
Probabilistic String Similarity Joins

Jeffrey Jestes Feifei Li Zhepeng Yan Ke Yi

Computer Science Department, FSU
Tallahassee, FL, USA

{jestes, lifeifei}@cs.fsu.edu

Dept of Computer Science & Engineering
HKUST, Hong Kong, China

cs_yzx@stu.ust.hk, yike@cse.ust.hk

ABSTRACT

Edit distance based string similarity join is a fundamental oper-
ator in string databases. Increasingly, many applications in data
cleaning, data integration, and scientific computing have to deal
with fuzzy information in string attributes. Despite the intensive ef-
forts devoted in processing (deterministic) string joins and manag-
ing probabilistic data respectively, modeling and processing prob-
abilistic strings is still a largely unexplored territory. This work
studies the string join problem in probabilistic string databases, us-
ing the expected edit distance (EED) as the similarity measure. We
first discuss two probabilistic string models to capture the fuzzi-
ness in string values in real-world applications. The string-level

model is complete, but may be expensive to represent and process.
The character-level model has a much more succinct representa-
tion when uncertainty in strings only exists at certain positions.
Since computing the EED between two probabilistic strings is pro-
hibitively expensive, we have designed efficient and effective prun-
ing techniques that can be easily implemented in existing relational
database engines for both models. Extensive experiments on real
data have demonstrated order-of-magnitude improvements of our
approaches over the baseline.

Categories and Subject Descriptors

H.2.4 [Information Systems]: Database Management—Systems.

Subject: Query processing

General Terms

Algorithms

Keywords

Probabilistic strings, approximate string queries, string joins

1. INTRODUCTION
Similarity join on string-valued attributes in relational databases

is an important operator with a large number of applications. Ex-
amples include data cleaning [8], data integration [10], fuzzy key-
word search [15] and many others [5, 13, 28]. The edit distance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

is the most commonly used similarity measure between two strings
[7,8,13,17,19,28], and edit distance based string similarity join has
been extensively studied in the literature, with a suite of techniques
developed ranging from simple SQL statements [8, 13] to more
complicated ones that need to be implemented within the database
engine [28]. However, the increasing presence of probabilistic data
in many applications, represented by the recent development in the
TRIO [1], MayBMS [4], MystiQ [6], PrDB [25], MCDB [14] and
Orion [26] projects, introduces new and interesting challenges for
string joins in databases with probabilistic string attributes, which
is the focus of this paper.

Note that a probabilistic model is particularly useful for string
attributes in the aforementioned applications. In data cleaning, un-
certainty often arises in string values, due to data entry errors or
simply typing mistakes [7]. Similar scenarios also appear in the
automatic recognition of scanned images for bank checks [23]. In
a scientific computing project involving strings, such as genome-
sequencing and DNA-sequencing, it is common that scientists have
identified the values (one of the letters in {‘A’, ‘C’, ‘G’, ‘T’}) for
90% of the positions in a genome sequence, while there is some
degree of uncertainty for the other 10%. Finally, in a data integra-
tion scenario [5, 10], string values for describing the same object
from different data sources could be different. In all these appli-
cations, the “uncertainty” in strings is not “unknown”, and certain
knowledge, prior or posterior, is often available [11, 12, 22]. Such
knowledge is best modeled by probabilistic strings.

Probabilistic string models. A natural way of modeling a proba-
bilistic string S is the string-level uncertainty model, in which all
possible instances for S are explicitly listed and they form a prob-
ability distribution function (pdf). Formally,

Definition 1 (string-level model) Let Σ be an alphabet. A string-

level probabilistic string is S = {(σ1, p1), . . . , (σm, pm)} where
σi ∈ Σ∗ , pi ∈ (0, 1] and

Pm

i=1 pi = 1. S instantiates into σi

with probability pi. We also use S(i) to denote its i-th choice, i.e.,
S(i) = (σi, pi) for i = 1, . . . , m.

This model is complete, since it can represent any pdf of a prob-
abilistic string. However, the uncertainty in a probabilistic string
in many of the aforementioned applications often exists only at a
few positions. Representing such probabilistic strings in the string-
level model would be highly redundant, especially when each un-
certain position has many choices or the string has a few uncer-
tain positions, leading to an exponential blowup in the string-level
model representation. Indeed, this phenomenon (uncertain posi-
tions) has been respected in existing relational databases by their
explicit support for wildcards. For example, ‘_’ is a wildcard in
SQL that can match any character, so “advis_r” may represent
either “adviser” or “advisor”. Using wildcards assumes no

knowledge for the uncertain positions. However, in most cases,
some degree of knowledge is available for these positions [21, 22].
For example, “advisur” is considered as a possible instance of
“advis_r”, but most likely this is not what the user intends. Based
on statistics (and common sense) we can reasonably postulate that
this ‘_’ is ‘o’ with 80% probability and ‘e’ with 20% probability.
With merely a wildcard ‘_’, we have essentially assumed a uniform
distribution over the entire alphabet, which is far less accurate than
the pdf constructed based on statistics.

Generalizing this observation, a more concise model for many
applications is the following character-level uncertainty model.

Definition 2 (character-level model) Let Σ be an alphabet. A char-

acter level probabilistic string is S = S[1] . . . S[n]. For i =
1, . . . , n, S[i] = {(ci,1, pi,1), . . . , (ci,ηi

, pi,ηi
)}, where ci,j ∈ Σ,

pi,j ∈ (0, 1] and
Pηi

j=1 pi,j = 1. Each S[i] instantiates into ci,j

with probability pi,j independently.

We define a few notations. We use |X| to denote the absolute
value of X if X is an integer, the number of elements in X if X is
a set, and the length of X if X is either a deterministic or a prob-
abilistic string. Note that if S is a probabilistic string in the string-
level model, |S| is a random variable; if S is a probabilistic string
in the character-level model, |S| is a constant. We use size(X) to
denote the number of choices in X if X is a pdf. Hence, a string-
level probabilistic string S has size(S) choices, and a character-
level probabilistic string S has

Qn

i=1 size(S[i]) choices.
The independence assumption in Definition 2 allows us to suc-

cinctly represent exponentially many possible instances of a ran-
dom string using the character-level model, which would otherwise
have to be stored explicitly in the string-level model. This is also
a reasonably good approximation of reality for many of the afore-
mentioned applications, since in many applications the number of
uncertain positions in a string is usually a small and isolated per-
cent. In fact, similar models with independent uncertain positions
have also been used for molecular biology, pattern matching, and
similarity search in random sequences (see [21] and the references
therein). If there is non-negligible correlation between adjacent lo-
cations, it is possible to consider a hybrid model that combines the
string-level model and the character-level model, by making each
S[i] a string-level probabilistic string instead of one single charac-
ter. To keep the presentation clean we will focus on the string-level
model and the character-level model in this paper, but the tech-
niques could be extended to the hybrid model as well.

With the wide presence of uncertainty in string data, probabilis-
tic string similarity joins have become an important problem. Its
role in probabilistic databases should be comparable to that of de-
terministic string joins in traditional databases, which have been a
focus of study in past years [8, 13, 17–19, 27, 28].

Problem formulation. We extend the edit distance, the standard
similarity measure for deterministic strings, to the probabilistic set-
ting, by considering the expected edit distance (EED) between two
probabilistic strings. Recall that for two deterministic strings σ1

and σ2, the edit distance d(σ1, σ2) is the minimum number of edit

operations required to transform σ1 to σ2, where an edit operation

is an insertion, a deletion, or a substitution of a single character. It
is well-known that d(σ1, σ2) can be computed by a simple dynamic
program (the proof of its correctness is not trivial though):

d[i, j] = min

8
><
>:

d[i, j − 1] + 1, insertion

d[i − 1, j] + 1, deletion

d[i − 1, j − 1] + c(σ1[i], σ2[j]), substitution

(1)
in which

c(σ1[i], σ2[j]) =

(
1, σ1[i] 6= σ2[j],

0, σ1[i] = σ2[j],

where σ[i] is the ith character in a string σ, and the base case is
d[i, j] = i + j when i · j = 0. In this DP, d[i, j] stores the edit
distance between substrings σ1[1..i] and σ2[1..j], thus d(σ1, σ2) =
d[|σ1|, |σ2|]. This DP’s running time is clearly O(|σ1| · |σ2|).

The edit distance of two probabilistic strings is a random vari-
able, so its expectation is a natural measure of similarity between
two probabilistic strings. Its formal definition uses the following
possible worlds semantics. Let S1 and S2 be two probabilistic
strings in either the string-level or the character-level model.

Definition 3 (possible worlds) The possible worlds Ω of S1 and
S2 is the set of all possible combinations of instances of S1 and S2.
A possible world s ∈ Ω is a pair ((σ1, p1), (σ2, p2)), where σ1

(σ2) is an instance from S1 (S2) with the probability p1 (p2). The
probability of s is w(s) = p1 ·p2, and the edit distance between S1

and S2 in s is d(s) = d(σ1, σ2).

Note that for both probabilistic string models, the possible worlds
Ω defines a probability space, namely

P
s∈Ω w(s) = 1.

Definition 4 (expected edit distance) The expected edit distance

(EED) between S1 and S2 is

bd(S1, S2) =
X

s∈Ω

w(s) · d(s). (2)

Finally, the join problem is formally defined as:

Definition 5 (probabilistic string join) Given tables R and T, each
with a probabilistic string attribute S, the string join between R and
T on S is to return all pairs of records (ri, tj) such that ri ∈ R, tj ∈

T, and bd(ri.S, tj .S) ≤ τ , where τ is some user-specified threshold.

