeline registers
fpu0.a reg and fpu0.b reg respectively. In fact, it is more
appropriate to say that B[i][c + k] where k refers to the
kth interleaved inner product resides in fpu0.b reg at time
t0 + k. No scratch registers are required for the sum. The
intermediate sums are merely circulated through the long
latency fpu adder. This notion of allocating variables both
in time and space is central to programming the perception
processor.

The return value of each opcode mnemonic is the relative
time at which its result is available. The AT pseudo op is
a compile time directive that controls the relative time step
in which following instructions are executed. Dataflow is ar-
ranged by referring to the producer of a value and the time
step it is produced in. Such a reference will be translated by
the compiler into commands for the forwarding logic. More
complex programs are written as several independent exe-
cution streams. The streams are then made to rendezvous
at a particular time by adjusting the starting time of each
stream. The example shows that compile time pseudo ops
can perform arithmetic on relative times to ensure correct
data flow without the programmer needing to be aware of
the latencies of the actual hardware implementation.

The loop body for i loop will consist of 7 inner loop bod-
ies created by loop unrolling. Each inner loop body before
unrolling takes 18 cycles to execute. Since i loop has been
specified to have an initiation interval of 7 cycles, a total
of 3 i loop bodies corresponding to 21 of the original loop
bodies will be in flight within the cluster at a time. It is the
modulo aware nature of the address generators that permits
each of these loop bodies to refer to array variables in a
generic manner like A[r][i] and get the reference that is ap-
propriate for the value of r and i which were current at the
time that loop body was started. Without special purpose
address generation such high levels of ILP will not be possi-
ble. A previous version of the architecture without modulo
address generators had limited ILP because generic function
units and registers were used for address generation [18].

For this example, interleaving 7 inner products at a time
results in 2 left over columns. They are handled by a similar
loop to the one shown in Figure 7 except that it will have
more idle slots. The adder needs to be active all the time,
but the multiplier needs to work only 2 out of every 7 cycles.
Since the multiplier pipeline will not shift 5 out of 7 cycles,
the dynamic energy consumption resembles an ideal circuit
where the adder runs at full frequency and the multiplier
runs at 2/7 of the frequency thereby consuming less energy.

The overall effect is that the dataflow and throughput of
the perception processor matches the custom hardware but
in a more programmable manner.

5. EVALUATION
The perception processor will be compared against its

competition using a set of ten benchmarks. Four different
implementations are considered: a) Software running on a
400 MHz Intel XScale processor. The XScale represents a
popular energy efficient embedded processor. b) Software
running on a 2.4 GHz Intel Pentium 4 processor. While the
Pentium is not as energy efficient as typical embedded pro-
cessors, most energy efficient processors currently are unable
to support real-time perception tasks. c) Micro-code imple-
mentations of benchmarks running on the perception pro-
cessor. d) Custom ASICs were implemented for four bench-
marks.

5.1 Benchmarks
A set of ten benchmarks are used in this study. Seven

represent components of perception applications while three
were added from the DSP and encryption domains to test
the general applicability of the perception processor to other
streaming problems. Two algorithms named GAU and HMM
occupy about 99% of the execution of the CMU Sphinx 3.2
speech recognizer [12, 17]. Fleshtone is used for skin color
detection and Erode and Dilate are used for image segmenta-
tion in a visual feature recognizer [16]. Rowley and Viola are
face detectors based on neural network and wavelet based
methods respectively [22, 23]. In this study these algorithms
operate on 30 × 30 pixel grayscale image regions.

The FFT benchmark performs a 128 point complex to
complex Fourier transform on floating point data. On the
Pentium, we use the FFTW package which is believed to be
the worlds fastest software FFT implementation. The mi-
crocode implementation running on the cluster is based on a
simple radix 2 algorithm. The FIR benchmark implements
a 32 tap finite impulse response filter. The encryption al-
gorithm Rijndael is the AES standard. Its usage will be in
the context of encrypting 576 byte Ethernet packets using a
128 bit key.

