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Abstract
We describe a new architecture that improves message-passing performance, both for device

I/O and for interprocessor communication. Our architecture integrates an SMT processor with a user-
level network interface that can directly schedule threads on the processor. By allowing the network
interface to directly initiate message handling code at user level, most of the OS-related overhead for
handling interrupts and dispatching to user code is eliminated. By using an SMT processor, most of
the latency of executing message handlers can be hidden. This paper presents measurements that
show that the OS overheads for message-passing are significant, and briefly describes our architecture
and the simulation environment that we are building to evaluate it.

1 Introduction
The same VLSI technology forces that are driving processor interconnect are also having an

impact on I/O architectures. As clock frequencies increase, high capacitance processor and I/O buses
cannot keep pace. These buses, on and off chip, are being replaced by point-to-point links. I/O interfaces
are starting to look much more like message-passing networks, as is evidenced by recent standards
such as InfiniBand[25] and Motorola’s RapidIO[27]. Communication over these point-to-point I/O net-
works can be viewed as low-level message-passing, where queries are sent to devices and responses are
received from devices. Since technology trends force the hardware to use point-to-point links, there is
an interesting opportunity to expose communication directly to user-level software through a message-
passing interface. By looking at this opportunity from a systems point of view (from user-level software
down to the hardware), we anticipate that we can dramatically reduce the costs for both processor-to-
processor and processor-to-IO message-passing.

Our architecture for addressing this problem consists of the following combination of ideas:
• An SMT processor allows the overhead of message handlers to be effectively hidden.
• A network interface that supports user-level access can be tightly coupled to the CPU to

avoid the overhead and latency of slower I/O buses. In addition, the network interface can
directly dispatch user-level threads on the SMT processor, which eliminates OS involve-
ment in the common case

• A message cache buffers incoming messages so that they can be accessed quickly by the pro-
cessor, and acts as a staging area for outgoing messages.

• A zero-copy message protocol allows messages to be delivered directly to user-space without
copying.

Not all of these ideas are new. For example, previous research has explored the use of user-level net-
work interfaces[3,9,11,13,18]. However, this specific combination of features is unique, in that it ex-
poses interrupts directly to user-level programs. The important aspect of our architecture lies in its
support for user-level messaging (for both interprocessor communication and I/O) in a general-purpose
operating system with small modifications to an SMT processor.

The combination of features in our architecture should reduce message handling overheads
dramatically, without requiring gang-scheduling or forcing a change of the message notification model
that is seen by the user-level software. The SMT processor, originally targeted to hide message latency,
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makes it possible to overlap computation and communication without adding a secondary communica-
tion processor. The combination of a zero-copy protocol, a message cache, and user-level access to the
network interface allows user code to communicate without the overhead of OS involvement or data
copying. Finally, our integration of the network interface (NI) with the SMT allow the NI to communi-
cate message arrival events back to the target thread without most of the overhead an interrupt-style
notification would incur.

2 Message Notification Costs
Figure 1 shows how a message send and receive may look from a single node point of view on

a machine that uses a kernel-mode network interface and traditional interrupts for message arrival
notification. Sends, receives, and notifications all make passes through operating system code. Since
the operating system code is unlikely to reside in the cache, these system calls result in cache misses.

Figure 1: Anatomy of a message for a kernel-mode NI
User-level interfaces[3,9,11,13,18] and zero-copy protocols[5,7] significantly reduce the over-

head of message sends and receives by eliminating operating system and copying overhead on the mes-
sage send and receive sides. Notifications still have significant opportunity for optimization, as they
remain the performance and scalability bottleneck in general multi-user environments. Polling for no-
tifications consumes significant processor and memory resources, making them undesirable in a multi-
programmed system. Polling is especially poor for programs with irregular or unpredictable communi-
cation patterns. Interrupts in current architectures and operating systems are costly in terms of the
number of processor cycles consumed to determine the cause of and handle the exception[12]. This
makes them less than optimal for message notifications.

The components of an interrupt-style notification overhead include:
� processor pipeline flushing (due to the interrupt)
� serial instructions to get and save processor state
� cache and TLB misses to bring in OS code and data to determine the cause of the interrupt
� reading NI registers or data structures to determine which process should be notified
� posting the notification to the process via a signal or other such mechanism
� cache, TLB and context switch overhead to begin execution of the user-level notification (signal)