Although being a distance naturally defined between two proba-
bilistic strings, the EED is very difficult to compute. Let us consider
the character-level model. One may be tempted to adapt the dy-
namic program (1) to compute the EED, by changing c(σ1[i], σ2[j])
to Pr(S1[i] 6= S2[j]), which is the EED between S1[i] and S2[j].
This is, unfortunately, wrong. Consider the following simple exam-
ple: S1 is a single-character string “a” or “b”, each with probabil-
ity 0.5, and S2 is “ab” with probability 1, namely, a deterministic
string. There are two possible worlds (“a”, “ab”) and (“b”, “ab”),
each with probability 0.5. It is clear that in both worlds, the edit
distance is 1, thus the EED is also 1. However, the modified DP
would give an incorrect answer 1.5. One may try other possible
DP formulations, but any attempt turns out to be flawed. The fun-
damental difficulty with any DP-based approach is that it tries to
relate the EED of a subproblem to the EED of a bigger problem.
But the EED does not follow any optimal substructure property:
the expectation of the minimum of two (or more) random variables
is not equal to the minimum of their expectations. In fact, such DPs
will only give upper or lower bounds on the EED (c.f. Section 4.1.2
and 4.2.2). The only immediate method available to compute the
EED exactly is to do so by enumerating all the possible worlds,
which is clearly very expensive, especially in the character-level
model (we conjecture that this problem is #P-complete). Thus we
have an even more urgent need for effective and efficient pruning
techniques for string joins in the probabilistic setting, which are the
main contribution of this paper.

Our contributions. In this paper we present a comprehensive in-
vestigation on the problem of efficient string joins in probabilistic
string databases, using the EED as the similarity measure, in both

the string-level and character-level models. In particular, we aim
at performing such joins on top of a relational database engine.
There are many benefits in realizing this goal, and in some cases it
is critical, as it would be more cost-effective to store and process
large probabilistic data sets using existing mature relational data-
bases [3]. Indeed, for deterministic string joins, there have been a
lot of efforts in trying to perform joins using mainly SQL and UDF
in a relational database [8, 13]. More specifically,

• We introduce the string-level and the character-level proba-
bilistic string models, and define the string join problem us-
ing the EED in probabilistic string databases.

• We present efficient lower bound filters, based on what we
call probabilistic q-grams, to effectively prune string pairs
that cannot possibly join under both models.

• We also present efficient upper bound filters to effectively
report string pairs that must join in the character-level model.

• We integrate the lower bound filters and the upper bound fil-
ters, and give their implementation in relational databases.

• We conduct a comprehensive experimental evaluation for our
algorithms in both models on a large number of real data sets.
The results show that our efforts have lead to several orders
of magnitude of performance improvement compared to the
baseline approach.

In the following we first provide some necessary background on
q-grams used in deterministic string joins in Section 2. Then we
develop our techniques in Section 3 and 4. The experimental eval-
uation is given in Section 5. We survey the related work in Section
6 and conclude in Section 7.

2. BACKGROUND ON Q-GRAMS
A deterministic string join, with an edit distance threshold τ , on

two string attributes A and B from two tables R and T in a relational
database may be implemented as

SELECT R.id, T.id FROM R, T WHERE d(A,B)≤ τ, (Q1)

where d(A,B) is a user defined function (UDF) that implements
the dynamic program (1). Existing studies demonstrated that con-
siderable improvements can be achieved using q-grams.

For a string σ, its q-grams are produced by sliding a window of
length q over the characters of σ. To deal with the special cases
at the beginning and the end of σ where there are fewer than q
characters, we extend σ by prefixing it with (q−1) ‘#’ and suffixing
it with (q − 1) ‘$’, where ‘#’ and ‘$’ are not in Σ. Hence, each
q-gram for the string σ has exactly q characters. A q-gram also
contains its positional information. Formally,

Definition 6 (q-gram) A q-gram for a string σ is a pair (ℓ, g) where
ℓ is the beginning position of the q-gram (in the extended string σ),
and g is the substring of length q in σ beginning from ℓ.

Example 1 The 2-grams for the string advisor include {(1, #a),
(2, ad), (3, dv), (4, vi), (5, is), (6, so), (7, or), (8, r$)}.

Given q1 = (ℓ1, g1) and q2 = (ℓ2, g2), q1 = q2 if g1 = g2,
i.e., positions are ignored when comparing two q-grams. Let Gσ

be the set of all q-grams in σ. For strings σ1 and σ2, define Gσ1 ∩
Gσ2 = {(q1, q2) | q1 = q2, q1 ∈ Gσ1 , q2 ∈ Gσ2}, namely all the
matching pairs of q-grams from Gσ1 and Gσ2 respectively.

Clearly, a string σ has (|σ| + q − 1) q-grams. It has been ob-
served that strings with a small edit distance share a large number
of common q-grams. This intuition has been formalized by [13,27],
among others. Essentially, if we substitute a single character in σ1

to obtain σ2, then their q-gram sets differ by at most q q-grams.
Similar arguments hold for insertions and deletions. Formally,

Lemma 1 ([13, 27]) For two strings σ1 and σ2, we have

|Gσ1 ∩ Gσ2 | ≥ max(|σ1|, |σ2|) − 1 − q(d(σ1, σ2) − 1). (3)

Since |Gσ1 ∩ Gσ2 | can be computed efficiently, Lemma 1 gives
us a lower bound on d(σ1, σ2); if this lower bound is greater than
τ , we can prune this pair from further consideration.

Lemma 1 can be further improved with the positional informa-
tion of the q-grams. Intuitively, suppose d(σ1, σ2) = τ , then
only those q-grams within distance τ could possibly match. So

for q1 = (ℓ1, g1) and q2 = (ℓ2, g2) we define q1
k
= q2 if g1 = g2

and |ℓ1 − ℓ2| ≤ k, and also define ∩k to be the set of matching

pairs of q-grams where the matching is done w.r.t.
k
=.

Lemma 2 ([13, 27]) For strings σ1 and σ2, we have

|Gσ1 ∩d(σ1,σ2) Gσ2 | ≥ max(|σ1|, |σ2|) − 1 − q(d(σ1, σ2) − 1).
(4)

Assuming d(σ1, σ2) ≤ τ , by (4) we have

d(σ1, σ2) ≥1 +
1

q
(max(|σ1|, |σ2|) − 1 − |Gσ1 ∩d(σ1,σ2) Gσ2 |)

≥1 +
1

q
(max(|σ1|, |σ2|) − 1 − |Gσ1 ∩τ Gσ2 |). (5)

So if RHS of (5) is larger than τ , this will contradict the assumption
that d(σ1, σ2) ≤ τ , thus it must be d(σ1, σ2) > τ . Since |Gσ1 ∩τ

Gσ2 | ≤ |Gσ1 ∩ Gσ2 |, this is a tighter lower bound than (3).
Finally, there is another straightforward observation:

Lemma 3 ([13, 27]) d(σ1, σ2) ≥ ||σ1| − |σ2||.

The implementation of these lemmas in SQL is possible and has
been explored in [13], which shows a significant performance im-
provement over the query (Q1).

3. THE STRING-LEVEL MODEL
We represent a string-level probabilistic string attribute in a re-

lational database using five columns: id, cid, A, p, len.
Consider a probabilistic string S = {(σ1, p1), . . . , (σm, pm)}. We
convert it into m rows with each row representing one choice of
S. All m rows share the same id, which uniquely identifies S.
The cid column will take values 1, . . . , m, denoting the index of
these m choices. The A column stores the m strings for these m
choices, and p stores the corresponding probabilities. Finally, all
m rows store the same len, which is the expected length E[|S|] =Pm

i=1 pi|σi|. Please refer to Figure 1 for an example.
The straightforward implementation of the string join over two

tables R and T is to apply (2) in Definition 4 directly, with the help
of the UDF d(A,B) (the DP for two deterministic strings in the
query (Q1)), which leads to the following SQL query:

probabilistic strings

id S
1 {(add, 0.8), (plus, 0.2)}
2 {(up, 0.9), (op, 0.1)}

relational representation

id cid A p len

1 1 add 0.8 3.2
1 2 plus 0.2 3.2
2 1 up 0.9 2
2 2 op 0.1 2

q-grams

id cid ℓ g

1 1 1 #a
1 1 2 ad
1 1 3 dd
1 1 4 d$
1 2 1 #p
1 2 2 pl
1 2 3 lu
...

...
...

...

Figure 1: String-level probabilistic strings, their probabilistic

q-grams (q = 2), and the relational representation.

SELECT R.id,T.id FROM R,T GROUP BY R.id,T.id

HAVING SUM(R.p*T.p*d(R.A,T.A)) ≤ τ (Q2)

Clearly, this approach is very expensive, since it requires running
a DP for every possible world on the attributes R.A and T.A for
each pair of records in R and T. Our goal is to design efficient filters
that can prune away most pairs of records that are not possible to
match and execute as few DPs as possible. Note that one cannot
improve this basic approach by directly applying the deterministic
q-gram based join in each possible world, since a threshold on the
edit distance of each world would need to be given, which cannot
be determined.

Consider two string-level probabilistic strings S1 = {(σ1,1, p1,1),
. . ., (σ1,m1 , p1,m1)} and S2 = {(σ2,1, p2,1), . . . , (σ2,m2 , p2,m2)}.
The possible worlds Ω is the set that contains s = (S1(i), S2(j)) =
((σ1,i, p1,i), (σ2,j , p2,j)) for i = 1, . . . , m1 and j = 1, . . . , m2.

The first filter is a direct extension of the length filter (Lemma
3), for which the proof is trivial.

Lemma 4 For any string-level probabilistic strings S1 and S2:

bd(S1, S2) ≥
X

s∈Ω

w(s)||σ1,i| − |σ2,j ||. (6)

Inspired by the q-gram based lower bounds on the edit distance
of two deterministic strings, we propose effective lower bounds on
the EED of S1 and S2 based on their probabilistic q-grams.

Definition 7 (string-level probabilistic q-grams) Given a string-
level probabilistic string S = {(σ1, p1), . . . , (σm, pm)}, a prob-

abilistic q-gram is a quadruple (i, p, ℓ, g), where i is the choice
index (cid), p is the choice probability, while ℓ and g have the same
meanings as those in deterministic q-grams. The set of probabilistic
q-grams for S(i), denoted as GS(i), is:

GS(i) = {(i, pi, ℓj , gj)}, for all j s.t. (ℓj , gj) ∈ Gσi
.

