
Solar: Towards a Shared-Everything Database on Distributed
Log-Structured Storage

Tao Zhu1, Zhuoyue Zhao2, Feifei Li2, Weining Qian1, Aoying Zhou1, Dong Xie2

Ryan Stutsman2, Haining Li3, Huiqi Hu1,3

1East China Normal University 2University of Utah 3Bank of Communications

Abstract
Efficient transaction processing over large databases is a
key requirement for many mission-critical applications.
Though modern databases have achieved good perfor-
mance through horizontal partitioning, their performance
deteriorates when cross-partition distributed transactions
have to be executed. This paper presents Solar, a dis-
tributed relational database system that has been success-
fully tested at a large commercial bank. The key fea-
tures of Solar include: 1) a shared-everything architec-
ture based on a two-layer log-structured merge-tree; 2) a
new concurrency control algorithm that works with the
log-structured storage, which ensures efficient and non-
blocking transaction processing even when the storage
layer is compacting data among nodes in the background;
3) fine-grained data access to effectively minimize and
balance network communication within the cluster. Ac-
cording to our empirical evaluations on TPC-C, Small-
bank and a real-world workload, Solar outperforms the
existing shared-nothing systems by up to 50x when there
are close to or more than 5% distributed transactions.

1 Introduction
The success of NoSQL systems has shown the advantage
of the scale-out architecture for achieving near-linear
scalability. However, it is hard to support transaction in
them, an essential requirement for large databases, due
to the distributed data storage. For example, Bigtable [5]
only supports single-row transactions, while others like
Dynamo [6] do not support transactions at all. In re-
sponse to the need for transaction support, NewSQL sys-
tems are designed for efficient OnLine Transaction Pro-
cessing (OLTP) on a cluster with distributed data storage.

Distributed transaction processing is hard because of
the need of efficient synchronization among nodes to en-
sure ACID properties and maintain good performance.
Despite the significant progress and success achieved by
many recently proposed systems [12, 27, 29, 19, 9, 23,
8, 37, 33], they still have various limitations. For exam-
ple, the systems relying on shared-nothing architecture
and 2PC (two-phase commit) heavily suffer from cross-
partition distributed transactions, and thus require care-
ful data partitioning with respect to given workloads. On
the other hand, distributed shared-data systems like Tell

[19] require specific hardware supports that are not com-
monly available yet at large scale.

That said, when no prior assumption can be made re-
garding the transaction workloads, and with no special
hardware support, achieving high performance transac-
tion processing on a commodity cluster is still a challeng-
ing problem. Meanwhile, prior studies have also shown
it is possible to design high performance transaction en-
gines on a single node by exploring the multi-core and
multi-socket (e.g, NUMA) architecture. Both Silo [30]
and Hekaton [7] have used a single server for transaction
processing and demonstrated high throughput. However,
such systems may not meet the needs of big data appli-
cations whose data cannot fit on a single node, hence re-
quiring the support for a distributed data storage.

Inspired by these observations, our objective is to de-
sign a transactional database engine that combines the
benefits of scalable data storage provided by a cluster of
nodes and the simplicity for achieving efficient transac-
tion processing on a single server node, without making
any apriori assumptions on the transactional workloads
and without requiring any special hardware support.

Bank of Communications, one of the largest banks in
China, has faced these challenges. On one hand, new
e-commerce applications from its own and its partners’
mobile and online apps have driven the need for the sup-
port of ad-hoc transactions over large data, where little or
no knowledge/assumptions can be made towards the un-
derlying workloads as new apps emerge constantly. On
the other hand, the bank has a strong interest towards
better utilization of its existing hardware infrastructures
to avoid costly new hardware investment if possible.

With that in mind, Solar is designed using a shared-
everything architecture, where a server node (called T-
node) is reserved for in-memory transaction processing
and many storage nodes (called S-nodes) are used for
data storage and read access. In essence, the S-nodes
in Solar form a distributed storage engine and the T-
node acts as a main-memory transaction engine. The
distributed storage engine takes advantage of a cluster
of nodes to achieve scalability in terms of the database
capacity and the ability to service concurrent reads. The
transaction engine provides efficient transaction process-

ing and temporarily stores committed updates through its
in-memory committed list. Periodically, recently com-
mitted data items on T-node are merged back into S-
nodes through a data compaction procedure running in
the background, without interrupting ongoing transac-
tions. Overall, Solar is designed to achieve high perfor-
mance transaction processing and scalable data storage.

To speed up update operations in the system, the in-
memory committed list on T-node and the disk storage
from all S-nodes collectively form a distributed two-
layer log-structured merge-tree design [22]. Further-
more, a processing layer called P-unit is introduced to
carry out both data access from S-nodes and any com-
putation needed in a transaction so that the T-node can
be freed from the burden of coordinating data access and
performing business logic computation. This separation
of storage and computation also enables the system to
leverage all CPU resources for transaction scheduling
and validation. Towards realizing the above design prin-
ciple, we also design and implement a number of opti-
mizations and algorithms to minimize the overhead in the
system. Our contributions are summarized as follows:
• A distributed shared everything architecture with a

T-node, a set of S-nodes and P-units is proposed for
achieving high performance transaction processing.
• A hybrid concurrency control scheme called

MVOCC is explored that combines the OCC (opti-
mistic concurrency control) and the MVCC (multi-
version concurrency control) schemes.
• A data compaction algorithm, as part of MVOCC,

is designed to efficiently merge the committed list
on T-node back to S-nodes periodically, without in-
terrupting transaction processing on T-node.
• Several optimizations are investigated to improve

the overall performance, e.g., separation of compu-
tation and storage through P-units, grouping multi-
ple data access operations in one transaction, main-
taining a bitmap for avoiding unnecessary data ac-
cess to the distributed storage engine.

In our empirical evaluation on TPC-C, Smallbank
and a real-world workload, Solar outperforms existing
shared-nothing systems by 50x when the transactions re-
quiring distributed commits are close to or more than 5%.

2 Solar Architecture
Solar is a distributed shared-everything relational
database that runs concurrent transactions on a cluster
of commodity servers. Figure 1 shows its architecture.

2.1 Design considerations
Shared-everything architecture. Shared-nothing archi-
tecture [12, 27] places data in non-overlapping partitions
on different nodes in the hope that it can avoid expensive
2PC among nodes when almost all of the transactions

only need to touch data on one partition and thus can
run independently. For distributed transactions, multiple
partitions with data involved need to be locked, blocking
all other transactions that need to touch those partitions,
which greatly increases system latency. Even worse, it
only takes merely a handful of distributed transactions to
always have locks on all the partitions and, as a result,
system throughput can be reduced to nearly zero.

Instead, Solar employs a shared-everything architec-
ture, where a transaction processing unit can access any
data. ACID can be enforced at a finer granularity of in-
dividual records rather than at partitions. It also avoids
expensive 2PC by storing updates on a single high-end
server, enabling a higher transaction throughput.
In-memory transaction processing and scalable stor-
age. Traditional disk-based databases rely on buffering
mechanisms to reduce the latency of frequent random
access to the data. However, this is several magnitudes
slower than accessing in-memory data due to the limited
size of the buffers and complication added to recovery.

In-memory transaction processing proves to be much
more efficient than disk-based designs [7, 12]. Limited
memory is always a key issue with in-memory transac-
tion processing. Databases must have mechanisms to
offload data to stable storage to free up memory for an
unbounded stream of transactions. A key observation is
that transactions typically only touch a very small subset
of the whole database, writing a few records at a time
in a database of terabytes of data. Thus, Solar reduces
transaction processing latency by writing completely in
memory while having an unbounded capacity by storing
a consistent snapshot on a distributed disk-based storage,
which can be scaled out to more nodes if needed.

Fine-grained data access control. In Solar, process-
ing nodes directly access data stored in remote nodes via
network, which can lead to overheads. Existing studies
have shown that it is advantageous to use networks such
as InfiniBand and Myrinet [19]. However, they are far
from widely available. They require special software and
hardware configurations. It is still unclear how to do that
on a cluster of hundreds of off-the-shelf machines.

