Secure Nearest Neighbor Revisited

Bin Yao¹, Feifei Li², Xiaokui Xiao³

¹Department of Computer Science and Engineering Shanghai Jiao Tong University, P. R. China

²School of Computing University of Utah

(日) (周) (王) (王)

³School of Computer Engineering Nanyang Technological University, Singapore

July 11, 2013

The Motivation

• Cloud databases: Google Cloud SQL, Microsoft SQL Azure, Amazon SimpleDB.

Cloud Database

() <) <)
 () <)
 () <)
</p>

The Motivation

- Cloud databases: Google Cloud SQL, Microsoft SQL Azure, Amazon SimpleDB.
- Service providers (SP) answer queries from different clients.

Cloud Database

()

The Motivation

- Cloud databases: Google Cloud SQL, Microsoft SQL Azure, Amazon SimpleDB.
- Service providers (SP) answer queries from different clients.
- Data owner might not want to reveal data values to SP; clients might not want SP to learn their queries and/or the query results.

Cloud Database

- 4 同 2 4 日 2 4 日 2

Hakan Hacigumus, Balakrishna R. Iyer, Chen Li, Sharad Mehrotra: Executing SQL over encrypted data in the database-service-provider model. SIGMOD 2002

cloud server

Bin Yao, Feifei Li, Xiaokui Xiao Secure Nearest Neighbor Revisited

2

★ 문 ► ★ 문 ►

cloud server

æ

() <) <)
 () <)
 () <)
</p>

() <) <)
 () <)
 () <)
</p>

< E > < E >

() <) <)
 () <)
 () <)
</p>

()

• Secure Query Processing

() <) <)
 () <)
 () <)
</p>

э

- Secure Query Processing
 - Secure Nearest Neighbor (SNN)

∃→ < ∃→</p>

- Secure Query Processing
 - Secure Nearest Neighbor (SNN)

∃→ < ∃→</p>

э

- Secure Query Processing
 - Secure Nearest Neighbor (SNN)

∃→ < ∃→</p>

Bin Yao, Feifei Li, Xiaokui Xiao Secure Nearest Neighbor Revisited

・ロン ・四 と ・ ヨ と ・ ヨ と

= 990

• Existing work has examined the problems of answering basic SQL queries [1], executing aggregate queries [2], and performing range queries [3], over an encrypted database

- [1] H. Hacigumus, B. R. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in the database service provider model. In SIGMOD, 2002
- 9 [2] E. Mykletun and G. Tsudik. Aggregation queries in the database-as-a-service model. In DBSec, 2006
- [3] E. Shi, J. Bethencourt, H. T.-H. Chan, D. X. Song, and A. Perrig. Multi-dimensional range query over encrypted data. In IEEE Symposium on Security and Privacy, pages 350C364, 2007

э.

- Existing work has examined the problems of answering basic SQL queries [1], executing aggregate queries [2], and performing range queries [3], over an encrypted database
- Hu et al. [4] and Wong et al. [5] deal with the SNN problem; the solutions thus proposed, however, are insecure and can be attacked efficiently

- [1] H. Hacigumus, B. R. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in the database service provider model. In SIGMOD, 2002
- 9 [2] E. Mykletun and G. Tsudik. Aggregation queries in the database-as-a-service model. In DBSec, 2006
- [3] E. Shi, J. Bethencourt, H. T.-H. Chan, D. X. Song, and A. Perrig. Multi-dimensional range query over encrypted data. In IEEE Symposium on Security and Privacy, pages 350C364, 2007
- [4] H. Hu, J. Xu, C. Ren, and B. Choi. Processing private queries over untrusted data cloud through privacy homomorphism. In ICDE, pages 601C612, 2011
- [5] W. K. Wong, D. W.-L. Cheung, B. Kao, and N. Mamoulis. Secure knn computation on encrypted databases. In SIGMOD, pages 139C152, 2009