GS is the set of string-level probabilistic q-grams for S:

GS = GS(1) ∪ · · · ∪ GS(m).

These probabilistic q-grams can also be easily stored in a rela-
tional table, as illustrated in Figure 1.

For two probabilistic q-grams ρ1 = (i, pi, ℓx, gx) and ρ2 =
(j, pj , ℓy, gy) from GS1 and GS2 , respectively, we define ρ1 = ρ2

if gx = gy; ρ1
k
= ρ2 if gx = gy and |ℓx − ℓy| ≤ k. The opera-

tors ∩ and ∩k between GS1 and GS2 are defined similarly as in the

deterministic case w.r.t. the = and
k
= operators, respectively. We

also let p(ρ) represent the choice probability of ρ, e.g., p(ρ1) = pi

and p(ρ2) = pj in the above example. Applying Lemma 2 in the
possible world s = (S1(i), S2(j)), we have:

|GS1(i) ∩ GS2(j)| ≥ |GS1(i) ∩d(s) GS2(j)| (7)

≥ max(|σ1,i|, |σ2,j |) − 1 − q(d(s) − 1).

The next lemma will be useful in deriving EED lower bounds.

Lemma 5 For two non-negative random variables X, Y :

E[max(X, Y)] ≥ max(E[X], E[Y]).
PROOF.

E[max(X, Y)] = E

„
X + Y + |X − Y |

2

«

=
E[X] + E[Y]

2
+

E[|X − Y |]

2

≥
E[X] + E[Y]

2
+

E[X − Y]

2
= E[X].

Similarly, E[max(X, Y)] ≥ E[Y].

The following theorem gives a lower bound on bd(S1, S2).

Theorem 1 For any string-level probabilistic strings S1 and S2:

bd(S1, S2) ≥ 1 +
max(E[|S1|],E[|S2|])

q

−

P
(ρ1,ρ2)∈GS1

∩GS2
p(ρ1)p(ρ2) + 1

q
. (8)

PROOF. Let s denote a possible world (S1(i), S2(j)) from Ω.
From (7) we have:

X

s∈Ω

w(s)|GS1(i) ∩ GS2(j)| ≥

X

s∈Ω

w(s)(max(|σ1,i|, |σ2,j |) − 1 − q(d(s) − 1)). (9)

Since
P

s∈Ω w(s) = 1, the RHS of (9) equals

P
s∈Ω w(s)max(|σ1,i|, |σ2,j |) − 1 − q

X

s∈Ω

w(s)d(s) + q

= E[max(|S1|, |S2|)] − 1 − q · bd(S1, S2) + q

≥ max(E(|S1|),E(|S2|)) − 1 − q(bd(S1, S2) − 1),

where the last step is by Lemma 5. The LHS of (9) is
P

s∈Ω w(s) |GS1(i) ∩ GS2(j)|

=
X

s∈Ω

X

(ρ1,ρ2)∈GS1(i)∩GS2(j)

w(s)

=
X

s∈Ω

X

(ρ1,ρ2)∈GS1(i)∩GS2(j)

p(ρ1)p(ρ2)

=
X

(ρ1,ρ2)∈GS1
∩GS2

p(ρ1)p(ρ2). (10)

Rearranging the inequality, we obtain (8).

Theorem 1 provides an efficient and effective way of pruning a
pair of probabilistic strings. A pair will be pruned if the RHS of (8)
is larger than τ . Given tables R and T, suppose their probabilistic
q-grams are stored in the format of Figure 1 in auxiliary tables Rq

and Tq. Theorem 1 and Lemma 4 lead to the following query for
the string join between tables R and T:

1 SELECT R.id, T.id FROM R, T,

2 (SELECT R.id AS rid, T.id AS tid FROM R,T,Rq,Tq

3 WHERE Rq.g=Tq.g AND Rq.id=R.id AND Tq.id=T.id

4 AND Rq.cid=R.cid AND Tq.cid=T.cid

5 GROUP BY R.id, T.id, R.len, T.len

6 HAVING 1+(max(R.len,T.len)-SUM(R.p*T.p)-1)/q≤ τ

7 EXCEPT

8 SELECT R.id AS rid, T.id AS tid FROM R, T

9 GROUP BY R.id, T.id

10 HAVING SUM(R.p*T.p*ABS(|R.A|-|T.A|)) > τ

11) AS L

12 WHERE L.rid=R.id AND L.tid=T.id

13 GROUP BY R.id, T.id

14 HAVING SUM(R.p*T.p*d(R.A,T.A)) ≤ τ (Q3)

In query (Q3), the pruning conditions in Theorem 1 and Lemma
4 (as seen in the relation L) are first applied. The expensive calcu-
lation of the exact EED based on (2) is only applied in the outer
query block for those pairs of strings that cannot be pruned. As
a result, (Q3) is much more efficient than (Q2) in practice. In
some database engines, max(a, b) (a, b are two real values) is not
a built-in function. In this case we can replace max(a, b) with
(a + b + |a − b|)/2. In addition, almost all engines evaluate the

HAVING clause in a row-by-row fashion within each group, and
multiple conditions in the HAVING clause will not be evaluated
using short-circuit evaluation, which explains our choice to place
the exact EED query condition in an outer query block. The same
reason also explains the forthcoming SQL statements in this paper.

Theorem 1 can be seen as the counterpart of Lemma 1 in the
probabilistic setting, which ignores the position information of the
q-grams. Considering the position information as in Lemma 2
potentially will give a tighter lower bound, but is unfortunately
much more difficult in the probabilistic case than in the determin-
istic case. We can follow the proof of Theorem 1 by replacing ∩
with ∩d(s) on the LHS of (9), but the difficulty is that we can-
not combine the two “

P
” in the last step as in (10), since d(s)

could be different for different possible worlds. Making things
even worse, we do not know d(s) as this is the very computation
that we aim to avoid. We only know that its expectation, namely,
bd(S1, S2) =

P
s∈Ω w(s)d(s) should be at most τ . More precisely,

from the second inequality in (7) and following the proof of Theo-
rem 1 (the RHS derivation stays the same), we obtain

X

s∈Ω

w(s)|GS1(i) ∩d(s) GS2(j)|

≥ max(E(|S1|),E(|S2|)) − 1 − q(bd(S1, S2) − 1). (11)

Next, we will assume bd(S1, S2) ≤ τ and under this assumption,
relax the LHS of (11) by enlarging it so that it is easy to compute
while (11) still holds. The relaxed (11) will give a lower bound on
bd(S1, S2): if this lower bound is higher than τ , that will contradict

the assumption that bd(S1, S2) ≤ τ , thus (S1, S2) can be pruned.
Let Ω′ ⊆ Ω be the subset of possible worlds s in which d(s) ≥

2τ . Since bd(S1, S2) ≤ τ , by the Markov inequality the probability
mass of Ω′ is at most 1/2. We relax the LHS of (11) as

LHS of (11) ≤
X

s∈Ω′

w(s)|GS1(i) ∩ GS2(j)| +

X

s∈Ω\Ω′

w(s)|GS1(i) ∩2τ−1 GS2(j)|

=
X

s∈Ω

w(s)|GS1(i) ∩2τ−1 GS2(j)|

+
X

s∈Ω′

w(s)(|GS1(i) ∩ GS2(j)| − |GS1(i) ∩2τ−1 GS2(j)|).

Since we do not know d(s), hence Ω′, we have to pessimistically
assume that Ω′ is chosen so that the LHS of (11) is maximized.
Denoting x(s) = |GS1(i) ∩ GS2(j)| − |GS1(i) ∩2τ−1 GS2(j)|, the
problem becomes choosing Ω′ with

P
s∈Ω′ w(s) ≤ 1/2 to max-

imize
P

s∈Ω′ w(s)x(s). This is exactly a 0/1-knapsack problem,
which is NP-hard. However, since we are happy with just an up-
per bound, we can consider this as a fractional knapsack problem,
which always yields an (actually quite tight) upper bound on the
optimal solution of the 0/1 version.

Specifically, we initialize Ω′ = ∅ and sort all the possible worlds
in Ω by the “value/weight” ratio w(s)x(s)/w(s) = x(s). We take
possible worlds from Ω into Ω′ in the decreasing order of x(s) untilP

s∈Ω′ w(s) > 1/2. Suppose s′ is the last world taken. Then an
upper bound on the LHS of (11) is

UBτ =
X

s∈Ω

w(s)|GS1(i) ∩2τ−1 GS2(j)|

+
X

s∈Ω′

w(s)x(s) − w(s′)x(s′)

P
s∈Ω′ w(s) − 1/2

w(s′)
.

This leads to a tighter lower bound on bd(S1, S2):

Theorem 2 For any string-level probabilistic strings S1 and S2,

bd(S1, S2) ≥ 1 +
max(E(|S1|),E(|S2|)) − UBτ − 1

q
.

Computing UBτ requires an aggregate UDF that takes all prob-
abilistic q-grams for a pair of probabilistic strings and τ as input.
We omit the details on its implementation and let ub(Rq.cid,

R.p, Rq.ℓ, Rq.g, Tq.cid, T.p, Tq.ℓ, Tq.g, τ) de-
note this UDF. In some engines, an aggregate UDF may take only
one input parameter, which could be a user-defined data type. In
these cases, we declare a user-defined data type with nine elements
as shown above. Since the aggregate UDF could be expensive to
evaluate, our idea is to only invoke this pruning after the pruning
by Theorem 1 and Lemma 4. The next query implements the string
join with the pruning by Theorem 1 and Lemma 4 first, then Theo-
rem 2.