handler
� a trap to return from the user-level handler back to the OS
� serial instructions to save processor state
� cache and TLB overhead to bring in OS code and data
� scheduler and context switch overhead to bring back in the original user process
� post kernel cache and TLB overhead to bring back in the user process's instructions and data
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Using a refined version of Schaelicke’s interrupt measurement work[22], we measured the
overhead of servicing a network interrupt for a minimum sized packet. Under Solaris 2.5.1 on a 147-
MHz Ultra 1, such an interrupt takes approximate 119 microseconds (17500 cycles) when user-level
code is utilizing the entire L2 cache. The process of handling such an interrupt results in about 380
kernel-induced L2-cache misses. (Fewer misses may be observed in practice if the user-level code is not
utilizing the entire L2 cache.) Assuming that each cache miss takes an average of approximately 270
ns to service[17], this accounts for about 103 microseconds or 87% of the interrupt processing time. The
remaining 13% of the time is spent in flushing the pipeline after the interrupt and trap, carefully read-
ing and saving critical processor state, querying the NI for information about the interrupt, and exe-
cuting operating system code to determine how to deal with the interrupt. In addition to incurring the
overhead of cache misses during an interrupt, the process that was running when the interrupt oc-
curred could see up to another 380 L2 cache misses once it is re-scheduled after the interrupt to refill
the cache with its working set.

L2-cache and TLB miss penalties unfortunately scale at memory speeds, as opposed to proces-
sor speeds. As a result, these overheads will become even more important as the memory gap widens.
Optimizations to the OS and signalling system can reduce this overhead. However, reducing the num-
ber of cache misses and other overheads to get the OS penalty down below a few microseconds does not
seem plausible. To make frequent notifications acceptable, the operating system’s involvement must
be significantly reduced or eliminated.

3  Architecture
Notifications only become the bottleneck when the rest of the message-passing system is ap-

propriately tuned. This section describes the system architecture, showing how it is optimized for effi-
cient messaging, describes how notifications are delivered to the user-level process without kernel
involvement, and walks through the path a one-way message takes though this architecture. Figure 2
shows a block-level view of the architecture.

Figure 2: Block-level diagram of our architecture

3.1 Components of the Architecture
Using an SMT processor allows communication-related threads to run parallel to computation-

based threads. Much of the overhead required to process sends, receives, and message arrival notifica-
tion can be hidden by overlapping these functions with computation. Previous work has dealt with
overhead by providing external communication processors[14,21]. These extra processors add to the
overall latency and complicate the message-passing mechanism due to the additional overhead of com-
munication between the computation and communication processor. The simultaneous nature of the
SMT processor makes it possible to provide this overlap without requiring the use of an extra commu-
nications processor.

The message buffer acts as both a staging area for outgoing messages as well as a cache for
incoming messages[23]. Messages may be composed directly in the message buffer for user-program
written (PIO-style) transfers, or fetched from user memory for DMA-style transfers. Buffering outgo-
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ing messages in the message buffer allows send data to be prefetched from memory and buffered before
going out on the network. This buffering reduces the probability that the network will need to be
stalled, tying up network resources, while waiting for outgoing message data to be supplied by the local
memory subsystem.

Incoming messages are placed in the message buffer. The message buffer acts as a cache for
incoming message data. As a message arrives, the message buffer invalidates corresponding cache
lines in the L1 and L2 caches. Misses in the L1 cache result in concurrent lookups in both the L2 cache
and the message buffer. In this way, the message buffer is similar to a victim cache to the L2 cache.
When there is a cache hit in the message buffer, data is supplied directly to the L2 cache. This cache
has a triple effect. First, it reduces overhead at the memory interface by saving the data two trips
across the memory bus. Second, it keeps the data near the CPU, where it can be provided quickly on
demand, thus reducing the overall end-to-end latency. Third, having a separate message cache avoids
polluting the cache hierarchy because the processor’s working set is not evicted by incoming messages.

A user-level accessible NI is used to reduce send and receive overhead. Having the network in-
terface on the same die, possible in the System on a Chip (SoC) era, opens up possibilities to more tight-
ly integrate it with the processor core, further reducing overhead and latency. Having the NI on die
gives the processor access to it on a per cycle basis. This close coupling further reduces the overhead
in getting information to and from the NI. Message sends and receives do not have to go out over slow
and inefficient I/O buses. A zero-copy protocol[5,7] is used to eliminate copying overhead for received
messages. The combination of user-level access to a closely coupled NI and the zero-copy protocol allow
for efficient sends and receives.

3.2 User-level Notifications
Part of the inefficiency of interrupt processing is due to the legacy view that interrupts are ex-

pected to be infrequent. In a fine-grained message-passing environment that uses interrupts for noti-
fications, this is not the case. One of the contributions of this work is to provide a mechanism whereby
the network interface can directly deliver notifications to a user-level process without the aid of the
operating system. This is accomplished by allowing the NI to share some control over thread execution.

Having the NI tightly coupled to the CPU makes it possible for the NI to share some control
over process execution in much the same way as load-store units can control the pipeline as cache miss-
es are detected. This can be done by thinking of interrupts and notifications differently. Notifications
are a way of telling the user process that it needs to either wake up (in the case of polling) or stop what
it is doing (in the case of an interrupt) and deal with a message arrival. One analogy to this would be
cache misses in a modern superscalar processor. When a cache miss occurs, the memory reference in-
struction stalls. Other independent instructions may continue, but the instruction that caused the
miss waits for the cache to fetch the relevant data. Once the data has been fetched, the cache returns
it to the processor core, and the processor again places priority on the memory reference and dependent
instructions.

