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The Motivation

Cloud databases: Google Cloud SQL, Microsoft SQL Azure, Amazon
SimpleDB.

Service providers (SP) answer queries from different clients.
Data owner might not want to reveal data values to SP; clients
might not want SP to learn their queries and/or the query results.

Cloud Database

Hakan Hacigumus,
Balakrishna R. Iyer, Chen Li, Sharad Mehrotra: Executing SQL over encrypted data in the database-service-provider model. SIGMOD 2002
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Related Work

Existing work has examined the problems of answering basic SQL
queries [1], executing aggregate queries [2], and performing range
queries [3], over an encrypted database

Hu et al. [4] and Wong et al. [5] deal with the SNN problem; the
solutions thus proposed, however, are insecure and can be attacked
efficiently

Fully homomorphic encryption encryption due to Craig Gentry, “A
Fully Homomorphic Encryption Scheme (Ph.D. thesis)”: mostly of
theoretical interest, impractical, and inefficient for large data.

[1] H. Hacigumus, B. R. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in the database service provider model.

In SIGMOD, 2002

[2] E. Mykletun and G. Tsudik. Aggregation queries in the database-as-a-service model. In DBSec, 2006

[3] E. Shi, J. Bethencourt, H. T.-H. Chan, D. X. Song, and A. Perrig. Multi-dimensional range query over encrypted data. In

IEEE Symposium on Security and Privacy, pages 350C364, 2007

[4] H. Hu, J. Xu, C. Ren, and B. Choi. Processing private queries over untrusted data cloud through privacy homomorphism. In

ICDE, pages 601C612, 2011

[5] W. K. Wong, D. W.-L. Cheung, B. Kao, and N. Mamoulis. Secure knn computation on encrypted databases. In SIGMOD,

pages 139C152, 2009
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Problem Formulation

Three parties:

A data owner who has a database D that contains d-dimensional
Euclidean objects/points, and outsources D to a server that cannot
be fully trusted.
A client (or multiple of them) who wants to access and pose queries
to D.
A server that is honest but potentially curious in the tuples in the
database and the queries from the clients.

Objective:

To enable the client to perform NN queries without letting the server
learn contents about the query (and its result) or the tuples in the
database.
To ensure the SNN method is as secure as the encryption method E
used by the data owner.
Adversary model: same as whatever model in which E is secure, e.g,
IND-CPA, IND-CCA.
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Problem Definition

Database D = {p1, . . . , pN}, where pi ∈ Rd .

E (D): encryption of D under a secure encryption function E .

Goal: find a method S such that S(E (q),E (D)) = E (nn(q,D)),
where q ∈ Rd , without letting the SP learn contents about either
the query (and its results) or the tuples in D.

Standard security model, such as indistinguishability under chosen
plaintext attack (IND-CPA), or indistinguishability under chosen
ciphertext attack (IND-CCA).

To appear in ICDE’13.
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Insecurity of Existing Methods

First attempt: Wai Kit Wong, David Wai-Lok Cheung, Ben Kao, Nikos
Mamoulis: Secure kNN computation on encrypted databases. SIGMOD
2009

Basic idea: construct a “secure” encryption function that preserves
the dot product between a query point and a database point.
Attack we found: after learning only d query points and their
encryptions, a linear system of d equations can be formed to decrypt
any encrypted p ∈ D.
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Insecurity of Existing Methods

Second attempt: Haibo Hu, Jianliang Xu, Chushi Ren, Byron Choi:
Processing private queries over untrusted data cloud through privacy
homomorphism. ICDE 2011

Basic idea: Using homomorphic encryption to encrypt each entry in
a multi-dimensional index; Guide the search by using the
homomorphic operations between (encrypted) q and entry e.
Attack we found: In the above process, the server learns if q lies to
the left or the right of another point, in each dimension, which leads
to a binary search to efficiently recover any encrypted point.
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Hardness of the Problem: OPE

Order-preserving encryption (OPE) is a set of functions
{E , E−1, op}, such that:

E(m) = c, E−1(c) = m (here we omit the keys).
op(c1, c2) = 1 if m1 < m2; op(c1, c2) = −1 if m1 > m2.