SELECT R.id, T.id FROM R, T,

(SELECT R.id AS rid, T.id AS tid FROM R,T,Rq,Tq,

(· · ·) AS L (same as lines 2-11 in Q3)

WHERE L.rid=R.id AND L.tid=T.id AND Rq.g=Tq.g

AND Rq.cid=R.cid AND Tq.cid=T.cid

AND Rq.id=R.id AND Tq.id=T.id

GROUP BY R.id, T.id, R.len, T.len

HAVING 1 + 1
q *(max(R.len,T.len) - 1 -

ub(Rq.cid,R.p,Rq.ℓ,Rq.g,Tq.cid,T.p,Tq.ℓ,Tq.g,τ))≤ τ

) AS L2

· · · (same as lines 12-14 in Q3, but with L2) (Q4)

4. THE CHARACTER-LEVEL MODEL
We can certainly represent a character-level probabilistic string

in the string-level model, i.e., explicitly store all possible strings
it might instantiate into. But this approach incurs a huge space
overhead, as there are exponentially many possible instances for a
character-level probabilistic string. The large size also implies a
large processing cost when performing joins.

To remedy this problem, we store a character-level probabilistic
string S as one string in a relational table, by representing each
probabilistic character S[i]’s pdf as follows. We separate different
choices in S[i] with “|”, and enclose each S[i] with two “⋆”, assum-
ing that “|” and “⋆” do not belong to Σ. For each choice in S[i], we
simply write down the character followed by its probability. If S[i]
is deterministic, i.e., it has only one choice with probability 1, we
just write it down by itself. If S is deterministic (i.e., all characters
are deterministic), it is thus stored as a normal string. We also store
the length |S| of S. Hence, the table has three columns: id, A,

len. Please refer to Figure 2 for an example.

probabilistic strings

id S
1 {(A, 0.8), (C,0.2)}, {(G, 0.7), (T, 0.3)}

2 {(A, 1)}, {(G, 0.6), (T,0.4)}

3 {(C, 1)}, {(A, 1)}, {(G, 1)}

relational representation

id A len

1 ⋆A0.8|C0.2⋆⋆G0.7|T0.3⋆ 2

2 A⋆G0.6|T0.4⋆ 2

3 CAG 3

q-grams

id p ℓ g

1 0.80 1 #A

1 0.20 1 #C

1 0.56 2 AG

1 0.24 2 AT

1 0.14 2 CG

1 0.06 2 CT

1 0.70 3 G$

1 0.30 3 T$

...
...

...
...

Figure 2: Character-level probabilistic strings, their proba-

bilistic q-grams (q = 2), and the relational representation.

The straightforward implementation of the character-level string
join is to define a UDF ed(A,B) that computes the EED of two
probabilistic strings by applying (2) in Definition 4 directly. It enu-
merates all possible pairs of instances (possible worlds) from the
two inputs, computes the edit distance for each such pair (σ1, σ2)
by calling the UDF d(σ1, σ2) and sums up the edit distances for
all pairs weighted by their probabilities. Given ed(A,B), a join
with threshold τ can be expressed in SQL as follows:

SELECT R.id,T.id FROM R,T WHERE ed(R.A,T.A)≤ τ (Q5)

Clearly, (Q5) is very expensive, since there are exponentially
many possible worlds, hence exponentially many calls to d(σ1, σ2),
when the EED is to be computed between two probabilistic strings,
as opposed to quadratic in the string-level model. Thus we have
an even more urgent need for efficient and effective filters to avoid
calling ed. Below we present two kinds of filters. Section 4.1
presents lower bound filters that prune away pairs that cannot pos-
sibly join, while Section 4.2 presents upper bound filters that as-
certain that a pair must join. The expensive UDF ed is invoked
only on those pairs for which neither type of filter works. For both
kinds of filters we first present a fast, purely relational one based
on probabilistic q-grams which are defined below, followed by a
more expensive one using dynamic programming (but formulated
on the probabilistic strings directly). Note that for deterministic
string joins a filter cannot use DP as that is the exact computation
to save; but in this case, our goal is to avoid running exponentially
many DPs, so it is still beneficial if running just one DP can avoid
so many of them. We first define the character-level probabilistic
q-grams:

Definition 8 (character-level probabilistic q-grams) For a char-
acter level probabilistic string S = S[1] . . . S[n], we first prefix and
suffix S with (q−1) (deterministic) characters {(#,1)} and {($,1)}.
A character-level probabilistic q-gram is a pair (ℓ, S[ℓ..ℓ+q−1]),
where ℓ is the beginning position of the q-gram and S[ℓ..ℓ + q − 1]
is the probabilistic substring S[ℓ] . . . S[ℓ + q − 1] in S. The set of
all probabilistic q-grams for S is denoted as GS .

A probabilistic q-gram in the character-level model could be
viewed as a random variable: the probability space of a proba-
bilistic q-gram γ = (ℓ, S[ℓ..ℓ + q − 1]) is the possible worlds for
the probabilistic string S[ℓ..ℓ + q − 1]. In contrast, a probabilis-
tic q-gram in the string-level model can be actually considered as
a weighted q-gram, where the weight is the probability of the cor-
responding deterministic string that generates this q-gram. In the
special case when S[ℓ..ℓ + q − 1] contains no probabilistic char-
acters, γ becomes deterministic. We denote all such γ’s from GS

as Gd
S . We also introduce the notation Gd

S1,S2
= Gd

S1
× Gd

S2
and

GS1,S2 = GS1 × GS2 for conciseness.
We represent GS in a relational table by explicitly listing all the

instances for each γ ∈ GS , together with their corresponding prob-
abilities. We apply this technique for each probabilistic string S,
leading to a q-gram table, denoted Rq, with four columns id, p,

ℓ, g as shown in Figure 2. One may be concerned with the poten-
tial exponential blowup of this representation, but we argue that this
will not happen in practice. First, q is very small in practice (q = 2
is usually recommended [13]), so we expect at most a quadratic
space overhead in size(S[i]). Second, a character-level probabilis-
tic string S for most real-life applications does not have many un-
certain positions. And third, we only have a quadratic blowup when
these uncertain positions are consecutive.

Given any two probabilistic strings S1 = S1[1] . . . S1[n1] and
S2 = S2[1] . . . S2[n2], the possible worlds Ω of S1 and S2 contains
all possible combinations of deterministic strings instantiated from

S1 and S2. As before we let s denote any possible world from Ω;
s is a pair ((σ1, p1), (σ2, p2)), where σ1 is instantiated from S1

with probability p1 and σ2 is instantiated from S2 with probability
p2. Define d(s) = d(σ1, σ2), w(s) = p1 · p2. It is clear thatP

s∈Ω w(s) = 1. We also define:

Pr(S1 = S2) =
X

s∈Ω,σ1=σ2

w(s).

For any two probabilistic q-grams γ1 = (i, S1[i..i + q − 1]) and
γ2 = (j, S2[j..j + q− 1]) from GS1 and GS2 respectively, the dif-
ference in positions between γ1 and γ2 is denoted by off(γ1, γ2) =
|i − j|. Note that this is not a random variable. We define:

Pr(γ1 = γ2) = Pr(S1[i..i + q − 1] = S2[j..j + q − 1]).

In particular, for (γ1, γ2) ∈ Gd
S1,S2

, Pr(γ1 = γ2) = 1 if
S1[i..i + q − 1] = S2[j..j + q − 1], 0 otherwise. In this case,
we simply write γ1 = γ2 if and only if Pr(γ1 = γ2) = 1.

Example 2 Let S1 and S2 be the two probabilistic strings for records
1 and 2 in Figure 2. The first probabilistic q-gram of S1 is γ1 =
(1, {(#, 1)}{(A, 0.8), (C, 0.2)}), and the first probabilistic q-gram
of S2 is γ2 = (1, {(#, 1)}{(A, 1)}). Pr(γ1 = γ2) = 0.8,
off(γ1, γ2) = 0, and γ2 ∈ Gd

S2
(but γ1 /∈ Gd

S1
).

4.1 Lower bounds on the EED of S1 and S2

The first filter is to lower bound bd(S1, S2) by their length differ-
ence immediately by Lemma 3, since the length of a probabilistic
string is fixed in the character-level model.

Lemma 6 For any character-level probabilistic strings S1, S2,

bd(S1, S2) ≥ ||S1| − |S2||.

4.1.1 A probabilistic q-gram based lower bound

The lower bound below is a generalization of Lemma 1 to the
probabilistic setting.

Theorem 3 For any character-level probabilistic strings S1, S2:

bd(S1, S2) ≥ 1 +

max(|S1|, |S2|) − 1 −
P

γ1∈GS1
γ2∈GS2

Pr(γ1 = γ2)

q
(12)

PROOF. Let s = ((σ1, p1), (σ2, p2)) be any possible world in
the possible worlds Ω for S1 and S2. Applying Lemma 1 to all
s ∈ Ω, we have

X

s∈Ω

w(s)|Gσ1 ∩ Gσ2 |

≥
X

s∈Ω

w(s)(max(|σ1|, |σ2|) − 1 − q(d(s) − 1))

= max(|S1|, |S2|) − 1 − q(bd(S1, S2) − 1).

For any two probabilistic q-grams γ1 = (i, S1[i..i + q − 1]) ∈
GS1 , γ2 = (j, S2[j..j + q − 1]) ∈ GS2 , and a random possible
world s = ((σ1, p1), (σ2, p2)), we define γ1 =s γ2 as the event
that S1[i..i + q − 1] = S2[j..j + q − 1] in s. We have

Pr(γ1 =s γ2) =

(
w(s), if σ1[i..i + q − 1] = σ2[j..j + q − 1];

0, otherwise.

Recall that |Gσ1∩Gσ2 | is the number of matching pairs of q-grams
in Gσ1 and Gσ2 , so

X

s∈Ω

w(s)|Gσ1 ∩ Gσ2 | =
X

s∈Ω

X

γ1∈GS1
γ2∈GS2

Pr(γ1 =s γ2)

=
X

γ1∈GS1
γ2∈GS2

X

s∈Ω

Pr(γ1 =s γ2) =
X

γ1∈GS1
γ2∈GS2

Pr(γ1 = γ2),

rearranging the inequality completes the proof.

Incorporating the q-gram’s position information in each possible

world using Lemma 2 to derive a tighter lower bound for bd(S1, S2)
is more involved. We can follow the proof of Theorem 3, but ap-
plying Lemma 2 instead, obtaining
X

s∈Ω

w(s)|Gσ1∩d(s)Gσ2 | ≥ max(|S1|, |S2|)−1−q(bd(S1, S2)−1).