Solar is designed to work on a cluster of commodity
servers, and thus uses a standard networking infrastruc-
ture based on Ethernet/IP/TCP. But network latency is
significant because of the transition and data copying into
and out of kernel. It also consumes more CPU than In-
finiband, where data transport is offloaded onto NIC. To
address the issue, we designed fine-grained data access
to reduce network overhead, including caching, avoiding
unnecessary reads and optimizing inter-node communi-
cation via transaction compilation. Fine-grained data ac-
cess brings the transaction latency on par with the state-
of-the-art systems and improves throughput by 3x.

S-node

S-node

S-node

TabletTabletTablet TabletTabletTabletTabletTabletTablet

Disk-based storage

compaction

records records

T-node (Replica)

T-node (Replica)

T-node

Indexes Txn LogBit Array

1 0 0 0 1
0 0 1 1 0

...

In-memory storage

mutations

P-unit

Application Logic

Storage Interface

Bit Array Cache

Compiler Executor

P-unit

Application Logic

Storage Interface

Bit Array Cache

Compiler Executor

P-unit

Application Logic

Storage Interface

Bit Array Cache

Compiler Executor

Figure 1: Architecture of Solar

2.2 Architecture overview
Figure 1 provides an overview of Solar’s architecture.
Solar separates transaction processing into computation,
validation and commit phases using a multi-version op-
timistic concurrency control protocol. A transaction can
be initiated on any one of the P-units, which do not store
any data except several small data structures for data ac-
cess optimization (Section 4). The P-unit handles all the
data fetches from either T-node or S-nodes as well as
transaction processing. The writes are buffered at the P-
unit until the transaction commits or aborts. When the
transaction is ready to commit, the P-unit sends the write
set to T-node for validation and commit. Once T-node
completes the validation, it writes the updates to its in-
memory storage, and also a Write-Ahead Log to ensure
durability. Finally, T-node notifies the P-unit if the trans-
action is successfully committed. P-units can be instan-
tiated on any machine in or outside the cluster (typically
on S-nodes or at client side). They offload most of the
computation burden from T-node so that T-node can be
dedicated to transaction management. Cluster informa-
tion (e.g. states of all nodes, data distribution) are main-
tained by a manager node, and cached by other nodes.
Solar adopts a two-layer distributed storage that mim-

ics the log-structured merge tree (LSM-tree) [22]. The
storage layer consists of 1) a consistent database snap-
shot; and 2) all committed updates since the last snap-
shot. The size of the snapshot can be arbitrarily large and
thus is stored in a distributed structure called SSTable
across the disks of the S-nodes. Records in a table are
dynamically partitioned into disjoint ranges according to
their primary keys. Each range of records is stored in a
structure called tablet (256 MB in size by default), which
is essentially a B-tree index. The committed updates are
stored in Memtable on T-node, which are from recent
transactions and are typically small enough to fit entirely
in memory. Memtable contains both a hash index and a
B-tree index on the primary keys. The data entry points
to all the updates (updated columns only) since the last
snapshot, sorted by their commit timestamp. To access a
specific record, a P-unit first queries Memtable. If there’s
no visible version in Memtable, it then queries SSTable

for the version from the last snapshot.
The size of Memtable increases as transactions are

committed. When it reaches certain memory threshold
or some scheduled off-peak time (e.g. 12:00 am - 4:00
am for Bank of Communications), Solar performs a data
compaction operation to merge the updates in Memtable
into SSTable to free up the memory on T-node. At the
end of data compaction, a new consistent snapshot is cre-
ated in SSTable and Memtable drops all the committed
updates prior to the start of the data compaction.

During data compaction, a new Memtable is created
to handle new transactions arriving after the start of the
data compaction. Then the old Memtable is merged into
SSTable in a way similar to LSM-tree, namely merging
two sorted lists from the leaf level of B-Tree index. In-
stead of overwriting the data blocks with new contents,
we make new copies and apply updates on the copies.
As we will explain in Section 3, transactions that have
already started at the start of data compaction might still
need to access the old SSTable. Thus, this approach min-
imizes the interruption to ongoing transactions.

Note that the function of T-node is twofold: it works as
a transaction manager that performs timestamp assign-
ment, transaction validation as well as committing up-
dates; on the other hand, it serves as the in-memory por-
tion of the log-structured storage layer. This architec-
ture allows low-latency and high-throughput insertion,
deletion and update through the in-memory portion. The
log-structured storage also enables fast data compaction,
which has a very small impact on the system perfor-
mance because it mainly consumes network bandwidth
instead of T-node’s CPU resource.

Finally, Solar uses data replication to provide high
availability and resistance to node failures. In SSTable,
each tablet has at least 3 replicas and they are assigned to
different S-nodes. Replication also contributes to achieve
better load balancing among multiple S-nodes: a read re-
quest can access any one of the replicas. Memtable is
replicated on two backup T-nodes. Details of data repli-
cation and node failures are discussed in Section 3.2.
3 Transaction Management
Solar utilizes both Optimistic Concurrency Control
(OCC) and Multi-Version Concurrency Control (MVCC)
to provide snapshot isolation [2]. Snapshot isolation
is widely adopted in real-world applications, and many
database systems (e.g. PostgreSQL prior to 9.1, Tell
[19]) primarily support snapshot isolation, although it
admits the write-skew anomaly that is prevented by se-
rializable isolation. This paper focuses on Solar’s sup-
port for snapshot isolation, and leave the discussion of
serializable isolation to a future work. To ensure dura-
bility and support system recovery, redo log entries are
persisted into the durable storage on T-node before trans-
action commits (i.e., write-ahead logging).

3.1 Supporting snapshot isolation
Solar implements snapshot isolation through combining
OCC with MVCC [15, 2]. More specifically, MVOCC is
used by T-node over Memtable. Recall that each record
in Memtable maintains multiple versions. A transaction
tx is allowed to access versions created before its start
time, which is called the read-timestamp and can be any
timestamp before its first read. At the commit time, a
transaction obtains a commit-timestamp, which should
be larger than any existing read-timestamp or commit-
timestamp of other transactions. Transaction tx should
also verify that no other transactions ever write any data,
between tx’s read-timestamp and commit-timestamp, that
tx has also written. Otherwise, tx should be aborted to
avoid lost-update anomaly [2]. When a transaction is al-
lowed to commit, it updates a record by creating a new
version tagged with its commit-timestamp.

With MVOCC, SSTable contains, for all records in
the database, the latest versions created by transactions
with commit-timestamps are smaller than the last data
compaction time (compaction-timestamp). Memtable
contains newer versions created by transactions with
commit-timestamps larger than compaction-timestamp.

T-node uses a global, monotonically increasing,
counter to allocate timestamps for transactions. Transac-
tion processing in Solar is decomposed into three phases:
processing, validating and writing/committing.
Processing. In the processing phase, a worker thread

of a P-unit executes the user-defined logic in a transac-
tion tx and reads records involved in tx from both T-node
and S-nodes. A transaction tx obtains its read-timestamp
(rtx for short) when it first communicates with T-node.
The P-unit for processing tx reads the latest version of
each record involved in tx, whose timestamp is smaller
than rtx. In particular, it first retrieves the latest version
from Memtable. If a proper version (i.e., timestamp less
than rtx) is not fetched, it continues to access the corre-
sponding tablet of SSTable to read the record. During
this process, tx buffers its writes in a local memory space
on the P-unit. When tx has completed all of its business
logic code, it enters the second phase. The P-unit sends a
commit request for tx containing tx’s write-set to T-node.
T-node would then validate and commit the transaction.
Validating. The validation phase is conducted on T-

node, which aims to identify potential write-write con-
flicts between tx and other transactions. During the val-
idation phase, T-node attempts to lock all records in tx’s
write-set (denoted as wx) on Memtable and checks, for
any record r ∈ wx, whether there is any newer version of
r in Memtable whose timestamp is larger than rtx. When
all locks are successfully held by tx and no newer ver-
sion for any record in wx is found, T-node guarantees
that tx has no write-write conflict and can continue to
commit. Otherwise, T-node will abort tx due to the lost

update anomaly. Hence, after validation, T-node deter-
mines whether to commit or abort a transaction tx. If it
decides to abort tx, T-node sends the abort decision back
to the P-unit who sent in the commit request for tx. The
P-unit will simply remove the write-set wx. Otherwise,
the transaction tx continues to the third phase.

