Secure Nearest Neighbor Revisited

Bin Yao ${ }^{1}$ ，Feifei Li^{2} ，Xiaokui Xiao ${ }^{3}$

${ }^{2}$ School of Computing
University of Utah
${ }^{3}$ School of Computer Engineering Nanyang Technological University，Singapore

July 11， 2013

- Cloud databases: Google Cloud SQL, Microsoft SQL Azure, Amazon SimpleDB.

- Cloud databases: Google Cloud SQL, Microsoft SQL Azure, Amazon SimpleDB.
- Service providers (SP) answer queries from different clients.

- Cloud databases: Google Cloud SQL, Microsoft SQL Azure, Amazon SimpleDB.
- Service providers (SP) answer queries from different clients.
- Data owner might not want to reveal data values to SP; clients might not want SP to learn their queries and/or the query results.

Cloud Database
Hakan Hacigumus, Balakrishna R. Iyer, Chen Li, Sharad Mehrotra: Executing SQL over encrypted data in the database-service-provider model. SIGMOD 2002

Introduction and Motivation

Introduction and Motivation

data owner

data owner

Introduction and Motivation

Introduction and Motivation

- Secure Query Processing

cloud server

data owner

client
- Secure Query Processing
- Secure Nearest Neighbor (SNN)

cloud server

data owner

client
- Secure Query Processing
- Secure Nearest Neighbor (SNN)

- Secure Query Processing
- Secure Nearest Neighbor (SNN)

- Existing work has examined the problems of answering basic SQL queries [1], executing aggregate queries [2], and performing range queries [3], over an encrypted database
- [1] H. Hacigumus, B. R. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in the database service provider model. In SIGMOD, 2002
- [2] E. Mykletun and G. Tsudik. Aggregation queries in the database-as-a-service model. In DBSec, 2006
- [3] E. Shi, J. Bethencourt, H. T.-H. Chan, D. X. Song, and A. Perrig. Multi-dimensional range query over encrypted data. In IEEE Symposium on Security and Privacy, pages 350C364, 2007
- Existing work has examined the problems of answering basic SQL queries [1], executing aggregate queries [2], and performing range queries [3], over an encrypted database
- Hu et al. [4] and Wong et al. [5] deal with the SNN problem; the solutions thus proposed, however, are insecure and can be attacked efficiently
- [1] H. Hacigumus, B. R. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in the database service provider model. In SIGMOD, 2002
- [2] E. Mykletun and G. Tsudik. Aggregation queries in the database-as-a-service model. In DBSec, 2006
- [3] E. Shi, J. Bethencourt, H. T.-H. Chan, D. X. Song, and A. Perrig. Multi-dimensional range query over encrypted data. In IEEE Symposium on Security and Privacy, pages 350C364, 2007
- [4] H. Hu, J. Xu, C. Ren, and B. Choi. Processing private queries over untrusted data cloud through privacy homomorphism. In ICDE, pages 601C612, 2011
- [5] W. K. Wong, D. W.-L. Cheung, B. Kao, and N. Mamoulis. Secure knn computation on encrypted databases. In SIGMOD, pages 139C152, 2009
- Existing work has examined the problems of answering basic SQL queries [1], executing aggregate queries [2], and performing range queries [3], over an encrypted database
- Hu et al. [4] and Wong et al. [5] deal with the SNN problem; the solutions thus proposed, however, are insecure and can be attacked efficiently
- Fully homomorphic encryption encryption due to Craig Gentry, "A Fully Homomorphic Encryption Scheme (Ph.D. thesis)": mostly of theoretical interest, impractical, and inefficient for large data.
- [1] H. Hacigumus, B. R. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in the database service provider model. In SIGMOD, 2002
- [2] E. Mykletun and G. Tsudik. Aggregation queries in the database-as-a-service model. In DBSec, 2006
- [3] E. Shi, J. Bethencourt, H. T.-H. Chan, D. X. Song, and A. Perrig. Multi-dimensional range query over encrypted data. In IEEE Symposium on Security and Privacy, pages 350C364, 2007
- [4] H. Hu, J. Xu, C. Ren, and B. Choi. Processing private queries over untrusted data cloud through privacy homomorphism. In ICDE, pages 601C612, 2011
- [5] W. K. Wong, D. W.-L. Cheung, B. Kao, and N. Mamoulis. Secure knn computation on encrypted databases. In SIGMOD,