Parts of the GAU, Rowley and Fleshtone algorithms are
amenable to vectorization while the rest are dominated by
2D array row and column accesses. HMM and Fleshtone
both contain data dependent branches which have been if-
converted while the remaining algorithms do not contain
branches in the loop body. Graphs in this section will show
floating point benchmarks (Rowley, GAU, FFT and Flesh-
tone) first. The remaining benchmarks use only integer
arithmetic.

5.2 Metrics
Energy consumption per input packet and throughput are

important metrics used in this study to compare energy ef-
ficient acceleration of algorithms. However they describe
only half of the story because the energy vs delay tradeoff
inherent in CMOS circuits makes it possible for low per-
formance circuits to drastically reduce energy consumption.
The energy delay product is a very useful metric in this
context since it tracks both energy and performance im-
provements [6]. Since this metric depends on the feature
size of the CMOS process, λ, designs need to be normalized
to the same process for comparison. The perception pro-
cessor and the Pentium 4 both use 0.13µ CMOS processes.
Hence, no scaling is necessary to compare them. Since the
XScale is implemented in a 0.18µ process and the ASICs
are implemented in a 0.25µ process, to give the competition



the advantage of a better process, we assume constant field
scaling and use λ3, λ and λ4 to normalize energy, delay and
energy-delay product to a 0.13µ process [25]. It is impor-
tant to note that below 0.9µ Vth and Vdd are unlikely to
scale in order to limit leakage currents. This will increase
the advantage of our fine grained cluster approach.

5.3 Experimental Method
Two configurations of the perception processor were de-

signed for 1 GHz operation at 1.6 volts in a 0.13µ CMOS
process. The floating point configuration has 4 FPUs and 4
ALUs while the integer configuration contains 4 ALUs and
2 integer multipliers. The configurations are otherwise iden-
tical. The Verilog netlists for each processor is synthesized,
and a clock tree and wire loads are added. The circuit is then
simulated at the transistor level using a commercial version
of Spice (Synopsys Nanosim). Micro-code for the bench-
marks are run on the processor during Spice level simula-
tion. Numerical integration of the supply current waveform
provided by Spice is used to compute energy consumption.
The SRAMs used in the processor are macro-cells. Simulat-
ing them at the transistor level is not feasible. Reads, writes
and idle cycles on each SRAM are logged during simulation
and used to compute energy based on current consumption
reported by the SRAM macro-cell generator tool. Bench-
marks are run for several thousand cycles until the energy
estimate converges.

Circuit boards of Pentium and XScale based systems were
modified at the board level to measure processor power con-
sumption. The benchmarks were then run on these systems
and average power consumption was measured using a cur-
rent probe and an oscilloscope. Comparison against a DSP
would be nice, but no system suitable for such PCB modifi-
cation is currently available to us.

Since the XScale does not have an FPU, the floating point
benchmarks are compared against an ideal XScale whose
FPU has the same latency and energy consumption as an in-
teger ALU. For this purpose, floating point operators in the
code are substituted with their integer counterparts. This
change renders the results computed by the algorithm on the
XScale meaningless. However, the performance and energy
consumption represent a lower bound for any real XScale
implementation with an FPU.

6. RESULTS
The design goal of the perception processor was to achieve

high performance for perceptual algorithms at low power.
For stream computations, a very important consideration
is if a system has sufficient throughput to be able to pro-
cess a known data rate in real-time. Since dynamic energy
consumption is directly proportional to operating frequency,
one method for achieving this goal is to exploit high levels of
instruction level parallelism for stylized applications without
paying a high price in terms of hardware complexity. This in
turn permits adjusting the frequency and operating voltage
to adequately meet real time requirements. More specifi-
cally, since dynamic power consumption is proportional to
CV 2f , if high throughput can be achieved without a corre-
sponding increase in C, then V and f may be scaled down
to achieve significant energy savings.

Figure 8 shows the IPC of the perception processor com-
pared against the IPC measured using hardware performance
counters on an SGI R14K processor. The benchmarks were

FFT

Flto
ne Gau

Row
ley

Dila
te

Ero
de

HM
M

Viol
a

FIR Rijn
0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

IP
C

1.
7

1.
6

2.
3

2.
4

2.
4

2.
5

1.
6

2.
4

2.
2 2.
3

0.
0

4.
5

3.
4

5.
8

5.
3

5.
2 5.