Writing/Committing. In this phase, a transaction tx
first creates a new version for each record from its write-
set wx in Memtable, and temporarily writes its transac-
tion ID x into the header field of each such record. Next,
T-node obtains a commit-timestamp for tx by increment-
ing the global counter. T-node then replaces the transac-
tion identifier with tx’s commit-timestamp for each record
with transaction ID x in Memtable (i.e., those from wx).
Lastly, T-node releases all locks held by tx.
Correctness. Given a transaction tx with read-timestamp
(rtx) and commit-timestamp (ctx), Solar guarantees that tx
reads a consistent snapshot of the database and there is
no lost update anomaly.

Consistent snapshot read: Firstly, tx sees the versions
written by all transactions committed before rtx because
those transactions have finished creating new versions for
their write-sets and obtained their commit-timestamps
before tx is assigned rtx as its read-timestamp. Secondly,
the remaining transactions in the system always write a
new data version using a commit-timestamp that is larger
than rtx. Hence, their updates will not be read by tx.
Hence, tx always operates on a consistent snapshot.

Prevention of Lost Update: Lost update anomaly hap-
pens when a new version of record r is created by another
transaction for r ∈ wx, and the version’s timestamp is in
the range of (rtx,ctx). Assume the version is created by
ty. There are two cases:

1) ty acquired the lock on record r prior to tx’s attempt
to lock r. Thus, tx only gets the lock after ty has commit-
ted and created a new version of r. Hence, tx will see the
newer version of r during validation and be aborted.

2) ty acquires the lock on r after tx has secured the lock.
In this case, ty will not be able to obtain a commit times-
tamp until it has acquired the lock released by tx, which
means cty > ctx. This contradicts with the assumption
that the new version of r has a timestamp within (rtx,ctx).
Recall that the timestamp of a new version for a record
r ∈ wy is assigned the commit-timestamp of ty.
3.2 System recovery
Failure of P-unit. When a P-unit fails, a transaction
may still be in the processing phase if it has not issued
the commit request. Such a transaction is treated as be-
ing aborted. For transactions in either the validation or
the committing phase, they can be terminated by T-node
without communicating with the failed P-unit. T-node
will properly validate a transaction in this category and
decide whether to commit or to abort. Both the snapshot
isolation and durability are guaranteed, and all affected

transactions are properly ended after a P-unit fails.
Failure of T-node. T-node keeps its Memtable in main
memory. To avoid data loss, it uses WAL and forces redo
log records to its disk storage for all committed transac-
tions. When T-node fails, it is able to recover committed
data by replaying the redo log. Moreover, to avoid be-
ing the single point of failure, Solar also synchronizes
all redo log records to two replicas of T-node using a
primary-backup scheme. Each replica catches up the
content of T-node by replaying the log. When the pri-
mary T-node crashes, all actively running transactions
are terminated; and further transaction commit requests
are redirected to a secondary T-node quickly. As a result,
Solar is able to recover from T-node failure and resume
services in just a few seconds.
Failure of S-node. An S-node failure does not lead to
loss of data as an S-node keeps all tablets on disk. The
failure of a single S-node does not negatively impact the
availability of system because all tablets have at least
three replicas on different S-nodes. When one S-node
has crashed, a P-unit can still access records of a tablet
from the copy on another S-node.

3.3 Snapshot isolation in data compaction
Data compaction recycles memory used for Memtable.
It produces a new SSTable by merging the current
Memtable from T-node into the SSTable on S-nodes.
Data compaction. Let m0 and s0 be the current
Memtable and SSTable respectively. Data compaction
creates a new SSTable s1 by merging m0 and s0. An
empty Memtable m1 replaces m0 on T-node to service
future transaction writes. Note that s1 contains the latest
version of each record originally stored in either m0 or
s0, and is a consistent snapshot of the database. It indi-
cates that there is a timestamp tdc for the start of com-
paction such that transactions committed before tdc store
their updates in s1 and transactions committed after tdc
keep new versions in m1.

When data compaction starts, T-node creates m1 for
servicing new write requests. A transaction is allowed to
write data into m0 if and only if its validation phase oc-
curred before data compaction started. T-node waits till
all such transactions have committed (i.e., no more trans-
action will update m0 any more). At this point, S-nodes
start to merge m0 with their local tablets. An S-node does
not overwrite an existing tablet directly. Rather, it writes
the new tablet using the copy-on-write strategy. Thus,
ongoing transactions can still read s0 as usual. An S-
node acknowledges T-node when a tablet on that S-node
involving some records in m0 is completely merged with
the new versions of those records from m0. Data com-
paction completes when all new tablets have been cre-
ated. T-node is now allowed to discard m0 and truncate
the associated log records.

Merged

Merging

Frozen Memtable (m0)

Read s1

Active Memtable (m1)

Read m1

Tablet 1'(s1)

Tablet 2(s0)

Tablet 1(s0)

Tablet 2'(s1)

Figure 2: Data access during data compaction.

Figure 2 illustrates how to serve read access during
data compaction. A read request for any newly commit-
ted record versions (after tdc) is served by m1; otherwise
it is served by s1. There are two cases when accessing s1:
if the requested record is in a tablet that has completed
the merging process, only the new tablet in s1 needs to
be accessed (e.g., Tablet 1’ in Figure 2); if the requested
record is in a tablet that is still in the merging process
(e.g., Tablet 2 in Figure 2), we need to access both that
tablet from so and m0.

Concurrency control. Snapshot isolation needs to be
upheld during data compaction. The following concur-
rency control scheme is enforced. 1) If a transaction
starts its validation phase before a data compaction op-
eration is initiated, it validates and writes on m0 as de-
scribed in Section 3.1. 2) A data compaction operation
can acquire a timestamp tdc only when each transaction
that started validation before the data compaction op-
eration is initiated either aborts or acquires a commit-
timestamp. 3) The data compaction can actually be
started once all transactions with a commit-timestamp
smaller than tdc finish. 4) If a transaction tx starts its val-
idation phase after a data compaction operation is initi-
ated, it can start validation only after the data compaction
operation obtains its timestamp tdc. The transaction tx
validates against both m0 and m1 but only writes to m1.
During validation, tx acquires locks on both m0 and m1
for each record in its write set wx, and verifies that no
newer version is created relative to tx’s read-timestamp.
Once passing validation, tx writes its updates into m1, af-
ter which tx is allowed to acquire its commit-timestamp.
5) If a transaction acquires a read-timestamp which is
larger than tdc, it validates against and writes to m1 only.

Correctness. Consistent snapshot read is guaranteed
by assigning a read-timestamp to each transaction. Its
correctness follows the same analysis as discussed for
the normal transaction processing. The above proce-
dure also prevents lost update during data compaction.
Consider a transaction tx with read timestamp rtx and
commit-timestamp ctx. Assume that another transaction
ty exists, which has committed between rtx and ctx, i.e.,
rtx < cty < ctx, and ty has written some records that tx
will also write later after ty has committed. We only need
to consider the case where cty < tdc < ctx, since, other-
wise, lost update anomaly is guaranteed not to happen

because both tx and ty will validate against the same set
of Memtables (m0 and/or m1). This leads to the situa-
tion where rtx < cty < tdc < ctx. Thus, tx will be vali-
dated against both m0 and m1, and it will guarantee to
see the committed updates made by ty. As a result, tx
will be aborted since it will find at least one record with
timestamp greater than its read timestamp rtx. Hence,
lost update anomaly still never happens even when data
compaction runs concurrently with other transactions.
Recovery. The recovery mechanism is required to cor-
rectly restore both m0 and m1 when a node fails during
an active data compaction. Data compaction acts as a
boundary for recovery. Transactions committed before
the start of the latest data compaction (that was actively
running when a crash happened) should be replayed into
m0 while those committed after that should be replayed
into m1. Furthermore, we do not need to replay any trans-
actions committed before the completion of the latest
completed data compaction, since they have already been
successfully persisted to SSTable through the merging
operation of that completed data compaction. To achieve
that, a compaction start log entry (CSLE) is persisted into
the log on disk storage, when a data compaction starts, to
document its tdc. A compaction end log entry (CELE) is
persisted when a data compaction ends with its tdc serv-
ing as a unique identifier to identify this data compaction.