Problem Formulation

Problem Formulation

- Three parties:
- Three parties:
- A data owner who has a database D that contains d-dimensional Euclidean objects/points, and outsources D to a server that cannot be fully trusted.
- A client (or multiple of them) who wants to access and pose queries to D.
- A server that is honest but potentially curious in the tuples in the database and the queries from the clients.
- Three parties:
- A data owner who has a database D that contains d-dimensional Euclidean objects/points, and outsources D to a server that cannot be fully trusted.
- A client (or multiple of them) who wants to access and pose queries to D.
- A server that is honest but potentially curious in the tuples in the database and the queries from the clients.
- Objective:
- Three parties:
- A data owner who has a database D that contains d-dimensional Euclidean objects/points, and outsources D to a server that cannot be fully trusted.
- A client (or multiple of them) who wants to access and pose queries to D.
- A server that is honest but potentially curious in the tuples in the database and the queries from the clients.
- Objective:
- To enable the client to perform NN queries without letting the server learn contents about the query (and its result) or the tuples in the database.
- To ensure the SNN method is as secure as the encryption method E used by the data owner.
- Three parties:
- A data owner who has a database D that contains d-dimensional Euclidean objects/points, and outsources D to a server that cannot be fully trusted.
- A client (or multiple of them) who wants to access and pose queries to D.
- A server that is honest but potentially curious in the tuples in the database and the queries from the clients.
- Objective:
- To enable the client to perform NN queries without letting the server learn contents about the query (and its result) or the tuples in the database.
- To ensure the SNN method is as secure as the encryption method E used by the data owner.
- Adversary model: same as whatever model in which E is secure, e.g, IND-CPA, IND-CCA.
- Database $D=\left\{p_{1}, \ldots, p_{N}\right\}$, where $p_{i} \in \mathbb{R}^{d}$.
- Database $D=\left\{p_{1}, \ldots, p_{N}\right\}$, where $p_{i} \in \mathbb{R}^{d}$.
- $E(D)$: encryption of D under a secure encryption function E.
- Database $D=\left\{p_{1}, \ldots, p_{N}\right\}$, where $p_{i} \in \mathbb{R}^{d}$.
- $E(D)$: encryption of D under a secure encryption function E.
- Goal: find a method S such that $S(E(q), E(D))=E(\mathrm{nn}(q, D))$, where $q \in \mathbb{R}^{d}$, without letting the SP learn contents about either the query (and its results) or the tuples in D.
- Database $D=\left\{p_{1}, \ldots, p_{N}\right\}$, where $p_{i} \in \mathbb{R}^{d}$.
- $E(D)$: encryption of D under a secure encryption function E.
- Goal: find a method S such that $S(E(q), E(D))=E(\mathrm{nn}(q, D))$, where $q \in \mathbb{R}^{d}$, without letting the SP learn contents about either the query (and its results) or the tuples in D.
- Standard security model, such as indistinguishability under chosen plaintext attack (IND-CPA), or indistinguishability under chosen ciphertext attack (IND-CCA).
- Database $D=\left\{p_{1}, \ldots, p_{N}\right\}$, where $p_{i} \in \mathbb{R}^{d}$.
- $E(D)$: encryption of D under a secure encryption function E.
- Goal: find a method S such that $S(E(q), E(D))=E(\mathrm{nn}(q, D))$, where $q \in \mathbb{R}^{d}$, without letting the SP learn contents about either the query (and its results) or the tuples in D.
- Standard security model, such as indistinguishability under chosen plaintext attack (IND-CPA), or indistinguishability under chosen ciphertext attack (IND-CCA).
- To appear in ICDE'13.

Insecurity of Existing Methods

- First attempt: Wai Kit Wong, David Wai-Lok Cheung, Ben Kao, Nikos Mamoulis: Secure kNN computation on encrypted databases. SIGMOD 2009

Insecurity of Existing Methods

- First attempt: Wai Kit Wong, David Wai-Lok Cheung, Ben Kao, Nikos Mamoulis: Secure kNN computation on encrypted databases. SIGMOD 2009
- Basic idea: construct a "secure" encryption function that preserves the dot product between a query point and a database point.

Insecurity of Existing Methods

- First attempt: Wai Kit Wong, David Wai-Lok Cheung, Ben Kao, Nikos Mamoulis: Secure kNN computation on encrypted databases. SIGMOD 2009
- Basic idea: construct a "secure" encryption function that preserves the dot product between a query point and a database point.
- Attack we found: after learning only d query points and their encryptions, a linear system of d equations can be formed to decrypt any encrypted $p \in D$.

Insecurity of Existing Methods

- Second attempt: Haibo Hu, Jianliang Xu, Chushi Ren, Byron Choi: Processing private queries over untrusted data cloud through privacy homomorphism. ICDE 2011

Insecurity of Existing Methods

- Second attempt: Haibo Hu, Jianliang Xu, Chushi Ren, Byron Choi: Processing private queries over untrusted data cloud through privacy homomorphism. ICDE 2011
- Basic idea: Using homomorphic encryption to encrypt each entry in a multi-dimensional index; Guide the search by using the homomorphic operations between (encrypted) q and entry e.

Insecurity of Existing Methods

- Second attempt: Haibo Hu, Jianliang Xu, Chushi Ren, Byron Choi: Processing private queries over untrusted data cloud through privacy homomorphism. ICDE 2011
- Basic idea: Using homomorphic encryption to encrypt each entry in a multi-dimensional index; Guide the search by using the homomorphic operations between (encrypted) q and entry e.
- Attack we found: In the above process, the server learns if q lies to the left or the right of another point, in each dimension, which leads to a binary search to efficiently recover any encrypted point.
- Order-preserving encryption (OPE) is a set of functions $\left\{\mathcal{E}, \mathcal{E}^{-1}, o p\right\}$, such that:
- $\mathcal{E}(m)=c, \mathcal{E}^{-1}(c)=m$ (here we omit the keys).
- op $\left(c_{1}, c_{2}\right)=1$ if $m_{1}<m_{2} ; \operatorname{op}\left(c_{1}, c_{2}\right)=-1$ if $m_{1}>m_{2}$.