- Existing work has examined the problems of answering basic SQL queries [1], executing aggregate queries [2], and performing range queries [3], over an encrypted database
- Hu et al. [4] and Wong et al. [5] deal with the SNN problem; the solutions thus proposed, however, are insecure and can be attacked efficiently
- Fully homomorphic encryption encryption due to Craig Gentry, "A Fully Homomorphic Encryption Scheme (Ph.D. thesis)": mostly of theoretical interest, impractical, and inefficient for large data.
- [1] H. Hacigumus, B. R. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in the database service provider model. In SIGMOD, 2002
- 9 [2] E. Mykletun and G. Tsudik. Aggregation queries in the database-as-a-service model. In DBSec, 2006
- [3] E. Shi, J. Bethencourt, H. T.-H. Chan, D. X. Song, and A. Perrig. Multi-dimensional range query over encrypted data. In IEEE Symposium on Security and Privacy, pages 350C364, 2007
- [4] H. Hu, J. Xu, C. Ren, and B. Choi. Processing private queries over untrusted data cloud through privacy homomorphism. In ICDE, pages 601C612, 2011
- [5] W. K. Wong, D. W.-L. Cheung, B. Kao, and N. Mamoulis. Secure knn computation on encrypted databases. In SIGMOD, pages 139C152, 2009

= 990

• Three parties:

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

= 990

- Three parties:
 - A *data owner* who has a database *D* that contains *d*-dimensional Euclidean objects/points, and outsources *D* to a server that cannot be fully trusted.
 - A *client* (or multiple of them) who wants to access and pose queries to *D*.
 - A *server* that is *honest but potentially curious* in the tuples in the database and the queries from the clients.

(B) < B)</p>

- Three parties:
 - A *data owner* who has a database *D* that contains *d*-dimensional Euclidean objects/points, and outsources *D* to a server that cannot be fully trusted.
 - A *client* (or multiple of them) who wants to access and pose queries to *D*.
 - A *server* that is *honest but potentially curious* in the tuples in the database and the queries from the clients.
- Objective:

(B) < B)</p>

- Three parties:
 - A *data owner* who has a database *D* that contains *d*-dimensional Euclidean objects/points, and outsources *D* to a server that cannot be fully trusted.
 - A *client* (or multiple of them) who wants to access and pose queries to *D*.
 - A *server* that is *honest but potentially curious* in the tuples in the database and the queries from the clients.
- Objective:
 - To enable the client to perform NN queries without letting the server learn contents about the query (and its result) or the tuples in the database.
 - To ensure the SNN method is as secure as the encryption method *E* used by the data owner.

- Three parties:
 - A *data owner* who has a database *D* that contains *d*-dimensional Euclidean objects/points, and outsources *D* to a server that cannot be fully trusted.
 - A *client* (or multiple of them) who wants to access and pose queries to *D*.
 - A *server* that is *honest but potentially curious* in the tuples in the database and the queries from the clients.
- Objective:
 - To enable the client to perform NN queries without letting the server learn contents about the query (and its result) or the tuples in the database.
 - To ensure the SNN method is as secure as the encryption method *E* used by the data owner.
 - Adversary model: same as whatever model in which *E* is secure, e.g, IND-CPA, IND-CCA.

• Database
$$D = \{p_1, \ldots, p_N\}$$
, where $p_i \in \mathbb{R}^d$.

・ロン ・四 と ・ ヨ と ・ ヨ と …

= 990

- Database $D = \{p_1, \ldots, p_N\}$, where $p_i \in \mathbb{R}^d$.
- E(D): encryption of D under a secure encryption function E.

▶ ★ 문 ▶ ★ 문 ▶

∃ nar

- Database $D = \{p_1, \ldots, p_N\}$, where $p_i \in \mathbb{R}^d$.
- E(D): encryption of D under a secure encryption function E.
- Goal: find a method S such that S(E(q), E(D)) = E(nn(q, D)), where q ∈ ℝ^d, without letting the SP learn contents about either the query (and its results) or the tuples in D.

- Database $D = \{p_1, \ldots, p_N\}$, where $p_i \in \mathbb{R}^d$.
- E(D): encryption of D under a secure encryption function E.
- Goal: find a method S such that S(E(q), E(D)) = E(nn(q, D)), where q ∈ ℝ^d, without letting the SP learn contents about either the query (and its results) or the tuples in D.
- Standard security model, such as indistinguishability under chosen plaintext attack (IND-CPA), or indistinguishability under chosen ciphertext attack (IND-CCA).