That said, failure of any P-unit does not lead to data
loss or impact data compaction. When T-node fails, the
recovery procedure replays the log from the CSLE with
timestamp tdc, which can be found in the last CELE. Ini-
tially, it replays the log into the Memtable m0. When a
CSLE is encountered, it creates a new Memtable m1 and
replays subsequent log entries into m1. The merging into
S-nodes continues after m0 is restored from the recovery.

If an S-node fails during a data compaction, no data is
lost since S-nodes use disk storage. But an S-node β may
still be in the process of creating new tablets when it fails.
Thus, when β recovers and rejoins the cluster, it contains
the tablets of old SSTable and incomplete tablets pro-
duced during merging. If the system has already com-
pleted the data compaction (using other replicas for the
failed node), there is at least one replica for each tablet in
the new SSTable. The recovered node β simply copies
the necessary tablets from a remote S-node. If data com-
paction has not completed, β would continue merging by
reading records in m0 from T-node.
Storage management. During data compaction, m0 and
s0 (the existing SSTable before the current compaction
starts) remain read only while s1 and m1 are being up-
dated. When compaction completes, m0 and s0 are to be
truncated. But they can only be truncated when no longer
needed for any read access. In summary, m0 and s0 can
be truncated when the data compaction has completed
and no transaction has a read timestamp smaller than tdc.

4 Optimization
It is important for Solar to reduce the network communi-
cation overhead among P-units, S-nodes and T-node. To
achieve better performance, we design fine-grained data
access methods between P-units and the storage nodes.

4.1 Optimizing data access
The correct data version that a transaction needs to read
is defined by the transaction’s read-timestamp, which
could be stored either in SSTable on S-nodes or in
Memtable on T-node. Thus, Solar does not know where
a record (or columns of a record) should be read from,
and P-units have to access both SSTable on S-nodes and
Memtable on T-node to ensure read consistency (though
one of which will turn out to be an incorrect version).

Here, we first present an SSTable cache on P-units to
reduce data access between P-units and S-nodes. Then,
an asynchronous bit array is designed to help P-units
identify potentially useless data accesses to T-node.

4.1.1 SSTable cache
A P-unit needs to pull records from SSTable. These re-
mote data accesses can be served efficiently using a data
cache. The immutability of SSTable makes it easy to
build a cache pool on a P-unit. The cache pool holds
records fetched from SSTable and serves data accesses
to the same records.

The cache pool is a simple key-value store. The key
stores the primary key and the value holds the corre-
sponding record. All entries are indexed by a hash map.
A read request on a P-unit first looks for the record from
its cache pool. Only if there is a cache miss, the P-unit
pulls the record from an S-node and adds it to its cache
pool. The cache pool uses a standard buffer replacement
algorithm to satisfy a given memory budget constraint.

Since SSTable is immutable and persisted on disk, So-
lar does not persist the cache pools. Entries in a cache
pool do expire when the SSTable they were fetched from
is obsolete after a data compaction operation. A P-unit
builds a new cache pool when that happens.

4.1.2 Asynchronous bit array
SSTable is a consistent snapshot of the whole database.
In comparison, Memtable only stores the newly created
data versions after the last data compaction, which must
be a small portion of the database. As a result, most
likely a read request sent to a T-node would fetch noth-
ing from T-node. We call this phenomenon empty read.
These requests are useless and have negative effects.
They increase latency and consume T-node’s resources.

To avoid making many empty reads, T-node uses a
succinct structure called memo structure to encode the
existence of items in Memtable. The structure is period-
ically synchronized to all P-units. Each P-unit examines
its local memo to identify potential empty reads.

The memo structure is a bit array. In the bit array, each
bit is used to represent whether a column of a tablet has
been modified or not. That is to say, if any record of a
tablet T has its column C modified, the bit correspond-
ing to (T,C) is turned on. Otherwise, the bit is turned
off. Other design choices are possible, e.g., to encode
the record-level information, but that would increase the
size of the bit-array dramatically.
Solar keeps two types of bit arrays. The first type is a

real-time bit array on T-node, denoted as b. The second
type is an asynchronous bit array on each P-unit, which
is a copy of b at some timestamp t, denoted as b′ = bt
where bt is the version of b at time t. A P-unit queries b′

to find potential empty reads without contacting T-node.
On T-node, b is updated when a new version is created

for any column of a record for the first time. Note that
when a version is created for a data item (a column value)
that already exists in Memtable, it is not necessary to
update b, as that has already been encoded in b. Each
P-unit pulls b from T-node periodically to refresh and
synchronize its local copy b′.

During query processing for a transaction tx on a P-
unit p, p examines its local b′ to determine whether T-
node contains newer versions for the columns of interest
of any record in tx’s read set. If (T,C) is 0 in b′ for such a
column C, p treats the request as an empty read and does
not contact T-node; otherwise, p will send a request to
pull data from T-node.

Clearly, querying b′ leads to false positives due to the
granularity of the encoding, and such false positives will
lead to empty reads to T-node. Consider in tablet T , row
r1 has its column C updated and row r2 has not updated
its column C. When reading column C of r2, a P-unit may
find the bit (T,C) in b′ is set while there is no version
for r2.C on T-node. In fact, the above method is most
effective for read-intensive or read-only columns. They
seldom have their bits turned on in the bit array.

Querying b′ may also return false negatives because
it is not synchronized with the latest version of b on T-
node. Once a false negative is present, a P-unit may miss
the latest version of some values it needs to read and end
up using an inconsistent snapshot. To address this issue,
a transaction must check all potential empty reads during
its validation phase. If a transaction sees the bit for (T,C)
is 0 in b′ during processing, it needs to check whether
the bit is also 0 in b during validation. If any empty read
previously identified by b′ cannot be confirmed by b, a
transaction has to be re-processed by reading the latest
versions in Memtable. False negatives are rare because
b does not see frequent update: it is only updated at the
first time any row in tablet T has its column C modified.

4.2 Transaction compilation
Solar supports JDBC/ODBC connections, as well as
stored procedures. The latter takes the one-shot execu-

tion model [26] and avoids client-server interaction. This
poses more processing burden on the DBMS, but enables
server-side optimizations [33, 39, 40]. Solar designs a
compilation technique to optimize inter-nodes commu-
nication by generating an optimized physical plan.

read
Memtable read
SSTable read

write update local buffer on P-unit (local operation)
process expression, project, sort, join ... (local operation)
compound loop, branch

Table 1: Possible operations in a physical plan.
Execution graph. The physical plan, to be executed
by a P-unit, of a stored procedure is represented as a se-
quence of operations in Table 1 (nested structures, such
as branch or loop, can be viewed as a compound opera-
tion). Reads are implemented via RPC while write and
process/computation are local operations. Hence, reads
are the key to optimizing network communication.

SSTable Read(Cust, r2)

Memtable Read(Cust, r2)1) Memtable Read(Item, r1)
2) SSTable Read(Item, r1)
3) price = r1.price
4) Memtable Read(Cust, r2)
5) SSTable Read(Cust, r2)
6) balance = r2.balance
7) balance -= price
8) Memtable Write(Cust, r2,
 balance)

Memtable Read(Item, r1)

SSTable Read(Item, r1)

balance = r2.balance price = r1.price

balance -= price Memtable Write(Cust,
r2, balance)

Figure 3: Example of operation sequence and execution graph.
Two operations have to be executed in order if they

have 1) procedure constraint: two operations contain
data/control dependence [21]; or 2) access constraint:
two operations access the same record and one operation
is a write. In practice, we cannot always determine two
database records are the same during compilation, so we
treat it as a potential access constraint if two operations
are accessing the same table. Then, we can represent
an operation sequence as an execution graph, where the
nodes are operations and edges are the constraints and
represent the execution order (Figure 3).