Hardness of the Problem: OPE

- Order-preserving encryption (OPE) is a set of functions $\left\{\mathcal{E}, \mathcal{E}^{-1}, o p\right\}$, such that:
- $\mathcal{E}(m)=c, \mathcal{E}^{-1}(c)=m$ (here we omit the keys).
- op $\left(c_{1}, c_{2}\right)=1$ if $m_{1}<m_{2} ; \operatorname{op}\left(c_{1}, c_{2}\right)=-1$ if $m_{1}>m_{2}$.

Theorem

A truly secure OPE does not exist in standard security models, such as IND-CPA. It also does not exist even in much relaxed security models, such as the indistinguishability under ordered chosen-plaintext attack (IND-OCPA).

Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, Yirong Xu: Order-Preserving Encryption for Numeric Data. SIGMOD 2004 Alexandra Boldyreva, Nathan Chenette, Younho Lee, Adam O'Neill: Order-Preserving Symmetric Encryption. EUROCRYPT 2009 Alexandra Boldyreva, Nathan Chenette, Adam O'Neill: Order-Preserving Encryption Revisited: Improved Security Analysis and Alternative Solutions. CRYPTO 2011

- Given $E(D)=\left\{E\left(p_{1}\right), \ldots, E\left(p_{N}\right)\right\}$, suppose we have a secure SNN method S such that: $S(E(q), E(D)) \rightarrow E(n n(q, D))$ without the knowledge of E^{-1}.
- Given $E(D)=\left\{E\left(p_{1}\right), \ldots, E\left(p_{N}\right)\right\}$, suppose we have a secure SNN method S such that: $S(E(q), E(D)) \rightarrow E(n n(q, D))$ without the knowledge of E^{-1}.
- We can construct an OPE, $\left\{\mathcal{E}, \mathcal{E}^{-1}, o p\right\}$, based on $S(\cdot)$!
- Given $E(D)=\left\{E\left(p_{1}\right), \ldots, E\left(p_{N}\right)\right\}$, suppose we have a secure SNN method S such that: $S(E(q), E(D)) \rightarrow E(n n(q, D))$ without the knowledge of E^{-1}.
- We can construct an OPE, $\left\{\mathcal{E}, \mathcal{E}^{-1}, o p\right\}$, based on $S(\cdot)$!

$$
h(\cdot): p_{i+1}-p_{i}<p_{i}-p_{i-1}
$$

- Given $E(D)=\left\{E\left(p_{1}\right), \ldots, E\left(p_{N}\right)\right\}$, suppose we have a secure SNN method S such that: $S(E(q), E(D)) \rightarrow E(n n(q, D))$ without the knowledge of E^{-1}.
- We can construct an OPE, $\left\{\mathcal{E}, \mathcal{E}^{-1}, o p\right\}$, based on $S(\cdot)$!

$$
h(\cdot): p_{i+1}-p_{i}<p_{i}-p_{i-1}
$$

$\mathcal{E}\left(m_{i}\right)=E\left(h\left(m_{i}\right)=E\left(p_{i}\right), \mathcal{E}^{-1}(c)=h^{-1}\left(E^{-1}(c)\right)\right.$

- Given $E(D)=\left\{E\left(p_{1}\right), \ldots, E\left(p_{N}\right)\right\}$, suppose we have a secure SNN method S such that: $S(E(q), E(D)) \rightarrow E(n n(q, D))$ without the knowledge of E^{-1}.
- We can construct an OPE, $\left\{\mathcal{E}, \mathcal{E}^{-1}, o p\right\}$, based on $S(\cdot)$!

$$
h(\cdot): p_{i+1}-p_{i}<p_{i}-p_{i-1}
$$

$\mathcal{E}\left(m_{i}\right)=E\left(h\left(m_{i}\right)=E\left(p_{i}\right), \mathcal{E}^{-1}(c)=h^{-1}\left(E^{-1}(c)\right)\right.$
$\mathrm{nn}\left(p_{i}, D\right)=p_{i+1}, i \in[1, N] ; \mathrm{nn}\left(p_{N+1}, D\right)=p_{N}$.