4

4.
1

6.
0

3.
2

3.
9

0.
0

1.
9

2.
0

3.
5

2.
7 3.

2
3.

1

1.
2

2.
9

2.
4

1.
6

0.
0

6.
4

5.
3

9.
3

8.
0 8.

4

8.
4

5.
3

8.
9

5.
6

5.
6

0.
0

R14K Perception Proc MEM IPC Perception Proc EX IPC

Figure 8: IPC

compiled for the R14K using the highly optimizing SGI
MIPSPro compiler suite. The perception processor achieved
a mean improvement in IPC of 3.3 times 1 over the sophis-
ticated out of order processor. A large fraction of this im-
provement may be directly attributed to the memory system
which can transfer data at a high rate into and out of the
function units. This leads to high function unit utilization
and high IPC.

This claim is further bolstered by Figure 9 which shows
the throughput of the perception processor, the Pentium 4
and the XScale processors. Throughput is defined as the
number of input packets processed per second and the re-
sults shown in Figure 9 are normalized to the throughput
of the Pentium 4. The perception processor operating at
1 GHz outperforms the 2.4 GHz Pentium 4 by a factor of
1.75. The perception processor’s mean throughput is 41.4%
of that of the ASIC implementations (Gau, Rowley, FIR,
Rijn). Bear in mind that this is severely skewed by the fact
that the ASIC implementations, particularly Rijn expends
vastly more hardware resources than the perception proces-
sor. The goal for the ASIC implementations has been to set
an upper bound on performance without radical change to
the base algorithm. For example in the case of the encryp-
tion benchmark Rijn, a single copy of the s-box lookup table
is stored in the scratch memory of the perception processor.
In contrast, the ASIC version uses 12 copies of the same
lookup table in parallel to enhance performance. For the
set Gau, Rowley and FIR, the perception processor in fact
achieves on average 84.6% of the throughput of the ASIC
implementation. This demonstrates the benefit of our ar-
chitectural solution to the problems posed by perceptual al-
gorithms.

Improving both energy and performance simultaneously
is often quite difficult. Figure 10 shows that while deliv-
ering high throughput, the perception processor consumed
on average 13.5 times less energy than the XScale embed-

1In this paper the terms mean and average refer to the ge-
ometric mean. All graphs except Figure 8 use log scale for
the Y axis.
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Throughput

ded processor. In terms of energy delay product, Figure 11
shows that the perception processor outperforms the XScale
processor by a factor of 159 and the Pentium 4 by more than
3 orders of magnitude. Note that these two graphs use a log
scale. When compared to the ASIC implementations the
perception processor is worse merely by a factor of 12. This
again shows that the perception processor is able to retain
a large amount of generality while paying a relatively small
penalty in energy delay product.

All together these radical improvements suggest that in
cases where high performance, low design time and low en-
ergy consumption need to be addressed simultaneously, the
perception processor could be an attractive alternative.

Figure 12 shows the synergistic effect of applying clock
gating to a cluster that supports compiler controlled datap-
aths. Compiler controlled datapaths provide energy reduc-
tion by decreasing datapath activity, and avoiding register
files accesses. To implement it, the load enable signal of each
pipeline register should be controlled by software. Once the
design is adapted for explicit pipeline register enabling, it is
a trivial extension to clock gate pipeline registers using the
same signal. This graph shows that on average this saves
39.5% power when compared to the implementation with-
out clock gating. These results are aliased by two factors a)
SRAM power adds a large constant factor to both the cases
and, b) our CAD tools are unable to clock gate multicycle
datapaths like the FPUs. Further reduction is possible by
clock gating multicycle datapaths.

7. RELATED WORK
Scheduling techniques for power-efficient embedded pro-

cessors have achieved reasonably low power operation but
they have not achieved the energy delay efficiency of the
work described here [10]. Reconfigurability using FPGA de-
vices and hybrid approaches have been explored [2, 5]. These
approaches offer generality but not at a performance level
that can support perception applications. Of particular rel-
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Figure 10: Process Normalized Energy Consump-

tion

evance are compiler directed approaches which are similar
to that described here. The primary difference is that this
approach targets custom silicon rather than FPGA devices
[19]. Customizing function units in a VLIW architecture
has been studied and the Tensilica Xtensa is a commercial
instance of this approach [7].