We also support branches and loops as compound op-
erations. A compound operation is a complex operation
if it contains multiple reads. If it only contains one read,
the compound operation is viewed as the same type of
read (defined in Table 1) as that single read. Otherwise,
a compound operation is viewed as a local operation. We
adopt loop distribution [14] to split a large loop into mul-
tiple smaller loops so that they can be categorized more
specifically. For a read operation in a branch block, it
can be moved out for speculative execution since reads
do not have side effect and thus are safe to execute even
if the corresponding branch is not taken.
Grouping Memtable Reads. To reduce the number of
RPCs to T-node, we can group multiple Memtable reads
together in one RPC to T-node if they do not have con-
straints between them. This is done in two passes over
the physical plan. The first pass finds all the Memtable
reads not constrained by any other reads via a BFS over

the execution graph. The second pass starts from the un-
constrained Memtable reads and marks all local oper-
ations that precede them. Before executing transaction
logics, all those local operations marked in pass 2 get ex-
ecuted first. Then the Memtable reads marked in pass 1
are sent in a single RPC request to T-node.
Pre-executing SSTable Reads. SSTable reads can be is-
sued even before a transaction obtains its read-timestamp
from T-node and we concurrently execute them with
other operations, since there is only one valid snapshot
in SSTable at a time. This requires that the SSTable
reads are not constrained by other operations. During
execution, the result of a SSTable read might or might
not be used depending on if there is update to the same
record in Memtable. Though this optimization might in-
troduce unused SSTable reads, the problem can be mit-
igated by the SSTable cache pool. The main benefit of
pre-executing SSTable reads is reducing wait time and
thus reducing latency. The SSTable reads that can be
pre-executed can be found using a similar algorithm to
the one that finds Memtable reads that can be grouped.

Remarks. The optimizations described in this section
are desgined for short transactions. Other workloads,
such as bulk loading, OLAP, require additional optimiza-
tions. For bulk loading, it is possible to skip the T-node
and directly load data into S-nodes. For OLAP queries,
they can be executed upon a consistent database snap-
shot, and some relational operators can be pushed down
into storage nodes to reduce inter-node data exchange.
5 Experiment
We implemented Solar by extending the open-sourced
version of Oceanbase (OB) [1]. In total, 58,281 lines
were added or modified on its code base. Hence, So-
lar is a full-fledged database system, implemented in
457,206 lines of C++ code. In order to compare it to
other systems that require advanced networking infras-
tructures, we conducted all experiments using 11 servers
on Emulab [38], which allows configuring different net-
work topologies and infrastructures. Each server has two
2.4 GHz 8-Core E5-2630 processors (32 threads in to-
tal when hyper-threading enabled) and 64GB DRAM,
connected through a 1 Gigabits Ethernet by default. By
default ten servers are used to deploy the database sys-
tem. One server is used to simulate clients. We compared
Solar with MySQL-Cluster 5.6, Tell (shared-everything)
[19], and VoltDB Enterprise 6.6 (shared-nothing) [27].
Though Tell is designed for InfiniBand, we used a simu-
lated InfiniBand over Ethernet to have a fair comparison.
We use Tell-1G (Tell-10G) to represent the Tell system
using 1-Gigabits (10-Gigabits) network respectively.

Solar is not compared with lightweight prototype sys-
tems that aim at verifying the performance of new con-
currency control scheme, such as Silo [30]. These sys-
tems achieve impressive throughput, but their implemen-

tations lack many important features, such as durable
logging, disaster recovery and a SQL engine. These fea-
tures often introduce significant performance overhead,
but are ignored by these lightweight system prototypes.

Solar deploys the T-node on a single server. It deploys
both an S-node and a P-unit on each of the remaining
nodes. Tell deploys a commit manager on a single server.
It uses two servers for storage node deployment and the
rest for processing nodes. We tested different combina-
tions of processing node and storage node instances and
chose the best configuration. Tell uses more process-
ing node instances and fewer storage nodes. MySQL-
Cluster deploys both a mysqld and a ndbmtd instance on
each server. VoltDB creates 27 partitions on each server,
which is based on the officially recommended strategy
[32]. It was determined by adjusting partition numbers
to achieve the best performance on a single server.

We used three different benchmarks. Performance of
different systems are evaluated by transaction processed
per second (TPS). In each test instance, we adjusted the
number of clients to get the best throughput.
5.1 TPC-C benchmark
We use a standard TPC-C workload with 45%
NewOrder, 43% Payment, 4% OrderStatus, 4% De-
livery and 4 % StockLevel requests. Request param-
eters are generated according to the TPC-C specifica-
tion. By default, 200 warehouses are populated in the
database. Warehouse keys are used for horizontal par-
titioning. Initially, Solar stores 1.6 million records (2.5
GB) in the Memtable and 100 million records (42GB)
in the SSTable (with 3x replication enabled). After
the benchmark finishes, there are 11 GB data in the
Memtable and the size of SSTable is about 655 GB.

Figure 4 shows the performance of different systems
when we vary the number of warehouses. Solar achieves
about 53k TPS on 50 warehouse, and increases to about
75k TPS with 350 warehouses. When more warehouses
are populated, there are less access contention in the
workload, leading to fewer conflicts and higher concur-
rency. Solar clearly outperforms the other systems. Its
throughput is 4.8x of that of Tell-10G (about 15.6k TPS)
with 350 warehouses. Note that Tell-1G, which uses
the same network infrastructure as Solar, performs even
worse than Tell-10G. VoltDB exhibits the worst perfor-
mance due to distributed transactions. Lastly, Oceanbase
is primarily designed for processing very short transac-
tions and thus is inefficient on general transaction work-
loads. Solar always achieves at least 10x throughput im-
provement over Oceanbase. Therefore, we skip Ocean-
base in other benchmarks.

Figure 5 evaluates the scalability when using differ-
ent number of nodes. The throughputs of Solar, Tell and
MySQL-Cluster increase with more nodes. In contrast,
the throughput of VoltDB deteriorates for the following

1 0 0 2 0 0 3 0 0
0

2 0 k
4 0 k
6 0 k
8 0 k

 S o l a r T e l l - 1 G M y S Q L - C l u s t e r
 V o l t D B T e l l - 1 0 G O c e a n b a s e

Th
rou

gh
pu

t (t
ps

)

N u m b e r o f W a r e h o u s e s (#)
Figure 4: TPC-C: vary num-
ber of warehouses.

0 2 4 6 8 1 0
0

2 0 k
4 0 k
6 0 k
8 0 k

 S o l a r T e l l - 1 G M y S Q L - C l u s t e r
 V o l t D B T e l l - 1 0 G O c e a n b a s e

Th
rou

gh
pu

t (t
ps

)

N u m b e r o f S e r v e r s (#)
Figure 5: TPC-C: vary num-
ber of servers.

0 4 8 1 2 1 6
0

4 0 k
8 0 k

1 2 0 k

 S o l a r T e l l - 1 G M y S Q L - C l u s t e r
 V o l t D B T e l l - 1 0 G O c e a n b a s e

Th
rou

gh
pu

t (t
ps

)

C r o s s - W a r e h o u s e T r a n s a c t i o n R a t i o (%)
Figure 6: TPC-C: vary ratio of
cross-warehouse transactions.

1 k 1 0 k 1 0 0 k 1 M 1 0 M
0

5 0 k
1 0 0 k
1 5 0 k
2 0 0 k

 S o l a r T e l l - 1 G T e l l - 1 0 G
 M y S Q L - C l u s t e r V o l t D B

Th
rou

gh
pu

t (t
ps

)

N u m b e r o f A c c o u n t s (#)
Figure 7: Smallbank: vary
number of accounts.

reason. Distributed transactions are processed by a single
thread in VoltDB. They block all working threads of the
system. With more servers being used, it becomes more
expensive for such request to be processed. The through-
put growth in Solar slows down with more than 7 servers.
As there are more access conflicts with a higher number
of client requests, more transactions fail in the valida-
tion phase. Another reason is that T-node receives more
loads when working with more P-units, and in our exper-
imental setting, T-node uses the same type of machine as
that used for P-units. Hence, the overall performance
increases sub-linear with the number of P-units. How-
ever, in the real deployment of Solar, a high-end server is
recommended for T-node, whereas P-units (and S-nodes)
can be served with much less powerful machines.