Theorem

A truly secure OPE does not exist in standard security models, such as
IND-CPA. It also does not exist even in much relaxed security models,
such as the indistinguishability under ordered chosen-plaintext attack
(IND-OCPA).

Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, Yirong Xu: Order-Preserving Encryption for Numeric Data. SIGMOD 2004

Alexandra Boldyreva, Nathan Chenette, Younho Lee, Adam O’Neill: Order-Preserving Symmetric Encryption. EUROCRYPT 2009
Alexandra Boldyreva, Nathan Chenette, Adam O’Neill: Order-Preserving Encryption Revisited: Improved Security Analysis and Alternative
Solutions. CRYPTO 2011
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Hardness of the Problem: SNN gives OPE

Given E (D) = {E (p1), . . . ,E (pN)}, suppose we have a secure SNN
method S such that: S(E (q),E (D))→ E (nn(q,D)) without the
knowledge of E−1.

We can construct an OPE, {E , E−1, op}, based on S(·)!
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Z+
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h(·) : pi+1 − pi < pi − pi−1

p5
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D:

nn(pi, D) = pi+1, i ∈ [1, N ]; nn(pN+1, D) = pN .

S(E(pi), E(D)) = E(pi+1), for i ∈ [1, N ].

S(E(pN+1), E(D)) = E(pN ).
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Hardness of the Problem: SNN gives OPE

How to construct op(E(mi ), E(mj))?

Observe that by our construction, E(mi ) = E (pi ), and
E(mj) = E (pj).
Define function traverse(E(mi )) which outputs i !
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Define function traverse(E(mi )) which outputs i !

p1

m1 m2 m3 m4

Z+

p2 p3 p4

h(·) : pi+1 − pi < pi − pi−1

p5
E(p2)

E(m2)
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Hardness of the Problem: SNN gives OPE

How to construct op(E(mi ), E(mj))?
Observe that by our construction, E(mi ) = E (pi ), and
E(mj) = E (pj).
Define function traverse(E(mi )) which outputs i !

p1

m1 m2 m3 m4

Z+

p2 p3 p4

h(·) : pi+1 − pi < pi − pi−1

p5
E(p2)

E(m2)

1: S(E(p2), E(D) = E(p3)
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How to construct op(E(mi ), E(mj))?
Observe that by our construction, E(mi ) = E (pi ), and
E(mj) = E (pj).
Define function traverse(E(mi )) which outputs i !

p1

m1 m2 m3 m4

Z+

p2 p3 p4

h(·) : pi+1 − pi < pi − pi−1

p5
E(p2)

E(m2)

E(p3)
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Hardness of the Problem: SNN gives OPE

How to construct op(E(mi ), E(mj))?
Observe that by our construction, E(mi ) = E (pi ), and
E(mj) = E (pj).
Define function traverse(E(mi )) which outputs i !

p1

m1 m2 m3 m4

Z+

p2 p3 p4

h(·) : pi+1 − pi < pi − pi−1

p5
E(p2)

E(m2)

E(p3)

2: S(E(p3), E(D) = E(p4)
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Hardness of the Problem: SNN gives OPE

How to construct op(E(mi ), E(mj))?
Observe that by our construction, E(mi ) = E (pi ), and
E(mj) = E (pj).
Define function traverse(E(mi )) which outputs i !

p1

m1 m2 m3 m4

Z+

p2 p3 p4

h(·) : pi+1 − pi < pi − pi−1

p5
E(p2)

E(m2)

E(p3) E(p4)
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Hardness of the Problem: SNN gives OPE

How to construct op(E(mi ), E(mj))?
Observe that by our construction, E(mi ) = E (pi ), and
E(mj) = E (pj).
Define function traverse(E(mi )) which outputs i !

p1

m1 m2 m3 m4

Z+

p2 p3 p4

h(·) : pi+1 − pi < pi − pi−1

p5
E(p2)

E(m2)

E(p3) E(p4)

3: S(E(p4), E(D) = E(p5)
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Hardness of the Problem: SNN gives OPE