The RAW machine has demonstrated the advantages of
low level scheduling of data movement and processing in
function units spread over a 2 dimensional space [24]. Imag-
ine has demonstrated that significant performance gains can
be attained when appropriate storage resources surround
execution units [21]. Given the poor wire scaling proper-
ties of deep sub-micron CMOS processes, it is somewhat
inevitable that function unit clusters will need to be con-
sidered in order to manage communication delays in high
performance wide-issue super-scalar processors. However,
these approaches are all focused on providing increased per-
formance. The approach here is somewhat similar but is
tuned to optimize energy while providing just enough per-
formance to meet the real time guarantees of sophisticated
perception applications.

The MOVE family of architectures explored the concept
of transport triggering where computation is done by trans-
ferring values to the operand registers of a function unit and
starting an operation implicitly via a move targeting a trig-
ger register associated with the function unit [11]. Like in
the MOVE architecture, the concept of compiler directed
data transfer between function units is used in this paper
too, but the resultant architecture is a traditional operation
triggered one and transport triggering is not used.

Clock power is often the largest energy culprit in a modern
microprocessor [8]. While there has been significant research
into exposing clock gating to the compiler, this paper is
perhaps unique in using compiler controlled clock gating not
only as a power reduction mechanism, but also as a means
to control life time of variables and ensure improved data
flow.

Harnessing data parallelism using short vector or SIMD
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Figure 11: Process Normalized Energy Delay Prod-
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architectures is a popular approach [20, 1]. This technique
has been shown to improve performance by up to an order of
magnitude on DSP style algorithms and even on some small
speech processing codes [13]. The perception processor is
capable of capitalizing on this form of data parallelism as
well. From an energy delay perspective however, SIMD op-
eration is orthogonal to the compiler directed data flow and
clock gating approaches described in this paper. Therefore,
we have not pursued this option.

8. CONCLUSIONS
The perception processor uses a combination of VLIW ex-

ecution clusters, compiler directed dataflow and clock gat-
ing, hardware support for modulo scheduling and special
purpose address generators to achieve high performance at
low power for perception algorithms. It outperforms the
throughput of a Pentium 4 by 1.75 times with an energy de-
lay product that is 159 times better than an XScale embed-

ded processor. This approach has a number of advantages:
a) its energy-delay efficiency is close to what can be achieved
by a custom ASIC; b) the design cycle is extremely short
when compared to an ASIC; c) it retains a large amount
of generality compared to an ASIC; d) it is well suited for
rapid automated generation of domain specific processors.
We have shown that fine-grained management of communi-
cation and storage resources can improve performance and
reduce energy consumption whereas simultaneously improv-
ing on both these axes using a traditional microprocessor
approach has been problematic. Of similar importance is
that sophisticated real-time perception applications can be
adequately supported on this architecture within an energy
budget that is commensurate with the embedded space.

9. REFERENCES
[1] D. Brash. The ARM Archtecture Version 6 (ARMv6).

ARM Holdings plc Whitepaper, January 2002.

[2] T. Callahan and J. Wawrzynek. Adapting software
pipelining for reconfigurable computing. In
Proceedings of the International Conference on
Compilers, Architecture, and Synthesis for Embedded
Systems (CASES), San Jose, CA, 2000. ACM.

[3] Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and
C. Hu. New paradigm of predictive MOSFET and
interconnect modeling for early circuit design. In
Proceedings of the IEEE Custom Integrated Circuits
Conference (CICC), pages 201–204, June 2000.

[4] Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and
C. Hu. Predictive technology model.
http://www-device.eecs.berkeley.edu/˜ptm, 2002.

[5] A. DeHon. DPGA-coupled microprocessors:
Commodity ICs for the early 21st century. In D. A.
Buell and K. L. Pocek, editors, IEEE Workshop on
FPGAs for Custom Computing Machines, pages
31–39, Los Alamitos, CA, 1994. IEEE Computer
Society Press.