Figure 6 shows the results when we vary the ratio of
cross-warehouse transactions. If a transaction accesses
records from multiple warehouse, it is a distributed trans-
action. VoltDB achieves the best performance (141k
TPS) when there are no distributed transactions, which is
about 2.0x of Solar (about 70k TPS). But as the ratio of
distributed transactions increase, VoltDB’s performance
drops drastically as it uses horizontal partitioning to scale
out. The other systems are not sensitive to this ratio.

Latency(ms) Solar
Tell
-1G

Tell
-10G

MySQL-
Cluster VoltDB OB

Payment 6 17 7 17 15619 38
NewOrder 15 28 12 103 30 60

OrderStatus 6 20 8 23 14 30
Delivery 40 160 53 427 14 174

StockLevel 9 14 7 17 14 60
Overall 12 30 12 95 2751 54

Table 2: 90th Latency, TPC-C workload.
Table 2 lists the 90th latency. Solar has a short la-

tency for each transaction. Tell benefits from the bet-
ter network. It gets better latency with the 10-Gbit net-
work than the 1-Gbit one. The long latency of MySQL-
Cluster comes from the network interaction between the
database servers and clients because it uses JDBC in-
stead of stored procedures. VoltDB is slow on dis-
tributed transactions. Under the standard TPC-C mix,
about 15.0% Payment and 9.5% NewOrder requests are
distributed transactions. Hence, the 90th latency of Pay-
ment is long. Though the 90th latency of NewOrder is
small, its 95th latency reaches 15,819 ms.
5.2 Smallbank benchmark
Smallbank simulates a banking application. It contains
3 tables and 6 types of transactions. The workload
contains 15% Amalgamate transactions, 15% Balance

transactions, 15% DepositChecking transactions, 25%
SendPayment transactions, 15% TransactSavings trans-
actions and 15% WriteCheck transactions. Amalgamate
and SendPayment operate on two accounts at a time.
The other transactions access only a single account. We
populated 10 million users into the database. Initially,
there are 8M records (3 GB) in Memtable and 30M
records (1.1 TB) in SSTable. After execution, Memtable
has 5.2 GB data, and SSTable has about 1.1 TB data.

Figure 7 evaluates different systems by populating dif-
ferent number of accounts in the database. Note that x-
axis is shown in log-scale. Solar has the best overall per-
formance. Its throughput initially increases as the num-
ber of accounts increases, because less contention when
there are more accounts. Due to the drop of SSTable’s
cache hit ratio as the number accounts further increases
to 10M, P-units need to issue remomte data access to S-
nodes. As a result, its throughput slightly drops.

Latency(ms) Solar Tell-1G Tell-10G MySQL-
Cluster VoltDB

Amalgamate 5 5 4 8 100
Balance 3 3 3 4 5
Deposit 4 4 4 3 5

SendPayment 7 4 4 12 102
Xact Savings 3 4 4 6 5
WriteCheck 5 4 4 5 6

Overall 5 4 4 8 92

Table 3: 90th Latency, Smallbank workload.
Tell shows a fairly stable performance, but 10G Ether-

net only improves its throughput slightly. MySQL Clus-
ter also has a better performance initially with more ac-
counts, but stabilizes once it has maxed out all hardware
resources. The performance of VoltDB is limited by
cross-partition transactions. Table 3 lists the 90th latency
number. It takes VoltDB much longer time than others
to process Amalgamate and SendPayment and there are
40% such transactions in this workload.

Figure 8 evaluates each systems with different num-
ber of servers. Here, we populated 1M accounts in the
database. Solar shows the best performance and scalabil-
ity with respect to the number of servers. The through-
puts of Solar, Tell and MySQL-Cluster scale linearly
with the number of servers. The throughput of VoltDB is
still quite limited by distributed transaction processing.

5.3 E-commerce benchmark
E-commerce is a workload from an e-business client of
Bank of Communications. It includes 7 tables and 5
transaction types. There are two user roles in this ap-
plication: buyer and seller. There are 4 tables for buyers:

0 2 4 6 8 1 0
0

5 0 k
1 0 0 k
1 5 0 k
2 0 0 k

 S o l a r T e l l - 1 G T e l l - 1 0 G
 M y S Q L - C l u s t e r V o l t D B

Th
rou

gh
pu

t (t
ps

)

N u m b e r o f S e r v e r s (#)
Figure 8: Smallbank: vary
number of servers.

0 2 4 6 8 1 0
0

1 5 0 k
3 0 0 k
4 5 0 k

 S o l a r T e l l - 1 G T e l l - 1 0 G
 M y S Q L - C l u s t e r V o l t D B

Th
rou

gh
pu

t (t
ps

)

N u m b e r o f S e r v e r s (#)
Figure 9: E-commerce: vary
number of servers.

2 4 6 8 1 0
1 5 k
3 0 k
4 5 k
6 0 k
7 5 k

 N o r m a l C o m p a c t i o n

Th
rou

gh
pu

t (t
ps

)

N u m b e r o f S e r v e r s (#)
Figure 10: TPC-C: data com-
paction.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
0

2 5 k

5 0 k
 K i l l S n o d e R e s t a r t S n o d e
 K i l l T n o d e R e s t a r t T n o d e

Th
rou

gh
pu

t (t
ps

)

T i m e l i n e (s)
Figure 11: Solar: throughput
under node failures.

User, Cart, Favorite and Order and 3 tables for sellers:
Seller, Item and Stock. These tables are partitioned by
user id and seller id respectively. At the start of the ex-
periment, Solar has 11M records (5GB) in Memtable,
and 25M records (815GB) in SSTable. When all experi-
ments are completed, the Memtable has 8.6 GB data and
the size of SSTable is 881GB.

The workload has 88% OnClick transactions, 1% Ad-
dCart transactions, 6% Purchase transactions and 5%
AddFavorite transactions. The OnClick request is a read-
only transaction while the others are read-write ones.
OnClick reads an item and accesses Item and Stock. Add-
Cart inserts an item into a buyer’s cart and accesses User
and Cart. AddFavorite inserts an item into a buyer’s fa-
vorite list and updates the item’s popular level. It ac-
cesses User, Favorite and Item. Purchase creates an or-
der for a buyer and decrements the item’s quantity. It
accesses User, Order, Item and Stock.

Latency(ms) Solar Tell-1G Tell-10G MySQL-
Cluster VoltDB

OnClick 1 8 4 4 4
AddFavorite 2 12 5 6 47

AddCart 2 2 14 4 4
Purchase 4 12 4 6 49
Overall 1 8 4 4 19

Table 4: 90th Latency, E-commerce workload.
Figure 9 shows the performance of each system using

different number of servers. The throughput of Solar in-
creases with the number of servers used. It has achieved
about 438k TPS when 10 servers are used, and is at
least 3x that of any other system. As shown in Table 4
for the 90th latency, most transactions completed within
1ms by Solar. MySQL-Cluster and Tell also see perfor-
mance improvement when more servers are used. But
they have higher latency as shown in Table 4. VoltDB is
highly inefficient on AddFavorite and Purchase because
tables accessed by these transactions use different parti-
tion keys. These transactions may visit multiple parti-
tions which block other single-partition transactions. As
a result, OnClick and AddCart also have longer latency.
5.4 Data compaction
During transaction processing, Solar may initiate a data
compaction in the background. Figure 10 shows the im-
pact of data compaction on the performance, when Solar
is processing the standard TPC-C workload. As shown
in Figure 10, data compaction has little negative effect
on the performance when 5 or less servers are used. It is
because the performance is mainly limited by the num-
ber of P-units in these cases, and compaction would not

influence the operation of P-units. When more servers
are used, there is about 10% throughput loss. This is be-
cause at this point T-node has more impact on the overall
system performance when more servers are introduced.
Data compaction consumes part of the network band-
width and CPU resources, which are also required by
transaction processing on T-node.
5.5 Node failures
We next investigate the impact of node failures in So-
lar. In this experiment, 3 servers were used to deploy
T-nodes, and 7 servers were used to deploy S-nodes and
P-units. One T-node acts as the primary T-node, and the
other two are secondary T-nodes. The TPC-C benchmark
was used with 200 warehouses populated, and we termi-
nated some servers at some point during execution. Fig-
ure 11 plots the changes of throughput against the time.