How to construct op(E(mi ), E(mj))?
Observe that by our construction, E(mi ) = E (pi ), and
E(mj) = E (pj).
Define function traverse(E(mi )) which outputs i !

p1

m1 m2 m3 m4

Z+

p2 p3 p4

h(·) : pi+1 − pi < pi − pi−1

p5
E(p2)

E(m2)

E(p3) E(p4)E(p5)
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Hardness of the Problem: SNN gives OPE

How to construct op(E(mi ), E(mj))?
Observe that by our construction, E(mi ) = E (pi ), and
E(mj) = E (pj).
Define function traverse(E(mi )) which outputs i !

p1

m1 m2 m3 m4

Z+

p2 p3 p4

h(·) : pi+1 − pi < pi − pi−1

p5
E(p2)

E(m2)

E(p3) E(p4)E(p5)

4: S(E(p5), E(D) = E(p4), Repetition FOUND!

E(p4)

Bin Yao, Feifei Li, Xiaokui Xiao Secure Nearest Neighbor Revisited



Hardness of the Problem: SNN gives OPE

How to construct op(E(mi ), E(mj))?
Observe that by our construction, E(mi ) = E (pi ), and
E(mj) = E (pj).
Define function traverse(E(mi )) which outputs i !

p1

m1 m2 m3 m4

Z+

p2 p3 p4

h(·) : pi+1 − pi < pi − pi−1

p5
E(p2)

E(m2)

E(p3) E(p4)E(p5)

4: S(E(p5), E(D) = E(p4), Repetition FOUND!

i = N− (number of steps −2)!

E(p4)
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So, Hopeless? NO!

It only says it is hard to output E (nn(q,D))! What if we relax this
restriction and allow something “less precise”?

Extreme case: just return E (D) and ask client to decrypt and find
nn(q,D). Obviously secure! But expensive!
The SVD (secure voronoi diagram) method:

create partitions based on the voronoi cells of D.
E(D) = {E(G1),E(G2), . . .}.
send partition configurations (the boundaries) to clients, client only
needs to ask for the encryption of a given partition by partition id
(which is figured out locally).
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So, Hopeless? NO!

It only says it is hard to output E (nn(q,D))! What if we relax this
restriction and allow something “less precise”?
Extreme case: just return E (D) and ask client to decrypt and find
nn(q,D). Obviously secure! But expensive!
The SVD (secure voronoi diagram) method:

create partitions based on the voronoi cells of D.

E(D) = {E(G1),E(G2), . . .}.
send partition configurations (the boundaries) to clients, client only
needs to ask for the encryption of a given partition by partition id
(which is figured out locally).

B1 B2

Gi = {p|p ⊂ Bi}

G2G1

p1

p2

p3

p4
p5

p8

p6

p7
p10

p9
p12

p11

p13

p14

p16

p15
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So, Hopeless? NO!

It only says it is hard to output E (nn(q,D))! What if we relax this
restriction and allow something “less precise”?
Extreme case: just return E (D) and ask client to decrypt and find
nn(q,D). Obviously secure! But expensive!
The SVD (secure voronoi diagram) method:

create partitions based on the voronoi cells of D.
E(D) = {E(G1),E(G2), . . .}.

send partition configurations (the boundaries) to clients, client only
needs to ask for the encryption of a given partition by partition id
(which is figured out locally).
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So, Hopeless? NO!

It only says it is hard to output E (nn(q,D))! What if we relax this
restriction and allow something “less precise”?
Extreme case: just return E (D) and ask client to decrypt and find
nn(q,D). Obviously secure! But expensive!
The SVD (secure voronoi diagram) method:

create partitions based on the voronoi cells of D.
E(D) = {E(G1),E(G2), . . .}.
send partition configurations (the boundaries) to clients, client only
needs to ask for the encryption of a given partition by partition id
(which is figured out locally).
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So, Hopeless? NO!

It only says it is hard to output E (nn(q,D))! What if we relax this
restriction and allow something “less precise”?
Extreme case: just return E (D) and ask client to decrypt and find
nn(q,D). Obviously secure! But expensive!
The SVD (secure voronoi diagram) method:

create partitions based on the voronoi cells of D.
E(D) = {E(G1),E(G2), . . .}.
send partition configurations (the boundaries) to clients, client only
needs to ask for the encryption of a given partition by partition id
(which is figured out locally).