ゆう くほう くほう 二日

- Database $D = \{p_1, \ldots, p_N\}$, where $p_i \in \mathbb{R}^d$.
- E(D): encryption of D under a secure encryption function E.
- Goal: find a method S such that S(E(q), E(D)) = E(nn(q, D)), where q ∈ ℝ^d, without letting the SP learn contents about either the query (and its results) or the tuples in D.
- Standard security model, such as indistinguishability under chosen plaintext attack (IND-CPA), or indistinguishability under chosen ciphertext attack (IND-CCA).
- To appear in ICDE'13.

ゆう くほう くほう 二日

Insecurity of Existing Methods

 First attempt: Wai Kit Wong, David Wai-Lok Cheung, Ben Kao, Nikos Mamoulis: Secure kNN computation on encrypted databases. SIGMOD 2009

A B + A B +

э

Insecurity of Existing Methods

- First attempt: Wai Kit Wong, David Wai-Lok Cheung, Ben Kao, Nikos Mamoulis: Secure kNN computation on encrypted databases. SIGMOD 2009
 - Basic idea: construct a "secure" encryption function that preserves the dot product between a query point and a database point.

(B) < B)</p>

Insecurity of Existing Methods

- First attempt: Wai Kit Wong, David Wai-Lok Cheung, Ben Kao, Nikos Mamoulis: Secure kNN computation on encrypted databases. SIGMOD 2009
 - Basic idea: construct a "secure" encryption function that preserves the dot product between a query point and a database point.
 - Attack we found: after learning only *d* query points and their encryptions, a linear system of *d* equations can be formed to decrypt any encrypted *p* ∈ *D*.

(∃) < ∃)</p>

 Second attempt: Haibo Hu, Jianliang Xu, Chushi Ren, Byron Choi: Processing private queries over untrusted data cloud through privacy homomorphism. ICDE 2011

- Second attempt: Haibo Hu, Jianliang Xu, Chushi Ren, Byron Choi: Processing private queries over untrusted data cloud through privacy homomorphism. ICDE 2011
 - Basic idea: Using homomorphic encryption to encrypt each entry in a multi-dimensional index; Guide the search by using the homomorphic operations between (encrypted) *q* and entry *e*.

A B > A B >

- Second attempt: Haibo Hu, Jianliang Xu, Chushi Ren, Byron Choi: Processing private queries over untrusted data cloud through privacy homomorphism. ICDE 2011
 - Basic idea: Using homomorphic encryption to encrypt each entry in a multi-dimensional index; Guide the search by using the homomorphic operations between (encrypted) *q* and entry *e*.
 - Attack we found: In the above process, the server learns if *q* lies to the left or the right of another point, in each dimension, which leads to a binary search to efficiently recover any encrypted point.

Hardness of the Problem: OPE

- Order-preserving encryption (OPE) is a set of functions $\{\mathcal{E}, \mathcal{E}^{-1}, op\}$, such that:
 - $\mathcal{E}(m) = c$, $\mathcal{E}^{-1}(c) = m$ (here we omit the keys).
 - $op(c_1, c_2) = 1$ if $m_1 < m_2$; $op(c_1, c_2) = -1$ if $m_1 > m_2$.

Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, Yirong Xu: Order-Preserving Encryption for Numeric Data. SIGMOD 2004

Hardness of the Problem: OPE

- Order-preserving encryption (OPE) is a set of functions $\{\mathcal{E}, \mathcal{E}^{-1}, op\}$, such that:
 - $\mathcal{E}(m) = c$, $\mathcal{E}^{-1}(c) = m$ (here we omit the keys).
 - $op(c_1, c_2) = 1$ if $m_1 < m_2$; $op(c_1, c_2) = -1$ if $m_1 > m_2$.

Theorem

A truly secure OPE does not exist in standard security models, such as IND-CPA. It also does not exist even in much relaxed security models, such as the indistinguishability under ordered chosen-plaintext attack (IND-OCPA).

Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, Yirong Xu: Order-Preserving Encryption for Numeric Data. SIGMOD 2004 Alexandra Boldyreva, Nathan Chenette, Younho Lee, Adam O'Neill: Order-Preserving Symmetric Encryption. EUROCRYPT 2009 Alexandra Boldyreva, Nathan Chenette, Adam O'Neill: Order-Preserving Encryption Revisited: Improved Security Analysis and Alternative Solutions. CRYPTO 2011

・ 同 ト ・ ヨ ト ・ ヨ ト

Given E(D) = {E(p₁),..., E(p_N)}, suppose we have a secure SNN method S such that: S(E(q), E(D)) → E(nn(q, D)) without the knowledge of E⁻¹.

伺 ト イヨ ト イヨ ト ・ ヨ ・ ク ۹ (~

- Given $E(D) = \{E(p_1), \ldots, E(p_N)\}$, suppose we have a secure SNN method S such that: $S(E(q), E(D)) \rightarrow E(nn(q, D))$ without the knowledge of E^{-1} .
- We can construct an OPE, $\{\mathcal{E}, \mathcal{E}^{-1}, op\}$, based on $S(\cdot)$!

Given E(D) = {E(p₁),..., E(p_N)}, suppose we have a secure SNN method S such that: S(E(q), E(D)) → E(nn(q, D)) without the knowledge of E⁻¹.

• We can construct an OPE, $\{\mathcal{E}, \mathcal{E}^{-1}, op\}$, based on $S(\cdot)$!

Given E(D) = {E(p₁),..., E(p_N)}, suppose we have a secure SNN method S such that: S(E(q), E(D)) → E(nn(q, D)) without the knowledge of E⁻¹.

• We can construct an OPE, $\{\mathcal{E}, \mathcal{E}^{-1}, op\}$, based on $S(\cdot)$!

Given E(D) = {E(p₁),..., E(p_N)}, suppose we have a secure SNN method S such that: S(E(q), E(D)) → E(nn(q, D)) without the knowledge of E⁻¹.

• We can construct an OPE, $\{\mathcal{E}, \mathcal{E}^{-1}, op\}$, based on $S(\cdot)$!

Given E(D) = {E(p₁),..., E(p_N)}, suppose we have a secure SNN method S such that: S(E(q), E(D)) → E(nn(q, D)) without the knowledge of E⁻¹.

• We can construct an OPE, $\{\mathcal{E}, \mathcal{E}^{-1}, op\}$, based on $S(\cdot)$!

伺い くさい くさい しきし

• How to construct $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$?

御 と く ヨ と く ヨ と …

= 900

- How to construct $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$?
- Observe that by our construction, $\mathcal{E}(m_i) = E(p_i)$, and $\mathcal{E}(m_j) = E(p_j)$.

□ > < E > < E > E の < ⊙

- How to construct $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$?
- Observe that by our construction, $\mathcal{E}(m_i) = E(p_i)$, and $\mathcal{E}(m_j) = E(p_j)$.
- Define function traverse($\mathcal{E}(m_i)$) which outputs *i*!

御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 臣 ∽ � � �

- How to construct $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$?
- Observe that by our construction, $\mathcal{E}(m_i) = E(p_i)$, and $\mathcal{E}(m_j) = E(p_j)$.
- Define function traverse($\mathcal{E}(m_i)$) which outputs *i*!

• • = • • = •

- How to construct $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$?
- Observe that by our construction, $\mathcal{E}(m_i) = E(p_i)$, and $\mathcal{E}(m_j) = E(p_j)$.
- Define function traverse($\mathcal{E}(m_i)$) which outputs *i*!

• • = • • = •

- How to construct $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$?
- Observe that by our construction, $\mathcal{E}(m_i) = E(p_i)$, and $\mathcal{E}(m_j) = E(p_j)$.
- Define function traverse($\mathcal{E}(m_i)$) which outputs *i*!

• • = • • = •

- How to construct $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$?
- Observe that by our construction, $\mathcal{E}(m_i) = E(p_i)$, and $\mathcal{E}(m_j) = E(p_j)$.
- Define function traverse($\mathcal{E}(m_i)$) which outputs *i*!

• • = • • = •

- How to construct $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$?
- Observe that by our construction, $\mathcal{E}(m_i) = E(p_i)$, and $\mathcal{E}(m_j) = E(p_j)$.
- Define function traverse($\mathcal{E}(m_i)$) which outputs *i*!