Removing 2 S-nodes does not impact the performance,
as the SSTable keeps 3 replicas for each tablet and each
P-unit also caches data from SSTable. Thus, losing 2
S-nodes does not influence performance. We then ter-
minated the primary T-node. Immediately after it went
down, the throughput drops to 0 because no T-node can
service write requests now. After about 7 seconds, a sec-
ondary T-node becomes the primary and the system con-
tinues to function. After the failed T-node re-joins the
cluster, the new primary T-node has to read redo log en-
tries from the disk and send them to the T-node in recov-
ery. Thus, the performance fluctuates and drops a little
bit due to this overhead. It takes about 40 seconds for
the failed T-node to catch up with the new primary, after
which the system throughput returns to the normal level.
5.6 Access optimizations
Figure 12 evaluates the performance improvement
brought by different access optimizations. The y-axis
shows the normalized performance to a baseline system
without using any optimization. The figure shows the
improvement brought by enabling each individual opti-
mization, as well as all of them, using the TPC-C work-
load. Other workloads share the similar performance
trends. With more P-units and S-nodes deployed in sys-
tem, the individual optimizations show different trends
of improvement. The effectiveness of SSTable cache
drops because the overall data access throughput in-
creases when more S-nodes are deployed. However, the
accesses to T-node are more contentious as more P-units
communicate with the single T-node. With transaction
compilation enabled, small data accesses to T-node are

2 4 6 8 1 0
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5

 c a c h e b i t a r r a y
 c o m p i l a t i o n a l l

Th
rou

gh
pu

t (N
orm

.)

N u m b e r o f S e r v e r s (#)
Figure 12: Improvements under different optimizations.

combined, which improves the overall throughput when
there are more P-units. The bit array shows a relatively
stable impact to the throughput because it prunes data ac-
cess to T-node at the column level, which is related to the
workload rather than the number of servers. As long as
a column is not read-only in any row in a tablet, it can-
not prune the data access to T-node. When all optimiza-
tions are used together, they bring about 3x throughput
improvement regardless of the number of servers used.

6 Related Work
Single-node system. Single-node in-memory sys-
tems have exploited NUMA architectures, RTM, latch-
free data structures, and other novel techniques to
achieve high performance transaction processing, such
as Silo [30], Hekaton [7], Hyper [13, 24], DBX [34], and
others. The usage of these systems are subject to the
main memory capacity on a single node as they require
all data stored in the memory. Deuteronomy’s [17] trans-
action component (TC) uses pessimistic, timestamp-
based MVCC with decoupled atomic record stores. It
can manage data sharded over multiple record stores, but
Deuteronomy is not itself networked or distributed; in-
stead stores are on different CPU sockets. It ships up-
dates to the data storage via log replaying and all reads
have to go through TC. In contrast, Solar uses MVOCC
and a cluster of data storage, and it can potentially skip
T-node access using its asynchronous bit arrays.
Shared-nothing systems. Horizontal partitioning is
widely used to scale out. Examples include HStore [12,
26], VoltDB [27], Accordion [25], E-Store [28]. We
have discussed their limitations in Section 2.1. Calvin
[29] takes advantage of deterministic execution to main-
tain high throughput even with distributed transactions.
However, it requires a separate reconnaissance query to
predict unknown read/write set. Oceanbase [1] is Al-
ibaba’s distributed shared-nothing database designed for
short transactions. In shared-nothing systems, locking
happens at partition level. To get subpartition locking,
distributed locks or a central lock manager must be im-
plemented, which goes against the principle for strict
partitioning (i.e., get rid of distributed locking/latching),
and reintroduces (distributed) locking and latching coor-
dination overheads and defeats the gains of shared noth-
ing. That said, new concurrency control schemes can im-
prove the performance of distributed transactions (e.g.,
[20]), when certain assumptions are made (e.g., knowing
the workload apriori, using offline checking, determinis-

tic ordering, and dependency tracking).
Shared-everything systems. The shared-everything ar-
chitecture is an alternative choice to enable high scal-
ability and high performance, where any node can ac-
cess and modify any record in the system. Traditional
shared-everything databases, like IBM DB2 Data Shar-
ing [11] and Oracle RAC [4], suffer from expensive dis-
tributed lock management. Modern shared-everything
designs exploit advanced hardware to improve perfor-
mance, such as Tell [19], DrTM [37] and DrTM+B
[36] (with live reconfiguration and data repartitioning),
HANA SOE [10]. Solar, on the other hand, uses com-
modity servers and does not rely on special hardwares.
Log-structured storage. The log-structured merge
tree [22] is optimized for insertion, update and dele-
tion. It is widely adopted by many NoSQL vendors, such
as LevelDB [18], BigTable [5], Cassandra [16] and etc.
However, none of these supports multi-row transactions.
LogBase [31] is a scalable log-structured database with
a log file only storage where the objective is to remove
the write bottleneck and to support fast system recovery,
rather than optimizing OLTP workloads. Hyder II opti-
mizes OCC for tree-structured, log-structured databases
[3] which Solar may leverage for further improving its
concurrency control scheme. vCorfu [35] implements
materialized streams on a shared log to support fast ran-
dom reads. But, it increases transaction latency as com-
mitting requires at least four network roundtrips.

7 Conclusion
This work presents Solar, a high performance and scal-
able relational database system that supports OLTP over
a distributed log-structured storage. Extensive empirical
evaluations have demonstrated the advantages of Solar
compared to other systems on different workloads. Solar
has been deployed at Bank of Communications to han-
dle its e-commerce OLTP workloads. We plan to open
source Solar on GitHub. Current and future works in-
clude designing a more effective query optimizer and
task processing module, by leveraging the NUMA archi-
tecture, improving its concurrency control scheme, and
designing an efficient and scalable OLAP layer.
Acknowledgments. Tao Zhu, Weining Qian and Aoying
Zhou are supported by 863 Program (2015AA015307),
National Key R&D Plan Project (2018YFB1003303),
NSFC (61432006 and 61332006). Feifei Li, Zhuoyue
Zhao and Dong Xie are supported in part by NSF grants
1619287 and 1443046. Feifei Li is also supported in part
by NSFC grant 61729202. Ryan Stutsman is supported
in part by NSF grant CNS-1750558. Any opinions, find-
ings and conclusions or recommendations expressed in
this material are those of the authors and do not neces-
sarily reflect the views of the National Science Founda-
tion. The authors greatly appreciate the valueable feed-
back provided by USENIX ATC reviewers.

References
[1] ALIBABA OCEANBASE. Oceanbase. https://github.com/

alibaba/oceanbase, 2015.

[2] BERENSON, H., BERNSTEIN, P., GRAY, J., MELTON, J.,
O’NEIL, E., AND O’NEIL, P. A critique of ANSI SQL isola-
tion levels. In SIGMOD (1995), vol. 24, ACM, pp. 1–10.

[3] BERNSTEIN, P. A., DAS, S., DING, B., AND PILMAN, M. Op-
timizing optimistic concurrency control for tree-structured, log-
structured databases. In SIGMOD (2015), pp. 1295–1309.

[4] CHANDRASEKARAN, S., AND BAMFORD, R. Shared cache-the
future of parallel databases. In ICDE (2003), IEEE, pp. 840–850.

[5] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-
LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND
GRUBER, R. E. Bigtable: A distributed storage system for struc-
tured data. TOCS 26, 2 (2008), 4.