(13)
The difficulty is that d(s) changes for different worlds and it is
exactly the value that we avoid to compute for each possible world
in a pruning method. Next, we show how to obtain an upper bound
on the LHS of (13) that is efficiently computable.

Lemma 7 For any character-level probabilistic strings S1, S2, ∀τ ≥
bd(S1, S2):
X

s∈Ω

w(s)|Gσ1 ∩d(s) Gσ2 | ≤
X

(γ1,γ2)∈(GS1,S2
−Gd

S1,S2
)

Pr(γ1 = γ2)

+
X

(γ1,γ2)∈Gd
S1,S2

,γ1=γ2

min

„
1,

τ

off(γ1, γ2)

«

PROOF. Let γ1 and γ2 be any probabilistic q-gram from GS1

and GS2 respectively. For a random s, by the Markov inequality,

Pr(d(s) ≥ off(γ1, γ2)) ≤ min

„
1,

E(d(s))

off(γ1, γ2)

«

= min

1,
bd(S1, S2)

off(γ1, γ2)

!
≤ min

„
1,

τ

off(γ1, γ2)

«
, (14)

where we define 1
off(γ1,γ2)

= ∞ if off(γ1, γ2) = 0. Next,

X

s∈Ω

w(s)|Gσ1 ∩d(s) Gσ2 |

=
X

(γ1,γ2)∈GS1,S2

X

s∈Ω

Pr(γ1 =s γ2 and off(γ1, γ2) ≤ d(s))

=
X

(γ1,γ2)∈Gd
S1,S2

X

s∈Ω

Pr(γ1 =s γ2 and off(γ1, γ2) ≤ d(s))

+
X

(γ1,γ2)∈

GS1,S2
−Gd

S1,S2

X

s∈Ω

Pr(γ1 =s γ2 and off(γ1, γ2) ≤ d(s))

≤
X

(γ1,γ2)∈Gd
S1,S2

,γ1=γ2

min

„
1,

τ

off(γ1, γ2)

«
(by (14))

+
X

(γ1,γ2)∈(GS1,S2
−Gd

S1,S2
)

X

s∈Ω

Pr(γ1 =s γ2).

In the last step, the second term is relaxed by removing the position
constraint. This completes the proof.

Lemma 7 and (13) lead to a tighter lower bound for bd(S1, S2):

Theorem 4 For any character-level probabilistic strings S1, S2,

∀τ ≥ bd(S1, S2):

bd(S1, S2) ≥1 +
max(|S1|, |S2|) − 1

q

−

P
(γ1,γ2)∈Gd

S1,S2
,γ1=γ2

min
“
1, τ

off(γ1,γ2)

”

q

−

P
(γ1,γ2)∈GS1,S2

−Gd
S1,S2

Pr(γ1 = γ2)

q
. (15)

In (15),
P

(γ1,γ2)∈GS1,S2
−Gd

S1,S2

Pr(γ1 = γ2) is the sum of

the probabilities that two probabilistic q-grams from GS1 and GS2

equal if any one of them contains at least one probabilistic char-
acter, and

P
(γ1,γ2)∈Gd

S1,S2
,γ1=γ2

min(1, τ
off(γ1,γ2)

) is the sum of

either 1, for two q-grams from GS1 and GS2 if they are identical
and neither contains any probabilistic character and τ ≥ off(γ1, γ2),
or τ divided by their position difference if τ < off(γ1, γ2). Clearly,

X

(γ1,γ2)∈Gd
S1,S2

,

γ1=γ2

min

„
1,

τ

off(γ1, γ2)

«
≤

X

(γ1,γ2)∈Gd
S1,S2

,

γ1=γ2

1.

Hence, if we let C = 1 + max(|S1|,|S2|)−1
q

, then:

(RHS of (15) − C) · q

≥−
X

(γ1,γ2)∈Gd
S1,S2

,

γ1=γ2

1 −
X

(γ1,γ2)∈

GS1,S2
−Gd

S1,S2

Pr(γ1 = γ2)

= −
X

(γ1,γ2)∈Gd
S1,S2

Pr(γ1 = γ2) −
X

(γ1,γ2)∈

GS1,S2
−Gd

S1,S2

Pr(γ1 = γ2)

= −
X

(γ1,γ2)∈GS1,S2

Pr(γ1 = γ2) = (RHS of (12) − C) · q,

which means that Theorem 4 always provides a tighter lower bound.

4.1.2 A DP based lower bound

The succinct representation of the probabilistic string in the char-
acter level model makes it possible to extend the DP formulation
for the deterministic edit distance to the probabilistic setting to
derive lower and upper bounds (but unfortunately not the exact
EED as argued in the introduction). The lower bound DP for-
mulation for the EED is very similar to the classic, deterministic
edit distance DP as shown in (1). For two probabilistic strings
S1 = S1[1] . . . S1[n1] and S2 = S2[1] . . . S2[n2], we will com-
pute lower bounds on the EED between S1[1..i] and S2[1..j] for
i = 1, . . . , n1 and j = 1, . . . , n2 inductively. The base cases are
bld[i, j] = i + j for i · j = 0. For other i, j, we set

bld[i, j] = min

8
><
>:

bld[i, j − 1] + 1;
bld[i − 1, j] + 1;
bld[i − 1, j − 1] + lc(S1[i], S2[j]),

(16)

where

lc(S1[i], S2[j]) =

(
1, Pr(S1[i] = S2[j]) = 0;

0, Pr(S1[i] = S2[j]) > 0.

We will show that bld[i, j] is a lower bound on the EED between
S1[1..i] and S2[1..j] for all i, j. In fact, we will prove the following
stronger result:

Theorem 5 For any two character-level probabilistic strings S1 =
S1[1] . . . S1[n1] and S2 = S2[1] . . . S2[n2],

bld[n1, n2] = min
s∈Ω

(d(s)) ≤ bd(S1, S2).

PROOF. Let ds[i, j] be the deterministic edit distance DP’s out-
put in the possible world s = {(σ1, p1), (σ2, p2)} ∈ Ω for σ1[1..i]

and σ2[1..j]. We first show that bld[n1, n2] ≤ ds[n1, n2] for ∀s ∈
Ω and we prove this by induction.

The base cases bld[i, j] = ds[i, j] for i · j = 0 are trivial. As-
sume that this claim holds for ∀i′ ≤ i, ∀j′ ≤ j where the two
equalities do not hold at the same time. Since lc(S1[i], S2[j]) ≤
c(σ1[i], σ2[j]) for any s and by the induction hypothesis, the RHS

of (16) is always at most the RHS of (1), thus we have bld[i, j] ≤

ds[i, j]. In particular bld[n1, n2] ≤ ds[n1, n2] for ∀s ∈ Ω, so
bld[n1, n2] ≤ mins∈Ω(d(s)).

Next, we can show that it is possible to construct a possible world

s such that d(s) = bld[n1, n2], by just following the choices of the
bld[i, j] in (16). So bld[n1, n2] = mins∈Ω(d(s)).

4.2 Upper bounds on the EED of S1 and S2

The lower bounds on the EED are useful to prune away many
pairs that have expected edit distances larger than the join thresh-
old. However, for string pairs which have their EED smaller than
the threshold, lower bounds are not useful. To further reduce the
cost of a string join, we introduce two upper bounds in this section.
These upper bounds are particularly useful in efficiently identify-
ing many string pairs that do satisfy the join condition, which helps
avoid incurring the high cost of invoking ed(·,·) on these pairs.

4.2.1 A probabilistic q-gram based upper bound

For any two deterministic q-grams q1 = (ℓ1, g1) and q2 =
(ℓ2, g2) from two strings σ1 and σ2 respectively, we define q1 ≡ q2

if and only if g1 = g2 and ℓ1 = ℓ2, and (q1 ≡ q2) returns 1 if
q1 ≡ q2, 0 otherwise.

Lemma 8 For any two strings σ1 and σ2:

d(σ1, σ2) ≤ max(|σ1|, |σ2|) + q − 1 −
X

q1∈Gσ1 ,q2∈Gσ2

(q1 ≡ q2)

(17)

PROOF. Without loss of generality, assume that |σ1| ≥ |σ2|.
Clearly, |Gσ1 | = |σ1| + q − 1 and there are |σ1| + q − 1 po-
sitions (including the prefix and suffix characters ‘#’ and ‘$’) for
possible edit operations to transform σ1 into σ2. Without touch-
ing any position in which the corresponding q-grams q1 ∈ σ1 and
q2 ∈ σ2 satisfy q1 ≡ q2, we can always transform σ1 into σ2 by
editing all other positions in the worst case, which is |σ1|+ q−1−P

q1∈Gσ1 ,q2∈Gσ2
(q1 ≡ q2) edit operations. Since d(σ1, σ2) is the

minimum number of edit operations required to make σ1 = σ2,
this immediately implies (17).

This observation directly leads to an upper bound for the EED

of two probabilistic strings based on their probabilistic q-grams.
For any two probabilistic q-grams γ1 = (i, S1[i..i + q − 1]) and
γ2 = (j, S2[j..j + q − 1]) for two character-level probabilistic
strings S1 and S2, we define that

Pr(γ1 ≡ γ2) = Pr(γ1 = γ2) if i = j, 0 otherwise.

Theorem 6 For any character-level probabilistic strings S1, S2:

bd(S1, S2) ≤ max(|S1|, |S2|)+q−1−
X

(γ1,γ2)∈GS1,S2

Pr(γ1 ≡ γ2)

PROOF. This is derived by utilizing (17) in each possible world
s ∈ Ω and summing over all worlds.

4.2.2 A DP based upper bound

It is possible to obtain a very tight upper bound for the EED

with a DP formulation on the probabilistic characters directly. For
any two probabilistic strings S1 = S1[1] . . . S1[n1] and S2 =

S2[1] . . . S2[n2], we set cud[i, j] as

cud[i, j] = min

8
><
>:

cud[i, j − 1] + 1,
cud[i − 1, j] + 1,
cud[i − 1, j − 1] + Pr(S1[i] 6= S2[j]),

(18)

for i ∈ [1, n1], j ∈ [1, n2], with the boundary condition cud[i, j] =

i + j for i · j = 0. We will show that cud[i, j] thus computed is
an upper bound on the EED between S1[1..i] and S2[1..j]. We first
present two technical results.