• • = • • = •

- How to construct $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$?
- Observe that by our construction, $\mathcal{E}(m_i) = E(p_i)$, and $\mathcal{E}(m_j) = E(p_j)$.
- Define function traverse($\mathcal{E}(m_i)$) which outputs *i*!

• • = • • = •

-

- How to construct $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$?
- Observe that by our construction, $\mathcal{E}(m_i) = E(p_i)$, and $\mathcal{E}(m_j) = E(p_j)$.
- Define function traverse($\mathcal{E}(m_i)$) which outputs *i*!

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- How to construct $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$?
- Observe that by our construction, $\mathcal{E}(m_i) = E(p_i)$, and $\mathcal{E}(m_j) = E(p_j)$.
- Define function traverse($\mathcal{E}(m_i)$) which outputs *i*!

A B > A B >

- How to construct $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$?
- Observe that by our construction, $\mathcal{E}(m_i) = E(p_i)$, and $\mathcal{E}(m_j) = E(p_j)$.
- Define function traverse($\mathcal{E}(m_i)$) which outputs *i*!

• It only says it is hard to output E(nn(q, D))! What if we relax this restriction and allow something "less precise"?

- It only says it is hard to output E(nn(q, D))! What if we relax this restriction and allow something "less precise"?
- Extreme case: just return E(D) and ask client to decrypt and find nn(q, D). Obviously secure! But expensive!

A B A A B A

- It only says it is hard to output E(nn(q, D))! What if we relax this restriction and allow something "less precise"?
- Extreme case: just return E(D) and ask client to decrypt and find nn(q, D). Obviously secure! But expensive!
- The SVD (secure voronoi diagram) method:

- It only says it is hard to output E(nn(q, D))! What if we relax this restriction and allow something "less precise"?
- Extreme case: just return E(D) and ask client to decrypt and find nn(q, D). Obviously secure! But expensive!
- The SVD (secure voronoi diagram) method:
 - create partitions based on the voronoi cells of D.

- It only says it is hard to output E(nn(q, D))! What if we relax this restriction and allow something "less precise"?
- Extreme case: just return E(D) and ask client to decrypt and find nn(q, D). Obviously secure! But expensive!
- The SVD (secure voronoi diagram) method:
 - create partitions based on the voronoi cells of D.
 - $E(D) = \{E(G_1), E(G_2), \ldots\}.$

- It only says it is hard to output E(nn(q, D))! What if we relax this restriction and allow something "less precise"?
- Extreme case: just return E(D) and ask client to decrypt and find nn(q, D). Obviously secure! But expensive!
- The SVD (secure voronoi diagram) method:
 - create partitions based on the voronoi cells of D.
 - $E(D) = \{E(G_1), E(G_2), \ldots\}.$
 - send partition configurations (the boundaries) to clients, client only needs to ask for the encryption of a given partition by partition id (which is figured out locally).

- It only says it is hard to output E(nn(q, D))! What if we relax this restriction and allow something "less precise"?
- Extreme case: just return E(D) and ask client to decrypt and find nn(q, D). Obviously secure! But expensive!
- The SVD (secure voronoi diagram) method:
 - create partitions based on the voronoi cells of D.
 - $E(D) = \{E(G_1), E(G_2), \ldots\}.$
 - send partition configurations (the boundaries) to clients, client only needs to ask for the encryption of a given partition by partition id (which is figured out locally).

프 () () () (

・ロン ・回 と ・ ヨ と ・ ヨ と …

= 990

- Secure Voronoi Diagram (SVD):
 - Preprocessing at the data owner
 - Query processing at the client

A B + A B +

- Secure Voronoi Diagram (SVD):
 - Preprocessing at the data owner
 - Query processing at the client

→ ∃ → → ∃ →

• Preprocessing at the data owner:

白 ト イヨト イヨト

Ξ.

• Preprocessing at the data owner:

< E > < E >

• Preprocessing at the data owner:

æ

< E > < E >

• Preprocessing at the data owner:

< 注→ < 注→

æ

• Preprocessing at the data owner:

< 注→ < 注→

æ

• Preprocessing at the data owner:

(E)

• Preprocessing at the data owner:

æ

- Secure Voronoi Diagram (SVD):
 - Preprocessing at the data owner
 - Query processing at the client

• Query processing at the client:

白 ト イヨト イヨト

Ξ.