This basic idea can be extended to message arrival notifications. When a process reaches a
point where it needs a message arrival notification, it can tell the hardware what specific process state
to change (i.e., program counter or runability) when an arrival occurs. It can then continue processing
until either the notification occurs, or it runs out of things to process. When the notification finally
takes place, the hardware can redirect the user-level software to work on processing the message ar-
rival.

To give the NI shared control over user processes, three mechanisms are available in our ar-
chitecture.

� If a thread wishes to be notified when a message arrives, it can set a lock in a hardware syn-
chronization lock table[24]. The NI can clear the lock bit upon message arrival, which re-
leases the process to run again. If the associated thread is not currently in the CPU, the OS
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receives the notification, and sets the appropriate hardware state to notify the thread the
next time it is scheduled.

� Just as an interrupt causes a current processor to asynchronously branch into a kernel level
interrupt handler, the NI can cause a running user-level process to asynchronously branch
to a notification handler.

� Upon message arrival, the NI can schedule a new thread on the SMT with a previously setup
context. This new thread starts in either an unused context on the SMT or it can evict a run-
ning thread, according to OS policy. If no contexts are available, the NI would notify the OS,
so that it could create the context and schedule it to run at a later time.

3.3 The Journey of a Message
Figure 3 shows how a message may look in our architecture.

Figure 3: Anatomy of a message in our architecture
A user-level program that wants to send a message to a process on a remote processor first com-

poses the message to be sent. Message control information is written into the message buffer. It in-
cludes information on how the message is to be handled on the remote end (where it will be placed and
whether to notify the receiving process), a small amount of user-defined meta-data, and an optional
local pointer to message data. The user process then directs the NI to send the message. The NI begins
to prefetch message data from local memory into the message buffer if required, fills in information
such as routing information, and begins streaming the message onto the wire. On the receive side, the
message is placed directly in the address space of the receiving process by the NI. While the message
is arriving, the NI places the message into the message buffer. As it fills cache lines in the message
buffer, it acquires ownership of those cache lines though the L2-cache interface and sets up appropriate
cache tags in the message buffer.

When an entire message arrives, the NI fills in a notification structure in the user process's
memory space. It then determines which method should be used to notify the corresponding process of
the message arrival. In the case of a blocked process waiting on a message arrival, the NI clears a lock
bit in a synchronization table, which makes the corresponding thread runnable. The user-level process
begins executing and handles the incoming message. In the case of an asynchronous branch or user-
level interrupt, the SMT switches to an alternate program counter and stack. User-level code is then
responsible for saving any of its own state as necessary before handling the notification. Finally, in the
case of a created thread, the NI gives the SMT core minimal context, including a program counter,
stack pointer, and a pointer to the notification structure. The SMT core begins executing at the given
program counter.

In summary, we have presented an architecture that significantly reduces send, receive, and
notification overhead. We have presented three separate user-level notification mechanisms, and have
walked through the path a message takes in our architecture. The key features of the architecture are
the following: SMT processors hide and tolerate message overhead and latency, send and receive over-
head is reduced by a user-level network interface combined with efficient protocols, and notifications
can be delivered directly to user-level without the overhead of an operating system.
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4 Related work
Simultaneous Multithreading (SMT) architectures[8] have begun to see commercial atten-

tion.The SMT processor is targeted to tolerate latency and hide overhead by allowing one thread to pro-
cess overhead or wait for a long latency operation while the execution of independent threads
continues. SMT architectures promise the ability to simultaneously take advantage of both ILP and
thread-level parallelism within a single processor core. This architecture helps pave the way to more
efficient communication and synchronization of threads.

Dean Tullsen et al.[24] shows how extra lock and release hardware can be introduced to pro-
vide fine-grained synchronization for threads within the SMT processor. This efficient locking mecha-
nism allows one thread to block on a hardware semaphore and be released by another co-operating
thread quite efficiently. One of the suggested notification primitives in this paper extends some of the
control over this hardware locking table to external events, such as message arrival notifications from
the NI.

Several previous systems have advocated moving the NI closer to the CPU. Flash[14], Ava-
lanche[23], Alewife[1], Shrimp[3], and Tempest[21] all placed the NI directly on the system memory
bus. Moving the NI to the system bus significantly reduces the cost of accessing the NI over accessing
it on a less efficient I/O bus. In addition to reducing overhead, placing the NI on the system bus allows
these systems efficient access to coherency traffic, which several of these systems use to an additional
advantage. The MIT J-Machine[6] and M-Machine[11] take it one step closer by bringing the NI direct-
ly onto the custom processor. Alewife, the J-Machine, and the M-Machine also have an interesting
characteristic in common in that they all use a thread model or a thread-like model to deal with com-
munication. Alewife uses a modified SPARC processor in an unconventional way to implement these
threads.The J-Machine and M-Machine both build a custom processor to get the desired thread behav-
ior. SMT processors now seem to be a natural way to achieve effective functionality of these machine
with only minor modifications to CPU structure.