[6] R. Gonzalez and M. Horowitz. Energy dissipation in
general purpose microprocessors. IEEE Journal of
Solid-State Circuits, 31(9):1277–1284, September 1996.

[7] R. E. Gonzalez. Xtensa: A configurable and extensible
processor. IEEE Micro, 20(2):60–70, March 2000.

[8] M. K. Gowan, L. L. Biro, and D. B. Jackson. Power
considerations in the design of the Alpha 21264
microprocessor. In Design Automation Conference,
pages 726–731, 1998.

[9] J. Hennessy and D. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, 3rd
edition, 2002.

[10] J. Hoogerbrugge and L. Augusteijn. Instruction
scheduling for TriMedia. Journal of Instruction-Level
Parallelism, 1(1), Feb. 1999.

[11] J. Hoogerbrugge, H. Corporaal, and H. Mulder.
MOVE: a framework for high-performance processor
design. In Proceedings of the 1991 ACM/IEEE
conference on Supercomputing, pages 692–701. ACM
Press, 1991.

[12] X. Huang, F. Alleva, H.-W. Hon, M.-Y. Hwang, K.-F.
Lee, and R. Rosenfeld. The SPHINX-II speech
recognition system: an overview. Computer Speech
and Language, 7(2):137–148, 1993.



[13] S. M. Joshi. Some fast speech processing algorithms
using Altivec technology. In Proceedings of the IEEE
International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), pages 2135 – 2138, Mar.
1999.

[14] B. Mathew. The Perception Processor. PhD thesis,
School of Computing, University of Utah, Aug. 2004.

[15] B. Mathew and A. Davis. A Loop Accelerator for Low
Power Embedded VLIW Processors. In Proceedings of
the International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), 2004.

[16] B. Mathew, A. Davis, and R. Evans. A
characterization of visual feature recognition. In
Proceedings of the IEEE 6th Annual Workshop on
Workload Characterization (WWC-6), pages 3–11,
October 2003.

[17] B. Mathew, A. Davis, and Z. Fang. A low-power
accelerator for the Sphinx 3 speech recognition system.
In Proceedings of the International Conference on
Compilers, Architecture and Synthesis for Embedded
Systems (CASES ’03), pages 210–219, October 2003.

[18] B. Mathew, A. Davis, and A. Ibrahim. Perception
coprocessors for embedded systems. In Proceedings of
the Workshop on Embedded Systems for Real-Time
Multimedia (ESTIMedia), pages 109–116, October
2003.

[19] S. O. Memik, E. Bozorgzadeh, R. Kastner, and
M. Sarrafzade. A super-scheduler for embedded
reconfigurable systems. In Proceedings of the
International Conference on Computer-Aided Design
(ICCAD), page 391, Nov. 2001.

[20] H. Nguyen and L. K. John. Exploiting SIMD
parallelism in DSP and multimedia algorithms using
the AltiVec technology. In International Conference
on Supercomputing, pages 11–20, 1999.

[21] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany,
A. Lopez-Lagunas, P. R. Mattson, and J. D. Owens. A
bandwidth-efficient architecture for media processing.
In Proceedings of the 31st Annual ACM/IEEE
International Symposium on Microarchitecture
(MICRO-31), pages 3–13, Nov. 1998.

[22] H. A. Rowley, S. Baluja, and T. Kanade. Neural
network-based face detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence,
20(1):23–38, 1998.

[23] P. Viola and M. Jones. Rapid object detection using a
boosted cascade of simple features. In IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, Dec. 2001.

[24] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar,
W. Lee, V. Lee, J. Kim, M. Frank, P. Finch,
R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal.
Baring it all to software: Raw machines. IEEE
Computer, 30(9):86–93, 1997.

[25] N. H. E. Weste and K. Eshraghian. Principles of
CMOS VLSI Design, A Systems Perspective. Addison
Wesley, second edition, 1993.

[26] H.-S. Yun and J. Kim. Power-aware modulo
scheduling for high-performance vliw processors. In
Proceedings of the 2001 International Symposium on
Low Power Electronics and Design, pages 40–45. ACM
Press, 2001.