- Given $E(D)=\left\{E\left(p_{1}\right), \ldots, E\left(p_{N}\right)\right\}$, suppose we have a secure SNN method S such that: $S(E(q), E(D)) \rightarrow E(n n(q, D))$ without the knowledge of E^{-1}.
- We can construct an OPE, $\left\{\mathcal{E}, \mathcal{E}^{-1}, o p\right\}$, based on $S(\cdot)$!

$$
h(\cdot): p_{i+1}-p_{i}<p_{i}-p_{i-1}
$$

$\mathcal{E}\left(m_{i}\right)=E\left(h\left(m_{i}\right)=E\left(p_{i}\right), \mathcal{E}^{-1}(c)=h^{-1}\left(E^{-1}(c)\right)\right.$
$\mathrm{nn}\left(p_{i}, D\right)=p_{i+1}, i \in[1, N] ; \mathrm{nn}\left(p_{N+1}, D\right)=p_{N}$.
$S\left(E\left(p_{i}\right), E(D)\right)=E\left(p_{i+1}\right)$, for $i \in[1, N]$.
$S\left(E\left(p_{N+1}\right), E(D)\right)=E\left(p_{N}\right)$.

Hardness of the Problem: SNN gives OPE

- How to construct $\operatorname{op}\left(\mathcal{E}\left(m_{i}\right), \mathcal{E}\left(m_{j}\right)\right)$?

Hardness of the Problem: SNN gives OPE

- How to construct op $\left(\mathcal{E}\left(m_{i}\right), \mathcal{E}\left(m_{j}\right)\right)$?
- Observe that by our construction, $\mathcal{E}\left(m_{i}\right)=E\left(p_{i}\right)$, and $\mathcal{E}\left(m_{j}\right)=E\left(p_{j}\right)$.
- How to construct op $\left(\mathcal{E}\left(m_{i}\right), \mathcal{E}\left(m_{j}\right)\right)$?
- Observe that by our construction, $\mathcal{E}\left(m_{i}\right)=E\left(p_{i}\right)$, and $\mathcal{E}\left(m_{j}\right)=E\left(p_{j}\right)$.
- Define function traverse $\left(\mathcal{E}\left(m_{i}\right)\right)$ which outputs i !
- How to construct op $\left(\mathcal{E}\left(m_{i}\right), \mathcal{E}\left(m_{j}\right)\right)$?
- Observe that by our construction, $\mathcal{E}\left(m_{i}\right)=E\left(p_{i}\right)$, and $\mathcal{E}\left(m_{j}\right)=E\left(p_{j}\right)$.
- Define function traverse $\left(\mathcal{E}\left(m_{i}\right)\right)$ which outputs i !

- How to construct op $\left(\mathcal{E}\left(m_{i}\right), \mathcal{E}\left(m_{j}\right)\right)$?
- Observe that by our construction, $\mathcal{E}\left(m_{i}\right)=E\left(p_{i}\right)$, and $\mathcal{E}\left(m_{j}\right)=E\left(p_{j}\right)$.
- Define function traverse $\left(\mathcal{E}\left(m_{i}\right)\right)$ which outputs i !

- How to construct op $\left(\mathcal{E}\left(m_{i}\right), \mathcal{E}\left(m_{j}\right)\right)$?
- Observe that by our construction, $\mathcal{E}\left(m_{i}\right)=E\left(p_{i}\right)$, and $\mathcal{E}\left(m_{j}\right)=E\left(p_{j}\right)$.
- Define function traverse $\left(\mathcal{E}\left(m_{i}\right)\right)$ which outputs i !

- How to construct op $\left(\mathcal{E}\left(m_{i}\right), \mathcal{E}\left(m_{j}\right)\right)$?
- Observe that by our construction, $\mathcal{E}\left(m_{i}\right)=E\left(p_{i}\right)$, and $\mathcal{E}\left(m_{j}\right)=E\left(p_{j}\right)$.
- Define function traverse $\left(\mathcal{E}\left(m_{i}\right)\right)$ which outputs i !

- How to construct op $\left(\mathcal{E}\left(m_{i}\right), \mathcal{E}\left(m_{j}\right)\right)$?
- Observe that by our construction, $\mathcal{E}\left(m_{i}\right)=E\left(p_{i}\right)$, and $\mathcal{E}\left(m_{j}\right)=E\left(p_{j}\right)$.
- Define function traverse $\left(\mathcal{E}\left(m_{i}\right)\right)$ which outputs i !

- How to construct op $\left(\mathcal{E}\left(m_{i}\right), \mathcal{E}\left(m_{j}\right)\right)$?
- Observe that by our construction, $\mathcal{E}\left(m_{i}\right)=E\left(p_{i}\right)$, and $\mathcal{E}\left(m_{j}\right)=E\left(p_{j}\right)$.
- Define function traverse $\left(\mathcal{E}\left(m_{i}\right)\right)$ which outputs i !

- How to construct op $\left(\mathcal{E}\left(m_{i}\right), \mathcal{E}\left(m_{j}\right)\right)$?
- Observe that by our construction, $\mathcal{E}\left(m_{i}\right)=E\left(p_{i}\right)$, and $\mathcal{E}\left(m_{j}\right)=E\left(p_{j}\right)$.
- Define function traverse $\left(\mathcal{E}\left(m_{i}\right)\right)$ which outputs i !