[6] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAP-
ATI, G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN,
S., VOSSHALL, P., AND VOGELS, W. Dynamo: Amazon’s
highly available key-value store. In SOSP (2007), vol. 41, ACM,
pp. 205–220.

[7] DIACONU, C., FREEDMAN, C., ISMERT, E., LARSON, P.-A.,
MITTAL, P., STONECIPHER, R., VERMA, N., AND ZWILLING,
M. Hekaton: SQL server’s memory-optimized OLTP engine. In
SIGMOD (2013), ACM, pp. 1243–1254.

[8] DRAGOJEVIC, A., NARAYANAN, D., CASTRO, M., AND HOD-
SON, O. FaRM: Fast Remote Memory. In NSDI (2014), pp. 401–
414.

[9] DRAGOJEVIC, A., NARAYANAN, D., NIGHTINGALE, E. B.,
RENZELMANN, M., SHAMIS, A., BADAM, A., AND CASTRO,
M. No compromises: distributed transactions with consistency,
availability, and performance. In SOSP (2015), pp. 54–70.

[10] GOEL, A. K., POUND, J., AUCH, N., BUMBULIS, P.,
MACLEAN, S., FÄRBER, F., GROPENGIESSER, F., MATHIS,
C., BODNER, T., AND LEHNER, W. Towards scalable real-
time analytics: an architecture for scale-out of OLxP workloads.
PVLDB 8, 12 (2015), 1716–1727.

[11] JOSTEN, J. W., MOHAN, C., NARANG, I., AND TENG, J. Z.
DB2’s use of the coupling facility for data sharing. IBM Systems
Journal 36, 2 (1997), 327–351.

[12] KALLMAN, R., KIMURA, H., NATKINS, J., PAVLO, A., RASIN,
A., ZDONIK, S., JONES, E. P., MADDEN, S., STONEBRAKER,
M., ZHANG, Y., ET AL. H-store: a high-performance, distributed
main memory transaction processing system. PVLDB 1, 2 (2008),
1496–1499.

[13] KEMPER, A., AND NEUMANN, T. HyPer: A hybrid
OLTP&OLAP main memory database system based on virtual
memory snapshots. In ICDE (2011), IEEE, pp. 195–206.

[14] KENNEDY, K., AND MCKINLEY, K. S. Maximizing loop paral-
lelism and improving data locality via loop fusion and distribu-
tion. Springer, 1993.

[15] KUNG, H.-T., AND ROBINSON, J. T. On optimistic methods for
concurrency control. TODS 6, 2 (1981), 213–226.

[16] LAKSHMAN, A., AND MALIK, P. Cassandra: a decentralized
structured storage system. SIGOPS 44, 2 (2010), 35–40.

[17] LEVANDOSKI, J., LOMET, D., SENGUPTA, S., STUTSMAN, R.,
AND WANG, R. High performance transactions in Deuteronomy.
Conference on Innovative Data Systems Research (CIDR 2015).

[18] LEVELDB. LevelDB. http://leveldb.org/, 2017.

[19] LOESING, S., PILMAN, M., ETTER, T., AND KOSSMANN, D.
On the design and scalability of distributed shared-data databases.
In SIGMOD (2015), ACM, pp. 663–676.

[20] MU, S., CUI, Y., ZHANG, Y., LLOYD, W., AND LI, J. Ex-
tracting more concurrency from distributed transactions. In OSDI
(2014), pp. 479–494.

[21] MUCHNICK, S. S. Advanced compiler design implementation.
Morgan Kaufmann, 1997.

[22] O’NEIL, P., CHENG, E., GAWLICK, D., AND O’NEIL, E. The
log-structured merge-tree (LSM-tree). Acta Informatica 33, 4
(1996), 351–385.

[23] OUSTERHOUT, J., AGRAWAL, P., ERICKSON, D., KOZYRAKIS,
C., LEVERICH, J., MAZIÈRES, D., MITRA, S., NARAYANAN,
A., PARULKAR, G., ROSENBLUM, M., ET AL. The case
for RAMClouds: scalable high-performance storage entirely in
DRAM. SIGOPS 43, 4 (2010), 92–105.

[24] RÖDIGER, W., MÜHLBAUER, T., KEMPER, A., AND NEU-
MANN, T. High-speed query processing over high-speed net-
works. PVLDB 9, 4 (2015), 228–239.

[25] SERAFINI, M., MANSOUR, E., ABOULNAGA, A., SALEM, K.,
RAFIQ, T., AND MINHAS, U. F. Accordion: elastic scalability
for database systems supporting distributed transactions. PVLDB
7, 12 (2014), 1035–1046.

[26] STONEBRAKER, M., MADDEN, S., ABADI, D. J., HARI-
ZOPOULOS, S., HACHEM, N., AND HELLAND, P. The end of
an architectural era:(it’s time for a complete rewrite). In PVLDB
(2007), VLDB Endowment, pp. 1150–1160.

[27] STONEBRAKER, M., AND WEISBERG, A. The VoltDB Main
Memory DBMS. IEEE Data Eng. Bull. 36, 2 (2013), 21–27.

[28] TAFT, R., MANSOUR, E., SERAFINI, M., DUGGAN, J., EL-
MORE, A. J., ABOULNAGA, A., PAVLO, A., AND STONE-
BRAKER, M. E-store: Fine-grained elastic partitioning for dis-
tributed transaction processing systems. PVLDB (2014), 245–
256.

[29] THOMSON, A., DIAMOND, T., WENG, S.-C., REN, K., SHAO,
P., AND ABADI, D. J. Calvin: fast distributed transactions for
partitioned database systems. In SIGMOD (2012), pp. 1–12.

[30] TU, S., ZHENG, W., KOHLER, E., LISKOV, B., AND MADDEN,
S. Speedy transactions in multicore in-memory databases. In
SOSP (2013), pp. 18–32.

[31] VO, H. T., WANG, S., AGRAWAL, D., CHEN, G., AND OOI,
B. C. Logbase: A scalable log-structured database system in the
cloud. PVLDB 5, 10 (2012), 1004–1015.

[32] VOLTDB INC. VoltDB. https://www.voltdb.com/, 2017.

[33] WANG, Z., MU, S., CUI, Y., YI, H., CHEN, H., AND LI, J.
Scaling multicore databases via constrained parallel execution.
In SIGMOD (2016), ACM, pp. 1643–1658.

[34] WANG, Z., QIAN, H., LI, J., AND CHEN, H. Using restricted
transactional memory to build a scalable in-memory database. In
EuroSys (2014), pp. 26:1–26:15.

[35] WEI, M., TAI, A., ROSSBACH, C. J., ABRAHAM, I.,
MUNSHED, M., DHAWAN, M., STABILE, J., WIEDER, U.,
FRITCHIE, S., SWANSON, S., FREEDMAN, M. J., AND
MALKHI, D. vCorfu: A cloud-scale object store on a shared
log. In USENIX NSDI (2017), pp. 35–49.

[36] WEI, X., SHEN, S., CHEN, R., AND CHEN, H. Replication-
driven live reconfiguration for fast distributed transaction pro-
cessing. In USENIX ATC (2017), pp. 335–347.

[37] WEI, X., SHI, J., CHEN, Y., CHEN, R., AND CHEN, H. Fast
in-memory transaction processing using RDMA and HTM. In
SOSP (2015), ACM, pp. 87–104.

[38] WHITE, B., LEPREAU, J., STOLLER, L., RICCI, R., GU-
RUPRASAD, S., NEWBOLD, M., HIBLER, M., BARB, C., AND
JOGLEKAR, A. An integrated experimental environment for dis-
tributed systems and networks. In OSDI (2002), pp. 255–270.

[39] WU, Y., CHAN, C.-Y., AND TAN, K.-L. Transaction healing:
Scaling optimistic concurrency control on multicores. In SIG-
MOD (2016), ACM, pp. 1689–1704.

[40] YAN, C., AND CHEUNG, A. Leveraging lock contention to im-
prove OLTP application performance. PVLDB (2016), 444–455.