B1 B2

Gi = {p|p ⊂ Bi}

G2G1

p1

p2

p3

p4
p5

p8

p6

p7
p10

p9
p12

p11

p13

p14

p16

p15
Challenge:
minmax(|Gi |)!
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Solution Overview

Secure Voronoi Diagram (SVD):

Preprocessing at the data owner

Query processing at the client
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Solution Overview

Preprocessing at the data owner:

D G(D)

data owner

partitioning

discussed later...
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Solution Overview

Preprocessing at the data owner:

random padding operation

D G(D)

data owner

partitioning

discussed later...

G′(D)
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Solution Overview

Preprocessing at the data owner:

random padding operation

D G(D)

data owner

cloud server
encryption

outsouring

partitioning

discussed later...

G′(D)

E(G′(D))
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Solution Overview

Preprocessing at the data owner:

random padding operation

D G(D)

data owner

cloud server
encryption

outsouring

partitioning

discussed later...

G′(D)

E(G′(D))

client

E−1,P(D)

Bin Yao, Feifei Li, Xiaokui Xiao Secure Nearest Neighbor Revisited



Solution Overview

Secure Voronoi Diagram (SVD):

Preprocessing at the data owner

Query processing at the client
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compute the ID(index)
i = 1
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Solution Overview

Query processing at the client:

client

P(D)

q

1

2 3

0

E(i) = 100...010...

encryption

cloud server

query

6

E(Gi)

Gi
find the NN

decryption

compute the ID(index)
i = 1

q

1
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SVD Partitioning Principle

1 Bi is an axis-parallel d-dimensional box and Bi ∩Bj = ∅ for any i 6= j

2 Gi = {pj |vcj is contained or intersected by Bi}
3 minimum |Gx | and minimum |Gx | − |Gi |, which means low storage

and communication overheads, as well as cheap encryption cost
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D
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3 minimum |Gx | and minimum |Gx | − |Gi |, which means low storage

and communication overheads, as well as cheap encryption cost
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G(D)
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Bi : the geometric boundary of Gi
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G(D)

Gi : a subset of dataset D

Bi : the geometric boundary of Gi

|Gi|: size of Gi

|G1| = 9

|G2| = 12

Gx: largest-sized partition

1 Bi is an axis-parallel d-dimensional box and Bi ∩Bj = ∅ for any i 6= j
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SVD Partitioning Principle
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G2 = {p5,p6,p7,p8,p10, p9, p11, p12, p13, p14, p15, p16}
G1 = {p1, p2, p3, p4,p5,p6,p7,p8,p10}

G(D)

Gi : a subset of dataset D

Bi : the geometric boundary of Gi

|Gi|: size of Gi

|G1| = 9

|G2| = 12

Gx: largest-sized partition

Duplicated points

1 Bi is an axis-parallel d-dimensional box and Bi ∩Bj = ∅ for any i 6= j

2 Gi = {pj |vcj is contained or intersected by Bi}
3 minimum |Gx | and minimum |Gx | − |Gi |, which means low storage

and communication overheads, as well as cheap encryption cost
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Square Grid (SG)

D
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Square Grid (SG)

B2 = C1,2 B4 = C2,2

B1 = C1,1 B3 = C2,1

G(D)
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Square Grid (SG)

Merits:

simple

minimum storage cost at client

Demerits:

high storage and communication overheads, as well as expensive
encryption cost because of highly unbalanced partitions when the
data distribution is skewed
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Minimum Space Grid (MinSG)
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Minimum Space Grid (MinSG)
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Minimum Space Grid (MinSG)

|G| = 26

G
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Minimum Space Grid (MinSG)

|G| = 26

G

A greedy algorithm: always split the maximum partition Gx into
smaller partitions

use a line going though the entire space and intersected with the
voronoi vertex in Bx

choose the ` that leads to the minimum maximum partition
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Minimum Space Grid (MinSG)

