
Wenchao Zhou, Yifan Cai, Yanqing Peng, Sheng Wang, Ke Ma, Feifei Li

I trust you!

2

For cloud storage and cloud computing
The integrity of storage and computation relies on the “trust” from
users to the cloud service provider.

For sensitive data
The cloud service provider needs to give some proof of the
correctness.
Or detect unexpected behaviors

I trust you!evidence

3

Month Salary
Jan 5000
Feb 6000
Mar 7000

What is my
salary in March?

Month Salary
Jan 5000
Feb 6000
Mar 7000 4000

It’s $4000 😈😈

The cloud may tamper with data.

4

Table “Salary”

The cloud may even return falsified results without tampering
with data

Tell me what kinds
of fruits are worth
more than $1.60!

Item Price
Apple 2.00
Banana 1.50
Peach 1.80

Only apples 😈😈

5

Table “Inventory”

Scenario
Cloud-client
 Existence of TEE (SGX)
Untrusted Cloud Service Provider:

Byzantine Behavior

6

Goals
 For integrity
 Endorsement of correct results
Detection of incorrect results

 For applicability
 Support for general SQL queries
 Low overhead

Use Merkle Hash Tree (MHT) to
verify the integrity of data
 The root hash would be a concurrency

bottleneck

Store all data in trusted memory
 EPC (enclave page cache) is a scarce

resource
 Expensive swapping if EPC not enough

 Introduce significant overhead

7

Verifiable storage and execution

Support verifiable general SQL queries

Reasonable performance overhead

8

 Introduction
Motivation
 Scenario and goals
Contributions

VeriDB
 Architecture
 Verifiable storage and data access
Optimizations

Evaluations

9

Data stored in untrusted memory
Read/Write primitives are stored in trusted memory
 Ensures the integrity of storage.

10

SGX

Verifier

Verifier

…

Key nKey

−∞ k2

k2 k3

… …

kn +∞

Data

d1

d2

…

dn

Addr

addr1

addr2

…

addrn

indices

Untrusted Memory

Verifiable Storage

Read/Write
Primitives

 Interface between storage and execution
Reduce verifying results into verifying storage and trusted execution

 The client communicates with the query portal via a secure channel

11

SGX

Verifier

Verifier

…

Access Methods Key nKey

−∞ k2

k2 k3

… …

kn +∞

Data

d1

d2

…

dn

Addr

addr1

addr2

…

addrn

indices

Untrusted Memory

Query Execution

Verifiable Storage

Query
Compiler

Read/Write
Primitives

1 3

4

5

67

Query
Portal

2

 Basic idea: read-write consistent memory[1]

 The contents got from “read” must be the contents of the latest “write”
 Maintain a read set and a write set
 Update two sets on memory operations
 Check if the two sets are consistent

12[1] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, and Moni Naor. 1991. Checking the Correctness of Memories. In 32nd Annual
Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 1-4 October 1991. IEEE Computer Society, 90–99.

WriteSet

ReadSet

Construct a hash of tuple h(addr, data, timestamp) on each operation.
Update the sets by xor the hashes[2]

 Periodically,
 The verifier reads each datum and adds to the read set.
 Verify that ReadSet == WriteSet, otherwise throw an alarm.

h(addr, data1,t1)

h(addr, data1,t1)

h(addr, data2,t2)

h(addr, data2,t2)

h(addr, data2,t3)

h(addr, data2,t3)

Insert (addr, data1) Update(addr, data2) Read(addr) Verification

WriteSet

ReadSet

13[2] A. Arasu, K. Eguro, R. Kaushik, D. Kossmann, P. Meng, V. Pandey, and R. Ramamurthy. 2017. Concerto: A High Concurrency Key-Value Store
with Integrity. In SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017. ACM, 251–266

Key-chain of records in the table
Store (key, nextKey) tuples
Prove the existence / absence of a queried record
Absence of id2 < qid < id3 is proved by (id2, id3, data)

14

id count price
id1 100 $100

id2 100 $200

id3 500 $100

id4 600 $100

key nextKey data

⏊ id1 (⎯, ⎯)

id1 id2 (100, $100)

id2 id3 (100, $200)

id3 id4 (500, $100)

id4 ⏉ (600, $100)

 Three principles to ensure the integrity for range queries [startKey, endKey]
We don’t miss anything in the beginning
 Find the first row where row.nextKey >= startKey, and start from the next row