Lemma 9 For two non-negative random variables X, Y ,

E[min(X, Y)] ≤ min(E[X], E[Y]).

PROOF. Observing that E[min(X, Y)] = E[X+Y −|X−Y |
2

], this
is proved by following a similar argument as in Lemma 5.

Corollary 1 For three non-negative random variables X, Y , Z,

E[min(X, Y, Z)] ≤ min(E[X], E[Y],E[Z]).

Theorem 7 cud[i, j] ≥ bd(S1[1..i], S2[1..j]) for all i, j.

PROOF. We prove this theorem by induction. The theorem clearly

holds when i · j = 0 since cud[i, j] = i+ j = bd(S1[1..i], S2[1..j]).
Assume that the theorem holds for ∀i′ ≤ i, j′ ≤ j where the two

equalities do not hold at the same time. Let s = {(σ1, p1), (σ2, p2)}
be a random world from Ω, the edit distance DP formulation (1) in
the world s is:

ds[i, j] = min

8
><
>:

ds[i − 1, j] + 1,

ds[i, j − 1] + 1,

ds[i − 1, j − 1] + c(σ1[i], σ2[j]).

Taking expectation on both sides over all possible worlds, we get:

bd(S1[1..i], S2[1..j])

= E

2
64min

8
><
>:

ds[i − 1, j] + 1

ds[i, j − 1] + 1

ds[i − 1, j − 1] + c(σ1[i], σ2[j])

3
75

≤ min

8
><
>:

bd(S1[1..i − 1], S2[1..j]) + 1
bd(S1[1..i], S2[1..j − 1]) + 1 (by Corollary 1)
bd(S1[1..i − 1], S2[1..j − 1]) + Pr(S1[i] 6= S2[j])

≤ min

8
><
>:

cud[i − 1, j] + 1
cud[i, j − 1] + 1 (by induction)
cud[i − 1, j − 1] + Pr(S1[i] 6= S2[j])

= cud[i, j].

The theorem is therefore proved.

4.3 Query implementation
The next query implements the character-level string join, by in-

corporating the lower bounds (Lemma 6, Theorem 4 and 5) and
the upper bounds (Theorem 6 and 7). The first part in the relation
L before the EXCEPT, lines 2-9, is the probabilistic q-gram lower
bound in Theorem 4 with the length pruning in Lemma 6 (line 4).
In particular, line 6 is the first two terms in the RHS of (15); lines 7-
8 is the third term in the RHS of (15), since FLOOR(Rq.p*Tq.p)

equals 0 for (γ1, γ2) ∈ GS1,S2 − Gd
S1,S2

, and 1 for (γ1, γ2) ∈

Gd
S1,S2

, note that max(1,ABS(Rq.ℓ-Tq.ℓ)) in line 8 handles
the special case when ABS(Rq.ℓ-Tq.ℓ)=0; line 9 is the fourth
term in the RHS of (15), since CEILING(1-Rq.p*Tq.p) equals
1 for (γ1, γ2) ∈ GS1,S2 − Gd

S1,S2
, and 0 for (γ1, γ2) ∈ Gd

S1,S2
.

The second part in the relation L after the EXCEPT, lines 11-15,
is simply the probabilistic q-gram upper bound in Theorem 6 with
the length pruning in Lemma 6. Essentially, L contains those pairs
that cannot be pruned by the length, or the probabilistic q-gram
lower and upper bounds. Finally, the outer-block query joins tables
R, T with L. For each pair in L, it performs the lower bound and
upper bound DPs first (UDF ld(·,·) and ud(·,·) respectively),
followed by the naive calculation with ed(·,·) as a last resort if a
pair cannot be pruned by ld(·,·) and ud(·,·). Similarly to Q3
and Q4, max(a, b) and min(a, b) might not be defined for two real
values a, b, they could be simply replaced by (a + b + |a − b|)/2
and (a + b − |a − b|)/2 if necessary.

1 SELECT R.id,T.id FROM R,T,

2 (SELECT R.id AS rid,T.id AS tid FROM R,T,Rq,Tq

3 WHERE Rq.g=Tq.g AND R.id=Rq.id AND T.id=Tq.id

4 AND ABS(R.len - T.len) ≤ τ

5 GROUP BY R.id, T.id, R.len, T.len

6 HAVING 1 + (max(R.len,T.len)-1)/q -

7 SUM(FLOOR(Tq.p*Rq.p)*
8 min(1, τ/max(1,ABS(Rq.ℓ - Tq.ℓ))))/q -

9 SUM(CEILING(1-Rq.p*Tq.p)*Tq.p*Rq.p)/q ≤ τ

10 EXCEPT

11 SELECT R.id AS rid,T.id AS tid FROM R,T,Rq,Tq

12 WHERE Rq.g=Tq.g AND Rq.ℓ=Tq.ℓ AND R.id=Rq.id

13 AND T.id=Tq.id AND ABS(R.len - T.len) ≤ τ

14 GROUP BY R.id, T.id, R.len, T.len

15 HAVING max(R.len,T.len)+q-1-SUM(Tq.p*Rq.p)≤ τ

16) AS L

17 WHERE L.rid=R.id AND L.tid=T.id AND ld(R.A,T.A)

18 ≤ τ AND ud(R.A,T.A)> τ AND ed(R.A,T.A)≤ τ (Q6)

Lastly, to be complete, results from Q6 need to be unioned with
those pruned away by either the probabilistic q-gram (lines 11-15)
or the DP (ud) upper bound. It has been omitted in (Q6) for sim-
plicity, and we use (Q6) to refer to this complete SQL query.

5. EXPERIMENTS
We implemented all methods in Microsoft SQL Server 2008 (the

Enterprise edition). All experiments were executed on a machine
with an Intel Xeon E5405@2.00GHz CPU running Windows XP.
We have 2GB memory allocated to SQL Server.

Datasets. We created 4 datasets, 2 for each model, using 3 real data
sources. The first data source is the author names in DBLP. There
are two types of ambiguities/uncertainties in people’s names. The
first is due to spelling errors or conversion between different char-
acter sets (e.g., the letter ‘ä’ is often converted to ‘a’ in ASCII),
and the second is due to the fact that a name may have different
forms. The former can be represented by the character-level model,
while the latter requires the string-level model. So we created two
datasets, one for each model, as follows. For a name σ in the DBLP
database, we find its similar set A(σ) that consists of all names in

DBLP within edit distance 3 to σ. Note that A(σ) contains dupli-
cated names. Then we create a character-level probabilistic string
S based on σ as follows. We identify the non-ASCII characters in
σ (we randomly pick a few if there are no such characters), and
for each such position i, the pdf of S[i] is generated based on the
normalized frequencies of the letters in the i-th position of all the
strings in A(σ). The other positions of S are deterministic and the
same as in σ. A string-level probabilistic string is created by simply
taking all the distinct strings in A(σ) as the possible choices, with
the probabilities being proportional to their frequencies. To mimic
the case where the same name may have drastically different forms,
we also replace a few choices with randomly picked names outside
A(σ). We denote these datasets as Author1 (string-level) and Au-

thor2 (character-level) accordingly. Note that Author1 and Author2

represent completely different information.
The second dataset (Category) is from the Wikipedia database,

using the category-link string field in the category-link table. Many
category-links refer to the same subject with different string values,
which are best represented by the string-level model. We generate
its string-level representation in the same way as for Author1.

The third dataset (Genome) is based on the genome sequence
database from the Rhodococcus project. Genome sequences may
contain unknown positions, and they are best represented by the
character-level model. We broke a very long genome sequence into
many shorter strings of controlled length, then generated character-
level probabilistic strings in the same way as for the Author2 dataset.

Finally, we create two tables R and T with a certain number of
probabilistic strings (in either model). Each probabilistic string is
created based on a random σ from the corresponding data source.

Setup. In the string-level model, an interesting factor is the num-
ber of choices, size(S), that each probabilistic string S may have.
Since many strings from our datasets have a large number of choices,
we specify the maximum size(S), denoted as C. If S has more than
C choices, we only take its C most probable choices and normalize
them. Similarly, in the character-level model, we limit the number
of choices that a probabilistic character S[i] may have to χ. We
also control the fraction of uncertain positions in a character-level
probabilistic string, θ, as we generate the datasets.

In both models, the string length obviously affects the join cost.
In the string-level model, we use µs to denote the average length of
the deterministic strings from all choices of all probabilistic strings.
To study its effect, we append each deterministic string to itself for
ω = 0, 1, 2, . . . times. In the character-level model, we use µc to
denote the average length of all probabilistic strings, and to study its
effect, we append each probabilistic string to itself ω times. When
ω = 0 (no self-concatenation), µs = 13.6 and µc = 14.3 for
Author1 and Author2, and the string length distributions in both
models follow approximately a normal distribution in the range of
[5, 36]; for the Category dataset (string-level model), µs = 19.9
and its string length distribution is (very roughly) a heavy-tail dis-
tribution in the range of [3, 50]; for the Genome dataset (character-
level model), µc = 14.9 and its string length distribution is roughly
a uniform distribution in the range of [10, 20].

Since the basic methods are very expensive, we limit the sizes
of the tables. The default sizes for R and T are |R| = 1, 000 and
|T| = 10, 000. We study the scalability of all methods by varying
the size of T. The default values for other parameters are: q = 2,
τ = 2, C = 6, χ = 6, θ = 20%, and ω = 0.

In what follows, we refer to the basic methods for string joins
in the string-level and character-level models, (Q2) and (Q5),
as S-BJ and C-BJ, respectively. Our pruning-based join methods
are denoted as S-PJ (Q4) and C-PJ (Q6), respectively. In both

1 3 5 7 10 15 20
10

0

10
1

10
2

10
3

10
4

size of table T (×1000): |T|

ru
nn

in
g

tim
e

(s
ec

on
ds

)

S-BJ
S-PJ
S-PJ2

(a) vary the size of T: |T|.