In many ways the architecture in this paper is similar to the M-Machine. Both take advantage
of thread capable processors to hide message overhead, and both have forms of automatically dispatch-
ing threads when a message arrives. Our architecture differs from the M-machine in the following
ways. Messages are received directly into a users address space via hardware, eliminating the need for
trusted message handlers. Incoming messages are placed into a message buffer, or message cache, to
avoid pollution of the processor’s cache hierarchy. As a part of our work, we are evaluating the useful-
ness of this message-passing architecture both in the context of parallel processing and in the context
of network-based IO. Finally this architecture is built upon modifications of upcoming SMT architec-
tures.

Avalanche[23] placed the network interface on the system bus, keeping it close to the proces-
sor. This allowed it to participate in coherency traffic, and thus maintain a local network cache. The
local cache enables the Avalanche network interface to supply network data to the processor more
quickly than main memory. In addition, it avoids the overhead of wasting system bus bandwidth to
transfer message data across the system bus twice; once on the way to main memory on message ar-
rival, and once on the way back to the processor when the message is consumed.

For Hamlyn[5] Wilkes proposed sender-based protocols to reduce overhead. Having the sender
manage its destination buffers implies that data can be easily and effectively received directly into the
receiver's process space. Avalanche also used a sender-based messaging protocol (DDP)[7] to reduce
overhead. Sender-based protocols allow simple and efficient hardware to place incoming messages di-
rectly into the receive process's address space. This avoids kernel involvement on receives. Unlike
Hamlyn and DDP, the sender-based portion of the protocol in this work uses virtual addresses in com-
bination with an NI TLB to remove restrictions on receive buffers.

Active Messages[10] embed a message handler in the header of a message. When a message
arrives, the message handler is executed to handle the payload of the message. Though it is not specif-
ically a goal of this work, the architecture described here would support Active Messages rather well.
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A thread waiting for a message could immediately jump to the handler code in the header without the
penalty of an interrupt and without interfering with the currently running thread. If messages are re-
ceived directly into a message cache, then this handler code could potentially execute directly out of
the message cache, also saving the cache overhead of bringing in conventional handler code. Illinois
Fast Messages[20] is effectively a platform independent implementation of Active Messages.

U-Net[9] reduces communication overhead and latency by virtualizing the network interface.
The local process communicates with the network interface by placing and picking up message packets
from per-process send and receive queues. U-Net suggests placing a TLB in the network interface to
avoid the added restriction of fixed pinned pages. The architecture in this paper also gives the NI ac-
cess to a TLB to allow sends and receives to be handled in user-space.

5 Conclusion
SMT allows important computation to continue while interprocessor communication and I/O

processing and communication overhead is handled in the background. Since message latency is sim-
ilar to memory latency, one way of viewing this work is using an architectural technique for hiding
memory latency to hide message latency. Conversely, we can view our work as generating more paral-
lelism for SMT processors from I/O and parallel workloads.

To evaluate this architecture, we are extending LRSIM[22] to accurately model an SMT pro-
cessor and adding a model of our network interface. LRSIM is based on RSIM[19], and has already
been extended to include accurate I-cache, memory and I/O architecture models. The simulator in-
cludes a fairly complete NetBSD based kernel that will be extended to handle the SMT processor (all
kernel operations are fully simulated). The simulator runs unmodified Solaris binaries. For our eval-
uations, we will model a 2-5 GHz 4-8 thread SMT that can issue 8-16 instructions per cycle. L1 instruc-
tion and data caches will be 32KB to 128 KB each, and the L2 Cache will be 4-16MB. The system
network bandwidth modeled will range from 4Gb/s to 32Gb/s. Disk controllers, LAN interfaces (i.e.,
Ethernet), and other I/O devices will hang off the system network. There are a few open issues in our
design:

� It remains unknown how much send side buffering will be optimal. Too little buffering could
lead to too many bubbles in the network fabric. Too much could lead to increased message
latency. For the purposes of this design, the amount of buffering will be user configurable.

� The point at which DMA becomes more efficient than PIO needs to be characterized for this
architecture. Though it has been characterized for previous systems, the break-even point
on our architecture may be different as PIO can overlap computation on the SMT processor.

� The relative performance of each of the notification mechanisms needs to be characterized.
The results from the simulations will be compared with existing and proposed systems to as-

sess the benefits of our architecture.
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