We reach the expected last row
 lastRow.nextKey > endKey

 All rows are chained
 thisRow.key = prevRow.nextKey

 Example: SELECT * FROM data WHERE key >= id1 AND key <= id3

 Verifiable storage + verifiable data access = correct results

key nextKey data

⏊ id1 (⎯, ⎯)

id1 id2 (100, $100)

id2 id3 (100, $200)

id3 id4 (500, $100)

id4 ⏉ (600, $100)

15

id count price nextid

id1 200 $100 id2

id2 100 $200 +inf

-inf - - id1

id count desc nextid

id1 300 desc1 id3

id3 800 desc3 +inf

-inf - - id1

orders

inventory

select

join

project project

scan index scan

orders inventory

o.id = i.id

check VO
(-inf, id1)
(id1, id2)

check VO
(id1, id3)

(id1, 200) (id1, 300)

SELECT o.id, o.count

FROM orders as o, inventory as i

WHERE o.id = i.id, o.count <= i.count

(id1, 200)

16

select

join

project project

scan index scan

orders inventory

o.id = i.id

check VO
(-inf, id1)
(id1, id2)

check VO
(id1, id3)

(id2, +inf)

17

SELECT o.id, o.count

FROM orders as o, inventory as i

WHERE o.id = i.id, o.count <= i.count

id count price nextid

id1 200 $100 id2

id2 100 $200 +inf

-inf - - id1

id count desc nextid

id1 300 desc1 id3

id3 800 desc3 +inf

-inf - - id1

orders

inventory

null

Use multiple RSWSs to avoid lock
contention
 Operations on addr1, addr2, and
addr3
 Separate the sets during update
Combine the sets and compare

during verification

Other optimizations
 Avoid scanning unvisited pages
 Excludes page metadata from

verification
Compaction during verification

18

(addr1, data1, t1)
(addr3, data3, t3)

(addr1, data1, t1)
(addr3, data3, t3)

Read Subset 1

Write Subset 1

(addr2, data2, t2)

(addr2, data2, t2)

Read Subset 2

Write Subset 2

(addr1, data1, t1)
(addr2, data2, t2)
(addr3, data3, t3)

(addr1, data1, t1)
(addr2, data2, t2)
(addr3, data3, t3)

Read Set

Write Set

 Introduction
Motivation
 Scenario and goals
Contributions

VeriDB
 Architecture
 Verifiable storage and data access
Optimizations

Evaluations

19

 Each update of read set (RS) and write
set (WS) introduces 1.5 – 2.2 μs overhead
 Hash operations make up most of the extra

overhead

 “Insert” and “delete” need updates to the
“nextKey” field, thus take longer time
 The verification process only introduces

slight overhead

20

 VeriDB significantly outperforms
MB-Tree[3], an MHT-based
approach
MB-Tree involves more hash

calculations
 The root hash of MB-Tree

becomes the bottleneck of
concurrency

21[3] Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. 2006. Dynamic authenticated index structures for outsourced databases. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, Chicago, Illinois, USA, June 27-29, 2006. ACM, 121–132

Queries (TPC-H)
 Q1 and Q6, scan, filter, and aggregate;
 Q19, scan, filter, and join

 The performance overhead mainly
comes from the scan operators.
Overall, VeriDB introduces 9%~39%

overhead.

Other macro-benchmark results:
TPC-C

22

System Support Trust Model Overhead Techniques

Concerto Key-value Cloud-user Relatively Low SGX +
Verifiable memory

EnclaveDB Relational Cloud-user High (All in SGX) SGX
VeritasDB Key-value Cloud-user High (MHT) MHT + ADS
FalconDB Relational Multi-users High (Blockchain) Blockchain + ADS

VeriDB Relational Cloud-user Relatively Low SGX +
Verifiable memory

23

VeriDB: an SGX-based verifiable database that supports
relational tables and general SQL queries.

Methods: reduce the problem of providing verified results
to ensuring verifiable storage and verifiable access.

Performance: ≤ 2.2 μs overhead for read/write operators
and 9%-39% for analytical workloads

24

	VeriDB: An SGX-based Verifiable Database
	Motivation
	Motivation
	Motivation
	Motivation
	Scenarios and Goals
	Strawman Solutions
	Contribution
	Outline
	Architecture
	Architecture
	Verifiable Storage
	Verifiable Storage
	Verifiable Data Access
	Verifiable Data Access
	Query execution
	Query execution
	Optimizations
	Outline
	Evaluations – RSWS Updates
	Evaluations – v.s. MB-Tree
	Evaluations – Macro-benchmark
	Related Work
	Conclusion