G

G11 G12

G21 G22

B11 B12

B21 B22
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Minimum Space Grid (MinSG)

G

G11 G12

G21 G22

|G11| = 11

|G12| = 10

|G21| = 14

|G22| = 6
B11 B12

B21 B22

A greedy algorithm: always split the maximum partition Gx into
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Minimum Space Grid (MinSG)

Merits:

relatively balanced partitions: low storage and communication
overheads, as well as cheap encryption cost

Demerits:

complicated partitioning process

not most balanced: small-sized partitions introduced by some
unnecessary splitting
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Minimum Space Grid (MinSG)

G

G11 G12

G21 G22`

B11 B12

B21 B22
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Minimum Space Grid (MinSG)

G

`

G11

|G11| = 2!!

p1

p2

We need a method that produce more balanced partitions!!
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SVD Partitioning

Square Grid (SG)

Minimum Space Grid (MinSG)

Minimum Maximum Partition(MinMax)
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Minimum Maximum Partition (MinMax)
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Minimum Maximum Partition (MinMax)

G
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Minimum Maximum Partition (MinMax)

|G| = 26

G

similar to MinSG in most part

use segments going though the space bounded by Bx instead of
lines going though the entire space to split partitions
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Minimum Maximum Partition (MinMax)

G

G2

G1

B1
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Minimum Maximum Partition (MinMax)
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|G2| = 15
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Minimum Maximum Partition (MinMax)
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similar to MinSG in most part

use segments going though the space bounded by Bx instead of
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Minimum Maximum Partition (MinMax)

G
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G1 G3

G4
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similar to MinSG in most part

use segments going though the space bounded by Bx instead of
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Minimum Maximum Partition (MinMax)

Merits:

most balanced partitions: low storage and communication overheads,
as well as cheap encryption cost

Demerits:

high storage cost at client
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Comparison between MinSG and MinMax

G

G11 G12

G21 G22

|G11| = 11

|G12| = 10

|G21| = 14

|G22| = 6
B11 B12

B21 B22

G

G2

G1 G3

G4

|G1| = 11

|G3| = 10

|G2| = 10

|G4| = 11B1

B2

B3

B4

MinSG MinMax

Clearly, MinMax achieves more balanced partitions than MinSG,
which means lower storage and communication overheads, as well as
cheaper encryption cost.
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Experiment

We examine the three methods: SG, MinSG and MinMax.

For each method, we test its running time of both partition phrase
and encryption phrase, partition size, communication cost of both
the preprocessing step and query step and query time.

C++, Linux, Intel Xeon 3.07GHz CPU and 8GB memory

Data sets

Points of interest in California(CA) and Texas(TX) from the
OpenStreetMap project.
In each dataset, we randomly select 2 million points to create the
largest dataset Dmax and form smaller datasets based on Dmax.

Default settings.

Symbol Definition Default Value
|D| size of the dataset 106

k number of partitions 625
DT dataset type CA
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Attack on Existing SNN Methods

Vary |D|: Wai Kit Wong, David Cheung, Ben Kao, Nikos Mamoulis:

Secure kNN computation on encrypted databases. SIGMOD 2009
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Attack on Existing SNN Methods

Vary |D|: Haibo Hu, Jianliang Xu, Chushi Ren, Byron Choi: Processing

private queries over untrusted data cloud through privacy homomorphism. ICDE

2011
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Partition size in different methods

Vary k
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Query communication cost
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Total running time of the preprocessing step
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Query time for different methods

Vary k
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Running time of the partition phase

Vary k
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Total size of E (D)
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Total size of E (D)
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Open Problems

1 Other similarity metrics?

2 High dimensions (beyond 2)?

3 Secure k nearest neighbors?

4 Updates?

5 Secure data analytics based on similarity search: clustering,
content-based search, etc.

6 Variants of similarity search: reverse nearest neighbors, skylines, etc.
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Conclusion

Design a new partition-based secure voronoi diagram (SVD) method.

Implement the SVD with three partitioning methods.

Future work

extending our investigation to higher dimensions, k nearest neighbors
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The end

Thank You

Q and A
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