Hardness of the Problem: SNN gives OPE

- How to construct op $\left(\mathcal{E}\left(m_{i}\right), \mathcal{E}\left(m_{j}\right)\right)$?
- Observe that by our construction, $\mathcal{E}\left(m_{i}\right)=E\left(p_{i}\right)$, and $\mathcal{E}\left(m_{j}\right)=E\left(p_{j}\right)$.
- Define function traverse $\left(\mathcal{E}\left(m_{i}\right)\right)$ which outputs i !

4: $S\left(E\left(p_{5}\right), E(D)=E\left(p_{4}\right)\right.$, Repetition FOUND!

- How to construct op $\left(\mathcal{E}\left(m_{i}\right), \mathcal{E}\left(m_{j}\right)\right)$?
- Observe that by our construction, $\mathcal{E}\left(m_{i}\right)=E\left(p_{i}\right)$, and $\mathcal{E}\left(m_{j}\right)=E\left(p_{j}\right)$.
- Define function traverse $\left(\mathcal{E}\left(m_{i}\right)\right)$ which outputs i !

4: $S\left(E\left(p_{5}\right), E(D)=E\left(p_{4}\right)\right.$, Repetition FOUND!
$i=N-$ (number of steps -2)!

- It only says it is hard to output $E(\mathrm{nn}(q, D))$! What if we relax this restriction and allow something "less precise"?
- It only says it is hard to output $E(\mathrm{nn}(q, D))$! What if we relax this restriction and allow something "less precise"?
- Extreme case: just return $E(D)$ and ask client to decrypt and find $n n(q, D)$. Obviously secure! But expensive!
- It only says it is hard to output $E(\mathrm{nn}(q, D))$! What if we relax this restriction and allow something "less precise"?
- Extreme case: just return $E(D)$ and ask client to decrypt and find $n n(q, D)$. Obviously secure! But expensive!
- The SVD (secure voronoi diagram) method:
- It only says it is hard to output $E(\mathrm{nn}(q, D))$! What if we relax this restriction and allow something "less precise"?
- Extreme case: just return $E(D)$ and ask client to decrypt and find $n n(q, D)$. Obviously secure! But expensive!
- The SVD (secure voronoi diagram) method:
- create partitions based on the voronoi cells of D.

- It only says it is hard to output $E(\mathrm{nn}(q, D))$! What if we relax this restriction and allow something "less precise"?
- Extreme case: just return $E(D)$ and ask client to decrypt and find $n n(q, D)$. Obviously secure! But expensive!
- The SVD (secure voronoi diagram) method:
- create partitions based on the voronoi cells of D.
- $E(D)=\left\{E\left(G_{1}\right), E\left(G_{2}\right), \ldots\right\}$.

- It only says it is hard to output $E(\mathrm{nn}(q, D))$! What if we relax this restriction and allow something "less precise"?
- Extreme case: just return $E(D)$ and ask client to decrypt and find $n n(q, D)$. Obviously secure! But expensive!
- The SVD (secure voronoi diagram) method:
- create partitions based on the voronoi cells of D.
- $E(D)=\left\{E\left(G_{1}\right), E\left(G_{2}\right), \ldots\right\}$.
- send partition configurations (the boundaries) to clients, client only needs to ask for the encryption of a given partition by partition id (which is figured out locally).

$$
G_{i}=\left\{p \mid p \subset B_{i}\right\}
$$

- It only says it is hard to output $E(\mathrm{nn}(q, D))$! What if we relax this restriction and allow something "less precise"?
- Extreme case: just return $E(D)$ and ask client to decrypt and find $n n(q, D)$. Obviously secure! But expensive!
- The SVD (secure voronoi diagram) method:
- create partitions based on the voronoi cells of D.
- $E(D)=\left\{E\left(G_{1}\right), E\left(G_{2}\right), \ldots\right\}$.
- send partition configurations (the boundaries) to clients, client only needs to ask for the encryption of a given partition by partition id (which is figured out locally).

$$
G_{i}=\left\{p \mid p \subset B_{i}\right\}
$$

Challenge: $\operatorname{minmax}\left(\left|G_{i}\right|\right)!$

Solution Overview

- Secure Voronoi Diagram (SVD):
- Preprocessing at the data owner
- Query processing at the client
- Secure Voronoi Diagram (SVD):
- Preprocessing at the data owner
- Query processing at the client

Solution Overview

- Preprocessing at the data owner:
- Preprocessing at the data owner:

- Preprocessing at the data owner:

- Preprocessing at the data owner:

- Preprocessing at the data owner:

- Preprocessing at the data owner:

- Preprocessing at the data owner:

- Secure Voronoi Diagram (SVD):
- Preprocessing at the data owner
- Query processing at the client

Solution Overview

- Query processing at the client:
- Query processing at the client:

- Query processing at the client:

- Query processing at the client:

- Query processing at the client:

- Query processing at the client:

- Query processing at the client:

- Query processing at the client:

SVD Partitioning Principle

SVD Partitioning Principle
D

SVD Partitioning Principle

SVD Partitioning Principle

SVD Partitioning Principle

(1) B_{i} is an axis-parallel d-dimensional box and $B_{i} \cap B_{j}=\emptyset$ for any $i \neq j$