2 4 6 8 10
10

1

10
2

10
3

10
4

max(size(S)): C

ru
nn

in
g

tim
e

(s
ec

on
ds

)

S-BJ
S-PJ
S-PJ2

(b) vary max(size(S)): C.

1 2 3 4
10

2

10
3

10
4

EED threshold: τ

ru
nn

in
g

tim
e

(s
ec

on
ds

)

S-BJ
S-PJ
S-PJ2

(c) vary τ .

13.6 27.2 40.8 54.4
10

2

10
3

10
4

10
5

average string length: µ
s

ru
nn

in
g

tim
e

(s
ec

on
ds

)

S-BJ
S-PJ
S-PJ2

(d) vary avg string length: µs.

Figure 3: String-level model, running time analysis, Author1 dataset.

1 3 5 7 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

size of table T (×1000): |T|

ru
nn

in
g

tim
e

(s
ec

on
ds

)

S-BJ
S-PJ
S-PJ2

(a) vary the size of T: |T|.

2 4 6 8 10
10

2

10
3

10
4

10
5

max(size(S)): C

ru
nn

in
g

tim
e

(s
ec

on
ds

)

S-BJ
S-PJ
S-PJ2

(b) vary max(size(S)): C.

1 2 3 4
10

2

10
3

10
4

10
5

EED threshold: τ

ru
nn

in
g

tim
e

(s
ec

on
ds

)

S-BJ
S-PJ
S-PJ2

(c) vary τ .

19.9 39.8 59.7 79.6
10

2

10
3

10
4

10
5

10
6

average string length: µ
s

ru
nn

in
g

tim
e

(s
ec

on
ds

)

S-BJ
S-PJ
S-PJ2

(d) vary avg string length: µs.

Figure 4: String-level model, running time analysis, Category dataset.

models, we built clustered indices on the id columns in tables R,
T, Rq, Tq, and secondary indices on the g columns in Rq, Tq .

An astute reader may observe an implicit underlying assump-
tion when deriving the SQL queries for the string-level (Q4) and
character-level (Q6) probabilistic string models. We have assumed
that when performing a probabilistic string join over tables R and T
on the probabilistic string attribute S, all pairs of records {(ri, tj)|

ri ∈ R ∧ tj ∈ T} which satisfy bd(ri.S, tj .S) ≤ τ also share at
least one common q-gram. However, it is clear there may be some

(ri, tj) pairs which satisfy bd(ri.S, tj .S) ≤ τ yet do not share any
common q-grams. This issue could be easily addressed by adding
one common “dummy” q-gram in the q-gram tables to all proba-
bilistic strings, which is not equal to any existing q-grams in the
database. We leave the details to the full version of the paper.

5.1 The string-level model
Recall that in order to derive a tighter lower bound on the EED

in the string-level model (as shown in Theorem 2) by incorporat-
ing positional information of the probabilistic q-grams, we used the
Markov inequality and the fractional knapsack problem to relax the
LHS of (11). Such a relaxation clearly is too pessimistic. In prac-
tice, we observed that only considering those probabilistic q-grams
whose positions are within 2τ is good enough, based on the hint
from UBτ . In fact, we can show that this yields a very tight lower
bound on the EED except in some rare, contrived cases. This leads
to a more efficient query (no need to solve the knapsack problem),
as well as better pruning power. We can simply add one more con-
dition, AND ABS(Rq.ℓ-Tq.ℓ)≤ 2τ , to the WHERE clause at line
3 in (Q3). We denote this algorithm as S-PJ2 and compare its
performance to S-PJ and S-BJ. In practice, we found that in all the
experiments S-PJ2 returns the correct set of results without miss-
ing any pair that should join, indicating that those contrived cases
almost never happen in most applications. S-PJ2 is a pure SQL im-
plementation, except the edit distance UDF that has to be included.

Effects of the table size. We first study the scalability of all algo-
rithms w.r.t. the input size, by varying |T| from 1, 000 to 20, 000,
while fixing |R|. Figures 3(a) and 4(a) show the results for the Au-

thor1 and Category datasets respectively. The trends are very sim-
ilar on both datasets. All algorithms become more expensive when

|T| increases, and they all incur higher costs in the Category dataset
due to the longer strings it contains. In particular, on both datasets,
S-PJ2 is the best method and it is at least 1 order of magnitude
faster than S-BJ. S-PJ is about 5 to 10 times better than S-BJ.

Effects of the maximum number of choices C. We next vary the
maximum number of choices a probabilistic string may have, using
C = max(size(S)) from 2 to 10. The results from the Author1

and Category datasets are shown in Figures 3(b) and 4(b). All al-
gorithms become more costly when C increases. However, on both
datasets, we observe that S-PJ2 and S-PJ maintain their superior
performance over S-BJ in all cases. They are more than 10 times or
approximately 5 times better than the basic method, respectively.

Effects of the threshold τ . Figures 3(c) and 4(c) show the results
on the Author1 and Category datasets when τ changes from 1 to
4. Clearly, the cost of the basic method S-BJ stays as a constant,
whereas the costs of S-PJ2 and S-PJ increase when τ becomes
larger. Naturally, larger τ values weakens the pruning power of
our pruning techniques. Nevertheless, even in the worst case when
τ = 4, S-PJ and S-PJ2 are still 3 or 6 times more efficient than
S-BJ on both datasets.

Effects of the string length. Our last experiment demonstrates
the impact of the string lengths. The results from the Author1 and
Category datasets, when ω changes from 0 to 3, are shown in Fig-
ures 3(d) and 4(d). Clearly, all algorithms require more time to fin-
ish. For the S-BJ method, the main driving force is the higher cost
for each edit distance DP in every possible world. For the S-PJ2

and S-PJ methods, an additional factor is that they have to process
more probabilistic q-grams when string lengths increase. However,
longer strings also imply a higher pruning power when τ is fixed,
which means that fewer strings will join. Hence, the performance
gap between S-BJ and the pruning based join methods actually has
enlarged. For example, when µs = 54.4 on the Author1 dataset,
S-PJ2 (S-PJ) becomes more than 30 (10) times faster than S-BJ.

5.2 The character-level model
We performed string joins on our two character-level datasets

Author2 and Genome. A notable difference of these two datasets is
their alphabet size. Author2 has an alphabet size of more than 52
while Genome only has 4 letters (‘A’, ‘T’, ‘G’, ‘C’).

1 3 5 7 10 15 20
10

-1

10
1

10
3

10
5

size of table T (×1000): |T|

ru
nn

in
g

tim
e

(s
ec

on
ds

)

C-BJ
C-qPJ
C-PJ

(a) vary the size of T: |T|.

10% 15% 20% 25%
10

0

10
2

10
4

10
6

probabilistic characters%: θ

ru
nn

in
g

tim
e

(s
ec

on
ds

)

C-BJ
C-qPJ
C-PJ

(b) vary θ.

1 2 3 4
10

0

10
2

10
4

10
6

EED threshold: τ

ru
nn

in
g

tim
e

(s
ec

on
ds

)

C-BJ
C-qPJ
C-PJ

(c) vary τ .

14.3 28.6 42.9 57.2
10

0

10
2

10
4

10
6

10
8

average string length: µ
c

ru
nn

in
g

tim
e

(s
ec

on
ds

)

C-BJ
C-qPJ
C-PJ

(d) vary avg string length: µc.

Figure 5: Character-level model, running time analysis, Author2 dataset.

1 3 5 7 10 15 20
10

0

10
2

10
4

10
6

10
8

size of table T (×1000): |T|

ru
nn

in
g

tim
e

(s
ec

on
ds

)

C-BJ
C-qPJ
C-PJ

(a) vary the size of T: |T|.

10% 15% 20% 25%
10

2

10
4

10
6

10
8

probabilistic characters%: θ

ru
nn

in
g

tim
e

(s
ec

on
ds

)

C-BJ
C-qPJ
C-PJ

(b) vary θ.

1 2 3 4
10

2

10
4

10
6

10
8

EED threshold: τ

ru
nn

in
g

tim
e

(s
ec

on
ds

)

C-BJ
C-qPJ
C-PJ

(c) vary τ .

14.9 29.8 44.7 59.6
10

2

10
4

10
6

10
8

average string length: µ
c

ru
nn

in
g

tim
e

(s
ec

on
ds

)

C-BJ
C-qPJ
C-PJ

(d) vary avg string length: µc.

Figure 6: Character-level model, running time analysis, Genome dataset.

To show the usefulness of the DP based lower and upper bounds
in the character-level model, in addition to C-BJ and C-PJ, we have
also tested the string join method that uses only probabilistic q-
gram based pruning, i.e., not calling ld and ud in lines 17 and 18
in (Q6). We denote this query as C-qPJ.

Effects of the table size. Figures 5(a) and 6(a) show the scala-
bility of various algorithms on the Author2 and Genome datasets
respectively, where we fix |R| and vary |T| from 1, 000 to 20, 000.
Clearly, C-PJ is consistently at least 2 orders of magnitude better
than the basic method C-BJ. Note that when T has 20, 000 proba-
bilistic strings, C-BJ takes 11 days to finish on the Genome dataset.
All methods are more costly on the Genome dataset. This is be-
cause even though the maximum size(S[i]) is set at χ = 6, in the
Author2 dataset, most characters only have 1 or 2 choices, while in
the Genome dataset, if a position is unknown, it almost always has
4 choices (but of course with different probabilities).

Comparing C-qPJ and C-PJ, we note that the extra cost of run-
ning the DP-based filters always pays off, although the amount of
improvement is quite different on the two datasets. The DP-based
filters are more effective, or one can say that the probabilistic q-
gram based filters are less effective, on the Genome dataset. This is
due to the crucial difference in their alphabet size. When the alpha-
bet is small, many q-grams will match, which lowers their pruning
power. On the contrary, with a large alphabet size, the q-grams are
very selective, thus having a stronger pruning power. The same
trends have been observed in the other experiments on these two
datasets. Therefore, our recommendation is that the DP filters are
essential when the alphabet is small; but when the alphabet is large,
they can be dismissed if one wants a simpler, purely SQL imple-
mentation, except the edit distance UDF which has to be included
to compute the exact EED for those pairs that cannot be pruned.