• Query processing at the client:

★ E ► < E ►</p>

• Query processing at the client:

A B M A B M

• Query processing at the client:

A B M A B M

• Query processing at the client:

回 と く ヨ と く ヨ と

Ξ.

★ 문 ► ★ 문 ►

回 と く ヨ と く ヨ と

э.

回 と く ヨ と く ヨ と

★ 문 ► ★ 문 ►

() B_i is an axis-parallel *d*-dimensional box and $B_i \cap B_j = \emptyset$ for any $i \neq j$

() <) <)
 () <)
 () <)
</p>

э

B_i is an axis-parallel *d*-dimensional box and B_i ∩ B_j = Ø for any i ≠ j
G_i = {p_j|vc_j is contained or intersected by B_i}

(B)

э

B_i is an axis-parallel d-dimensional box and B_i ∩ B_j = Ø for any i ≠ j
G_i = {p_j|vc_j is contained or intersected by B_i}

∃→ < ∃→</p>

B_i is an axis-parallel d-dimensional box and B_i ∩ B_j = Ø for any i ≠ j
G_i = {p_j|vc_j is contained or intersected by B_i}

∃→ < ∃→</p>

B_i is an axis-parallel d-dimensional box and B_i ∩ B_j = Ø for any i ≠ j
G_i = {p_j|vc_j is contained or intersected by B_i}

< ∃ > < ∃ >

B_i is an axis-parallel d-dimensional box and B_i ∩ B_j = Ø for any i ≠ j
G_i = {p_j|vc_j is contained or intersected by B_i}

(B)

B_i is an axis-parallel d-dimensional box and B_i ∩ B_j = Ø for any i ≠ j
G_i = {p_j|vc_j is contained or intersected by B_i}

(B)

э

- **(**) B_i is an axis-parallel *d*-dimensional box and $B_i \cap B_j = \emptyset$ for any $i \neq j$
- $G_i = \{p_j | vc_j \text{ is contained or intersected by } B_i\}$
- minimum $|G_x|$ and minimum $|G_x| |G_i|$, which means low storage and communication overheads, as well as cheap encryption cost

프 () () () (

- **(9)** B_i is an axis-parallel *d*-dimensional box and $B_i \cap B_j = \emptyset$ for any $i \neq j$
- $G_i = \{p_j | vc_j \text{ is contained or intersected by } B_i\}$
- minimum $|G_x|$ and minimum $|G_x| |G_i|$, which means low storage and communication overheads, as well as cheap encryption cost

< ∃ >

-

→ □ → → モ → → モ →

Ξ.

- Square Grid (SG)
- Minimum Space Grid (MinSG)
- Minimum Maximum Partition(MinMax)

▶ < 글 ▶ < 글 ▶</p>

- Square Grid (SG)
- Minimum Space Grid (MinSG)
- Minimum Maximum Partition(MinMax)

▶ ★ 문 ► ★ 문 ►

・ロト ・回ト ・ヨト ・ヨト

= 990

◆□ > < E > < E > E の < ○</p>

< □> < □> < □> = □ = □

Merits:

• Demerits:

- Merits:
 - simple
 - minimum storage cost at client
- Demerits:

回 と く ヨ と く ヨ と

= 900

- Merits:
 - simple
 - minimum storage cost at client
- Demerits:
 - high storage and communication overheads, as well as expensive encryption cost because of highly unbalanced partitions when the data distribution is skewed

- Square Grid (SG)
- Minimum Space Grid (MinSG)
- Minimum Maximum Partition(MinMax)

Minimum Space Grid (MinSG)

Bin Yao, Feifei Li, Xiaokui Xiao Secure Nearest Neighbor Revisited

回 と く ヨ と く ヨ と

э.

Minimum Space Grid (MinSG)

白 と く ヨ と く ヨ と …

э.

白 ト ・ ヨ ト ・ ヨ ト …

э.