SVD Partitioning Principle

(1) B_{i} is an axis-parallel d-dimensional box and $B_{i} \cap B_{j}=\emptyset$ for any $i \neq j$
(2) $G_{i}=\left\{p_{j} \mid v c_{j}\right.$ is contained or intersected by $\left.B_{i}\right\}$

(1) B_{i} is an axis-parallel d-dimensional box and $B_{i} \cap B_{j}=\emptyset$ for any $i \neq j$
(2) $G_{i}=\left\{p_{j} \mid v c_{j}\right.$ is contained or intersected by $\left.B_{i}\right\}$

(1) B_{i} is an axis-parallel d-dimensional box and $B_{i} \cap B_{j}=\emptyset$ for any $i \neq j$
(2) $G_{i}=\left\{p_{j} \mid v c_{j}\right.$ is contained or intersected by $\left.B_{i}\right\}$

(1) B_{i} is an axis-parallel d-dimensional box and $B_{i} \cap B_{j}=\emptyset$ for any $i \neq j$
(2) $G_{i}=\left\{p_{j} \mid v c_{j}\right.$ is contained or intersected by $\left.B_{i}\right\}$

(1) B_{i} is an axis-parallel d-dimensional box and $B_{i} \cap B_{j}=\emptyset$ for any $i \neq j$
(2) $G_{i}=\left\{p_{j} \mid v c_{j}\right.$ is contained or intersected by $\left.B_{i}\right\}$

(1) B_{i} is an axis-parallel d-dimensional box and $B_{i} \cap B_{j}=\emptyset$ for any $i \neq j$
(2) $G_{i}=\left\{p_{j} \mid v c_{j}\right.$ is contained or intersected by $\left.B_{i}\right\}$

(1) B_{i} is an axis-parallel d-dimensional box and $B_{i} \cap B_{j}=\emptyset$ for any $i \neq j$
(2) $G_{i}=\left\{p_{j} \mid v c_{j}\right.$ is contained or intersected by $\left.B_{i}\right\}$
(0) minimum $\left|G_{x}\right|$ and minimum $\left|G_{x}\right|-\left|G_{i}\right|$, which means low storage and communication overheads, as well as cheap encryption cost

SVD Partitioning Principle

(1) B_{i} is an axis-parallel d-dimensional box and $B_{i} \cap B_{j}=\emptyset$ for any $i \neq j$
(2) $G_{i}=\left\{p_{j} \mid v c_{j}\right.$ is contained or intersected by $\left.B_{i}\right\}$
(0) minimum $\left|G_{x}\right|$ and minimum $\left|G_{x}\right|-\left|G_{i}\right|$, which means low storage and communication overheads, as well as cheap encryption cost

SVD Partitioning

- Square Grid (SG)
- Minimum Space Grid (MinSG)
- Minimum Maximum Partition(MinMax)
- Square Grid (SG)
- Minimum Space Grid (MinSG)
- Minimum Maximum Partition(MinMax)

Square Grid (SG)

D

Square Grid (SG)

- Merits:
- Demerits:

Square Grid (SG)

- Merits:
- simple
- minimum storage cost at client
- Demerits:
- Merits:
- simple
- minimum storage cost at client
- Demerits:
- high storage and communication overheads, as well as expensive encryption cost because of highly unbalanced partitions when the data distribution is skewed
- Square Grid (SG)
- Minimum Space Grid (MinSG)
- Minimum Maximum Partition(MinMax)

Minimum Space Grid (MinSG)

Minimum Space Grid (MinSG)

Minimum Space Grid (MinSG)

Minimum Space Grid (MinSG)

- A greedy algorithm: always split the maximum partition G_{x} into smaller partitions

Minimum Space Grid (MinSG)

- A greedy algorithm: always split the maximum partition G_{x} into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_{x}

Minimum Space Grid (MinSG)

- A greedy algorithm: always split the maximum partition G_{x} into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_{x}

Minimum Space Grid (MinSG)

- A greedy algorithm: always split the maximum partition G_{x} into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_{x}

Minimum Space Grid (MinSG)

- A greedy algorithm: always split the maximum partition G_{x} into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_{x}

Minimum Space Grid (MinSG)

- A greedy algorithm: always split the maximum partition G_{x} into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_{x}

Minimum Space Grid (MinSG)

- A greedy algorithm: always split the maximum partition G_{x} into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_{x}

Minimum Space Grid (MinSG)

- A greedy algorithm: always split the maximum partition G_{x} into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_{x}
- choose the ℓ that leads to the minimum maximum partition

Minimum Space Grid (MinSG)

- A greedy algorithm: always split the maximum partition G_{x} into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_{x}
- choose the ℓ that leads to the minimum maximum partition

Minimum Space Grid (MinSG)

- A greedy algorithm: always split the maximum partition G_{x} into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_{x}
- choose the ℓ that leads to the minimum maximum partition

Minimum Space Grid (MinSG)