Effects of θ. Recall that θ is the fraction of probabilistic characters
in a probabilistic string. Figures 5(b) and 6(b) show the results on
Author2 and Genome respectively, when θ changes from 10% to
25%. It is not surprising to see that with more probabilistic charac-
ters, the performance gap between C-PJ and C-BJ enlarges due to
the exponential rate of increase of the number of possible worlds.
When θ reaches 25%, C-PJ becomes 3 orders of magnitude more
efficient than C-BJ on both datasets.

Effects of the threshold τ . Figures 5(c) and 6(c) show the results
on the Author2 and Genome datasets respectively, when τ changes
from 1 to 4. Obviously, C-BJ is not affected by τ . The cost of C-PJ

gradually increases as τ . Nevertheless, we see that C-PJ is still 2
orders of magnitude faster than C-BJ when τ is 4. An interesting
fact to mention is that when τ becomes larger, our upper-bound
filters become more effective, which, to some degree, offsets the
decrease in the pruning power of the lower-bound filters.

Effects of the string length. We then tested all algorithms by vary-
ing the length of the probabilistic string using ω = 0, 1, 2 and 3. To
ensure that the basic method does not get excessively expensive, we
limit the number of probabilistic characters in a probabilistic string
to be min(20% · |S|, 3). The results from the Author2 and the
Genome datasets are shown in Figures 5(d) and 6(d) respectively.
Clearly, the costs of all algorithms increase with longer strings,
partly due to the fact that each DP takes more time to run. Another
cause for the increasing costs of C-qPJ and C-PJ is the increasing
number of probabilistic q-grams to process. On the other hand, note
that the rates of the cost increase for C-qPJ and C-PJ are slower
than for C-BJ. In fact, when the average string length increases to
around 60, C-PJ becomes 3 orders of magnitude faster than C-BJ.
This is because the pruning techniques also become more effective
when the strings become longer while τ is fixed.

Effects of χ. Our study shows that C-qPJ and C-PJ outperform C-

BJ by an increasingly larger margin when χ increases. The details
were omitted due to the space constraint.

Size of the probabilistic q-gram table. Since the probabilistic
q-gram table may be large, theoretically speaking, in the character-
level model, we have examined the number of probabilistic q-grams
that need to be stored. For reasons explained right after Definition
8, in practice the worst case almost never happens. In fact, in all of
our experiments, the storage space (in bytes) of the probabilistic q-
gram table is only a factor of approximately 5 times larger than the
storage space (in bytes) of the probabilistic string table for q = 2.

6. RELATED WORK
We have reviewed q-gram based deterministic string joins [8,13]

in Section 2. Improvements to these methods were later proposed

using non-relational techniques [28]. Variable-length q-grams have
also been proposed [19]. How to adapt these improvements to the
probabilistic setting is an intriguing open problem.

The observation that a string attribute often can be represented by
multiple choices has also been made in the literature [5], however,
with a very different focus from our work. The main objective in [5]
is to design transformation frameworks that allow users to express
user-specified transformations on a set of deterministic strings, with
the help of the combination of core similarity functions (such as the
edit distance, Jaccard distance and etc).

Modeling fuzzy information from the underlying data source is a
fundamental issue in probabilistic databases. An excellent discus-
sion on this topic may be found in [24]. Several on-going projects,
TRIO [1], MayBMS [4], MystiQ [6], PrDB [25], MCDB [14] and
Orion [26], represent the active development in modeling, storing
and processing probabilistic data. Nevertheless, query processing
techniques specifically for probabilistic strings, especially for the
string-join problem, have not been discussed.

Although this paper is the first to study probabilistic strings from
a data management perspective, they have been used in other fields.
In particular, Louchard and Szpankowski [21] studied the edit dis-
tance over two random strings, using a model that is a special case
of the character-level model: they assumed that all characters in
the two strings follow the same Bernoulli distribution on a limited
alphabet, and that all characters are mutually independent. Under
this model, they analyzed the statistical behavior of the edit dis-
tance when the string length goes to infinity. Their analysis does
not carry to our (more general) character-level model, and also does
not offer any help in computing or bounding the EED efficiently.
Some other pattern matching problems on random sequences using
the character-level model have also been considered (see the related
work in [21]) but they are less relevant to this work.

Efficient join processing for probabilistic data for atomic data
types (e.g., int, real) has been discussed in [2, 9, 16, 20], with dif-
ferent types of join conditions, but none of them has dealt with
probabilistic strings. Sampling methods, such as the Monte Carlo
approach [14], may be used to reduce the cost of the basic methods.
However, this approach will only return approximate solutions. In
contrast, our methods produce exact answers.

7. CONCLUSION
This work studies the important problem of efficient string joins

in probabilistic string databases, using the natural definition of the
expected edit distance. We present effective and efficient algo-
rithms that could be easily implemented in existing relational data-
base engines. Our study covers both the complete (string-level) and
succinct (character-level) models of probabilistic strings, and leads
to orders-of-magnitude improvements to the basic approach. This
effort opens the gateway to many interesting future works, such as
indexing probabilistic strings for similarity search, selectivity esti-
mations, keyword search in probabilistic string databases, etc.

Another interesting and intriguing open problem is to study other
string similarity measures in the probabilistic setting. This is espe-
cially important for some instances in the string-level model, where
any probabilistic string S will have a large portion (w.r.t. the proba-
bility mass) of its choices having drastically different string values.
Note that the same issue also exists for deterministic strings, i.e.,
there are cases where other similarity measures are more preferred
than using the edit distance [5].

8. ACKNOWLEDGMENT
Feifei Li was partially supported by the NSF Grant IIS-0916488.

Ke Yi was supported in part by Hong Kong Direct Allocation Grant

DAG07/08. Jeffrey Jestes was supported by the GAANN Fellow-
ship from the US Department of Education.

9. REFERENCES
[1] P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth, S. Nabar,

T. Sugihara, and J. Widom. Trio: A system for data, uncertainty, and
lineage. In VLDB, 2006.

[2] P. Agrawal and J. Widom. Confidence-aware join algorithms. In
ICDE, 2009.

[3] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple
relational processing of uncertain data. In ICDE, 2008.

[4] L. Antova, C. Koch, and D. Olteanu. Query language support for
incomplete information in the MayBMS system. In VLDB, 2007.

[5] A. Arasu, S. Chaudhuri, and R. Kaushik. Transformation-based
framework for record matching. In ICDE, 2008.

[6] J. Boulos, N. Dalvi, B. Mandhani, S. Mathur, C. Re, and D. Suciu.
MYSTIQ: a system for finding more answers by using probabilities.
In SIGMOD, 2005.

[7] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust and
efficient fuzzy match for online data cleaning. In SIGMOD, 2003.

[8] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for
similarity joins in data cleaning. In ICDE, 2006.

[9] R. Cheng, S. Singh, S. Prabhakar, R. Shah, J. S. Vitter, and Y. Xia.
Efficient join processing over uncertain data. In CIKM, 2006.

[10] X. Dong, A. Y. Halevy, and C. Yu. Data integration with uncertainty.
In VLDB, 2007.

[11] J. T. Dunnen and S. E. Antonarakis. Recommendations for the
description of DNA sequence variants with uncertainties.
www.genomic.unimelb.edu.au/mdi/mutnomen/uncertain.html.

[12] J. T. Dunnen and S. E. Antonarakis. Mutation nomenclature
extensions and suggestions to describe complex mutations: A
discussion. Human Mutation, 15(1):7–12, 2000.

[13] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string joins in a
database (almost) for free. In VLDB, 2001.

[14] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. M. Jermaine, and P. J.
Haas. MCDB: a monte carlo approach to managing uncertain data. In
SIGMOD, 2008.

[15] S. Ji, G. Li, C. Li, and J. Feng. Efficient interactive fuzzy keyword
search. In WWW, 2009.

[16] H.-P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz. Probabilistic
similarity join on uncertain data. In DASFAA, 2006.

[17] H. Lee, R. T. Ng, and K. Shim. Extending q-grams to estimate
selectivity of string matching with low edit distance. In VLDB, 2007.

[18] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering algorithms for
approximate string searches. In ICDE, 2008.

[19] C. Li, B. Wang, and X. Yang. Vgram: improving performance of
approximate queries on string collections using variable-length
grams. In VLDB, 2007.

[20] V. Ljosa and A. K. Singh. Top-k spatial joins of probabilistic objects.
In ICDE, 2008.

[21] G. Louchard and W. Szpankowski. A probabilistic analysis of a
string editing problem and its variations. Combinatorics, Probability
and Computing, 4(02):143–166, 1995.

[22] A. Motro. Uncertainty Management in Information Systems: From

Needs to Solutions. Kluwer Academic Publishers, 1997.

[23] R. Palacios and A. Gupta. A system for processing handwritten bank
checks automatically. Image and Vision Computing,
26(10):1297–1313, 2008.

[24] A. D. Sarma, O. Benjelloun, A. Halevy, and J. Widom. Working
models for uncertain data. In ICDE, 2006.

[25] P. Sen, A. Deshpande, and L. Getoor. PrDB: Managing and
exploiting rich correlations in probabilistic databases. VLDBJ,
18(5):1065–1090, 2009.

[26] S. Singh, C. Mayfield, S. Mittal, S. Prabhakar, S. E. Hambrusch, and
R. Shah. Orion 2.0: native support for uncertain data. In SIGMOD,
2008.

[27] E. Sutinen and J. Tarhio. On using q-gram locations in approximate
string matching. In ESA, 1995.

[28] C. Xiao, W. Wang, and X. Lin. Ed-join: an efficient algorithm for
similarity joins with edit distance constraints. In VLDB, 2008.