• A greedy algorithm: always split the maximum partition *G_x* into smaller partitions

* E > * E >

э

- A greedy algorithm: always split the maximum partition *G_x* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_x

- A greedy algorithm: always split the maximum partition *G_x* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_x

- A greedy algorithm: always split the maximum partition *G_x* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_x

- A greedy algorithm: always split the maximum partition *G_x* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_x

- A greedy algorithm: always split the maximum partition *G_x* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_x

- A greedy algorithm: always split the maximum partition *G_x* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_x

(B)

- A greedy algorithm: always split the maximum partition *G_x* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_x
- \bullet choose the ℓ that leads to the minimum maximum partition

- ∢ ≣ →

- A greedy algorithm: always split the maximum partition *G_x* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_x
- $\bullet\,$ choose the ℓ that leads to the minimum maximum partition

- A greedy algorithm: always split the maximum partition *G_x* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_x
- $\bullet\,$ choose the ℓ that leads to the minimum maximum partition

- ∢ ⊒ →

- A greedy algorithm: always split the maximum partition *G_x* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_x
- $\bullet\,$ choose the ℓ that leads to the minimum maximum partition

- ∢ ⊒ →

- A greedy algorithm: always split the maximum partition *G_x* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_x
- $\bullet\,$ choose the ℓ that leads to the minimum maximum partition

- ∢ ⊒ →

- A greedy algorithm: always split the maximum partition *G_x* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_x
- \bullet choose the ℓ that leads to the minimum maximum partition

< ∃ >

- A greedy algorithm: always split the maximum partition *G_x* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_x
- \bullet choose the ℓ that leads to the minimum maximum partition

- A greedy algorithm: always split the maximum partition *G_x* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_x
- $\bullet\,$ choose the ℓ that leads to the minimum maximum partition

- A greedy algorithm: always split the maximum partition *G_x* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_x
- $\bullet\,$ choose the ℓ that leads to the minimum maximum partition

< ∃ >

- A greedy algorithm: always split the maximum partition *G_x* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_x
- \bullet choose the ℓ that leads to the minimum maximum partition

- A greedy algorithm: always split the maximum partition *G_x* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in B_x
- \bullet choose the ℓ that leads to the minimum maximum partition

Merits:

Demerits:

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● � � � �

- Merits:
 - relatively balanced partitions: low storage and communication overheads, as well as cheap encryption cost
- Demerits:

- Merits:
 - relatively balanced partitions: low storage and communication overheads, as well as cheap encryption cost
- Demerits:
 - complicated partitioning process
 - not most balanced: small-sized partitions introduced by some unnecessary splitting

A B > A B >

<回><モン</td>

= 990

<回><モン</td>

= 990

回 と く ヨ と く ヨ と

э.

• We need a method that produce more balanced partitions!!

(▲ 문) (▲ 문)

SVD Partitioning

- Square Grid (SG)
- Minimum Space Grid (MinSG)
- Minimum Maximum Partition(MinMax)

白マ イヨマ イヨマ

白 ト ・ ヨ ト ・ ヨ ト …

э.

□ > < E > < E > E - のへで

• similar to MinSG in most part

• similar to MinSG in most part

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

프 () () () (

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

- similar to MinSG in most part
- use **segments** going though the space bounded by B_x instead of lines going though the entire space to split partitions

э

Merits:

Demerits:

□ > * ミ > * ミ > ・ ミ ・ の < (~

- Merits:
 - most balanced partitions: low storage and communication overheads, as well as cheap encryption cost
- Demerits:

э.

- Merits:
 - most balanced partitions: low storage and communication overheads, as well as cheap encryption cost
- Demerits:
 - high storage cost at client

э.

Comparison between MinSG and MinMax

白 と く ヨ と く ヨ と

2

Comparison between MinSG and MinMax

<回> < 回> < 回> < 回> -

2

Comparison between MinSG and MinMax

 Clearly, MinMax achieves more balanced partitions than MinSG, which means lower storage and communication overheads, as well as cheaper encryption cost.

э

Bin Yao, Feifei Li, Xiaokui Xiao Secure Nearest Neighbor Revisited

イロン イロン イヨン イヨン

= 990

• We examine the three methods: SG, MinSG and MinMax.

- ▲ 문 ▶ - ▲ 문 ▶

Ξ.