- A greedy algorithm: always split the maximum partition G_{x} into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_{x}
- choose the ℓ that leads to the minimum maximum partition

Minimum Space Grid (MinSG)

- A greedy algorithm: always split the maximum partition G_{x} into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_{x}
- choose the ℓ that leads to the minimum maximum partition

Minimum Space Grid (MinSG)

- A greedy algorithm: always split the maximum partition G_{x} into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_{x}
- choose the ℓ that leads to the minimum maximum partition

Minimum Space Grid (MinSG)

- A greedy algorithm: always split the maximum partition G_{x} into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_{x}
- choose the ℓ that leads to the minimum maximum partition

Minimum Space Grid (MinSG)

- A greedy algorithm: always split the maximum partition G_{x} into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_{x}
- choose the ℓ that leads to the minimum maximum partition

Minimum Space Grid (MinSG)

- A greedy algorithm: always split the maximum partition G_{x} into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_{x}
- choose the ℓ that leads to the minimum maximum partition

Minimum Space Grid (MinSG)

- A greedy algorithm: always split the maximum partition G_{x} into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_{x}
- choose the ℓ that leads to the minimum maximum partition

Minimum Space Grid (MinSG)

- A greedy algorithm: always split the maximum partition G_{x} into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_{x}
- choose the ℓ that leads to the minimum maximum partition

Minimum Space Grid (MinSG)

- Merits:
- Demerits:

Minimum Space Grid (MinSG)

- Merits:
- relatively balanced partitions: low storage and communication overheads, as well as cheap encryption cost
- Demerits:

Minimum Space Grid (MinSG)

- Merits:
- relatively balanced partitions: low storage and communication overheads, as well as cheap encryption cost
- Demerits:
- complicated partitioning process
- not most balanced: small-sized partitions introduced by some unnecessary splitting

Minimum Space Grid (MinSG)

- We need a method that produce more balanced partitions!!
- Square Grid (SG)
- Minimum Space Grid (MinSG)
- Minimum Maximum Partition(MinMax)

Minimum Maximum Partition (MinMax)

Minimum Maximum Partition (MinMax)

Minimum Maximum Partition (MinMax)

- similar to MinSG in most part

Minimum Maximum Partition (MinMax)

- similar to MinSG in most part

Minimum Maximum Partition (MinMax)

- similar to MinSG in most part
- use segments going though the space bounded by B_{x} instead of lines going though the entire space to split partitions

Minimum Maximum Partition (MinMax)

- similar to MinSG in most part
- use segments going though the space bounded by B_{x} instead of lines going though the entire space to split partitions

Minimum Maximum Partition (MinMax)

- similar to MinSG in most part
- use segments going though the space bounded by B_{x} instead of lines going though the entire space to split partitions

Minimum Maximum Partition (MinMax)

- similar to MinSG in most part
- use segments going though the space bounded by B_{x} instead of lines going though the entire space to split partitions

Minimum Maximum Partition (MinMax)

- similar to MinSG in most part
- use segments going though the space bounded by B_{x} instead of lines going though the entire space to split partitions

Minimum Maximum Partition (MinMax)

- similar to MinSG in most part
- use segments going though the space bounded by B_{x} instead of lines going though the entire space to split partitions

Minimum Maximum Partition (MinMax)

- similar to MinSG in most part
- use segments going though the space bounded by B_{x} instead of lines going though the entire space to split partitions

Minimum Maximum Partition (MinMax)

- similar to MinSG in most part
- use segments going though the space bounded by B_{x} instead of lines going though the entire space to split partitions

Minimum Maximum Partition (MinMax)

- similar to MinSG in most part
- use segments going though the space bounded by B_{x} instead of lines going though the entire space to split partitions

Minimum Maximum Partition (MinMax)

- similar to MinSG in most part
- use segments going though the space bounded by B_{x} instead of lines going though the entire space to split partitions

Minimum Maximum Partition (MinMax)

- similar to MinSG in most part
- use segments going though the space bounded by B_{x} instead of lines going though the entire space to split partitions

Minimum Maximum Partition (MinMax)

- similar to MinSG in most part
- use segments going though the space bounded by B_{x} instead of lines going though the entire space to split partitions

Minimum Maximum Partition (MinMax)

- similar to MinSG in most part
- use segments going though the space bounded by B_{x} instead of lines going though the entire space to split partitions

Minimum Maximum Partition (MinMax)

- similar to MinSG in most part
- use segments going though the space bounded by B_{x} instead of lines going though the entire space to split partitions

Minimum Maximum Partition (MinMax)

- similar to MinSG in most part
- use segments going though the space bounded by B_{x} instead of lines going though the entire space to split partitions

Minimum Maximum Partition (MinMax)

- similar to MinSG in most part
- use segments going though the space bounded by B_{x} instead of lines going though the entire space to split partitions

Minimum Maximum Partition (MinMax)

- similar to MinSG in most part
- use segments going though the space bounded by B_{x} instead of lines going though the entire space to split partitions

Minimum Maximum Partition (MinMax)