- We examine the three methods: SG, MinSG and MinMax.
- For each method, we test its running time of both partition phrase and encryption phrase, partition size, communication cost of both the preprocessing step and query step and query time.

- We examine the three methods: SG, MinSG and MinMax.
- For each method, we test its running time of both partition phrase and encryption phrase, partition size, communication cost of both the preprocessing step and query step and query time.
- C++, Linux, Intel Xeon 3.07GHz CPU and 8GB memory

() <) <)
 () <)
 () <)
</p>

- We examine the three methods: SG, MinSG and MinMax.
- For each method, we test its running time of both partition phrase and encryption phrase, partition size, communication cost of both the preprocessing step and query step and query time.
- C++, Linux, Intel Xeon 3.07GHz CPU and 8GB memory
- Data sets
 - Points of interest in California(CA) and Texas(TX) from the *OpenStreetMap* project.
 - In each dataset, we randomly select 2 million points to create the largest dataset D_{max} and form smaller datasets based on D_{max} .

• • = • • = •

- We examine the three methods: SG, MinSG and MinMax.
- For each method, we test its running time of both partition phrase and encryption phrase, partition size, communication cost of both the preprocessing step and query step and query time.
- C++, Linux, Intel Xeon 3.07GHz CPU and 8GB memory
- Data sets
 - Points of interest in California(CA) and Texas(TX) from the *OpenStreetMap* project.
 - In each dataset, we randomly select 2 million points to create the largest dataset D_{max} and form smaller datasets based on D_{max} .
- Default settings.

Symbol	Definition	Default Value
D	size of the dataset	10 ⁶
k	number of partitions	625
DT	dataset type	CA

• • = • • = •

Attack on Existing SNN Methods

• Vary |D|: Wai Kit Wong, David Cheung, Ben Kao, Nikos Mamoulis:

Secure kNN computation on encrypted databases. SIGMOD 2009

Attack on Existing SNN Methods

• Vary |D|: Haibo Hu, Jianliang Xu, Chushi Ren, Byron Choi: Processing private queries over untrusted data cloud through privacy homomorphism. ICDE 2011

Partition size in different methods

Partition size in different methods

Query communication cost

э

Query communication cost

Total running time of the preprocessing step

• Vary k

Total running time of the preprocessing step

Query time for different methods

• Vary k

Query time for different methods

• Vary |D|

Running time of the partition phase

Running time of the partition phase

Total size of E(D)

Total size of E(D)

Other similarity metrics?

回 と く ヨ と く ヨ と

Ξ.

Other similarity metrics?

e High dimensions (beyond 2)?

□ > < E > < E >

- Other similarity metrics?
- e High dimensions (beyond 2)?
- Secure k nearest neighbors?

A B M A B M

э

- Other similarity metrics?
- e High dimensions (beyond 2)?
- Secure k nearest neighbors?
- Opdates?

(★ 문 ► ★ 문 ►

э

- Other similarity metrics?
- e High dimensions (beyond 2)?
- Secure k nearest neighbors?
- Opdates?
- Secure data analytics based on similarity search: clustering, content-based search, etc.

(B) < B)</p>

э

- Other similarity metrics?
- e High dimensions (beyond 2)?
- Secure k nearest neighbors?
- Updates?
- Secure data analytics based on similarity search: clustering, content-based search, etc.
- **(2)** Variants of similarity search: reverse nearest neighbors, skylines, etc.

() <) <)
 () <)
 () <)
</p>

Conclusion

• Design a new partition-based secure voronoi diagram (SVD) method.

▶ < 문 > < 문 >

- Design a new partition-based secure voronoi diagram (SVD) method.
- Implement the SVD with three partitioning methods.

→ ∃ → → ∃ →

- Design a new partition-based secure voronoi diagram (SVD) method.
- Implement the SVD with three partitioning methods.
- Future work
 - extending our investigation to higher dimensions, k nearest neighbors

Thank You

$\ensuremath{\mathbb{Q}}$ and $\ensuremath{\mathbb{A}}$

Bin Yao, Feifei Li, Xiaokui Xiao Secure Nearest Neighbor Revisited

白 と く ヨ と く ヨ と …

= 900