- similar to MinSG in most part
- use segments going though the space bounded by B_{x} instead of lines going though the entire space to split partitions

Minimum Maximum Partition (MinMax)

- similar to MinSG in most part
- use segments going though the space bounded by B_{x} instead of lines going though the entire space to split partitions

Minimum Maximum Partition (MinMax)

- similar to MinSG in most part
- use segments going though the space bounded by B_{x} instead of lines going though the entire space to split partitions

Minimum Maximum Partition (MinMax)

- Merits:
- Demerits:

Minimum Maximum Partition (MinMax)

- Merits:
- most balanced partitions: low storage and communication overheads, as well as cheap encryption cost
- Demerits:

Minimum Maximum Partition (MinMax)

- Merits:
- most balanced partitions: low storage and communication overheads, as well as cheap encryption cost
- Demerits:
- high storage cost at client

Comparison between MinSG and MinMax

Comparison between MinSG and MinMax

Comparison between MinSG and MinMax

MinSG

$\left|G_{11}\right|=11$
$\left|G_{12}\right|=10$
$\left|G_{21}\right|=14$
$\left|G_{22}\right|=6$

Experiment

Experiment

- We examine the three methods: SG, MinSG and MinMax.

Experiment

- We examine the three methods: SG, MinSG and MinMax.
- For each method, we test its running time of both partition phrase and encryption phrase, partition size, communication cost of both the preprocessing step and query step and query time.

Experiment

- We examine the three methods: SG, MinSG and MinMax.
- For each method, we test its running time of both partition phrase and encryption phrase, partition size, communication cost of both the preprocessing step and query step and query time.
- C++, Linux, Intel Xeon 3.07 GHz CPU and 8GB memory

Experiment

- We examine the three methods: SG, MinSG and MinMax.
- For each method, we test its running time of both partition phrase and encryption phrase, partition size, communication cost of both the preprocessing step and query step and query time.
- C++, Linux, Intel Xeon 3.07 GHz CPU and 8GB memory
- Data sets
- Points of interest in California(CA) and Texas(TX) from the OpenStreetMap project.
- In each dataset, we randomly select 2 million points to create the largest dataset $D_{\max }$ and form smaller datasets based on $D_{\max }$.
- We examine the three methods: SG, MinSG and MinMax.
- For each method, we test its running time of both partition phrase and encryption phrase, partition size, communication cost of both the preprocessing step and query step and query time.
- C++, Linux, Intel Xeon 3.07 GHz CPU and 8GB memory
- Data sets
- Points of interest in California(CA) and Texas(TX) from the OpenStreetMap project.
- In each dataset, we randomly select 2 million points to create the largest dataset $D_{\max }$ and form smaller datasets based on $D_{\max }$.
- Default settings.

Symbol	Definition	Default Value
$\|D\|$	size of the dataset	10^{6}
k	number of partitions	625
$D T$	dataset type	CA

Attack on Existing SNN Methods

- Vary $|D|$: Wai Kit Wong, David Cheung, Ben Kao, Nikos Mamoulis: Secure kNN computation on encrypted databases. SIGMOD 2009

Attack on Existing SNN Methods

- Vary $|D|$: Haibo Hu, Jianliang Xu, Chushi Ren, Byron Choi: Processing private queries over untrusted data cloud through privacy homomorphism. ICDE 2011

- Vary k

- Vary $|D|$

Query communication cost

- Vary k

Query communication cost

- Vary $|D|$

Total running time of the preprocessing step

- Vary k

Total running time of the preprocessing step

- Vary |D|

Query time for different methods

- Vary k

Query time for different methods

- Vary $|D|$

- Vary k

- Vary $|D|$

Total size of $E(D)$

- Vary k

Total size of $E(D)$

- Vary $|D|$

Open Problems

(1) Other similarity metrics?

Open Problems

(1) Other similarity metrics?
(2) High dimensions (beyond 2)?

Open Problems

(1) Other similarity metrics?
(2) High dimensions (beyond 2)?
© Secure k nearest neighbors?

Open Problems

(1) Other similarity metrics?
(2) High dimensions (beyond 2)?

- Secure k nearest neighbors?
- Updates?

Open Problems

(1) Other similarity metrics?
(2) High dimensions (beyond 2)?
(3) Secure k nearest neighbors?

- Updates?
(0) Secure data analytics based on similarity search: clustering, content-based search, etc.

Open Problems

(1) Other similarity metrics?
(2) High dimensions (beyond 2)?

- Secure k nearest neighbors?
- Updates?
(0) Secure data analytics based on similarity search: clustering, content-based search, etc.
(Variants of similarity search: reverse nearest neighbors, skylines, etc.

Conclusion

- Design a new partition-based secure voronoi diagram (SVD) method.

Conclusion

- Design a new partition-based secure voronoi diagram (SVD) method.
- Implement the SVD with three partitioning methods.
- Design a new partition-based secure voronoi diagram (SVD) method.
- Implement the SVD with three partitioning methods.
- Future work
- extending our investigation to higher dimensions, k nearest neighbors

Thank You

Q and A

