## Secure Nearest Neighbor Revisited

#### Bin Yao<sup>1</sup>, Feifei Li<sup>2</sup>, Xiaokui Xiao<sup>3</sup>



<sup>1</sup>Department of Computer Science and Engineering Shanghai Jiao Tong University, P. R. China



<sup>2</sup>School of Computing University of Utah

(日) (周) (王) (王)



<sup>3</sup>School of Computer Engineering Nanyang Technological University, Singapore

July 11, 2013

# The Motivation

• Cloud databases: Google Cloud SQL, Microsoft SQL Azure, Amazon SimpleDB.



Cloud Database

( ) < ) < )
 ( ) < )
 ( ) < )
</p>

# The Motivation

- Cloud databases: Google Cloud SQL, Microsoft SQL Azure, Amazon SimpleDB.
- Service providers (SP) answer queries from different clients.



Cloud Database

( )

# The Motivation

- Cloud databases: Google Cloud SQL, Microsoft SQL Azure, Amazon SimpleDB.
- Service providers (SP) answer queries from different clients.
- Data owner might not want to reveal data values to SP; clients might not want SP to learn their queries and/or the query results.



**Cloud Database** 

- 4 同 2 4 日 2 4 日 2

Hakan Hacigumus, Balakrishna R. Iyer, Chen Li, Sharad Mehrotra: Executing SQL over encrypted data in the database-service-provider model. SIGMOD 2002



#### cloud server

Bin Yao, Feifei Li, Xiaokui Xiao Secure Nearest Neighbor Revisited

2

★ 문 ► ★ 문 ►



#### cloud server



æ

( ) < ) < )
 ( ) < )
 ( ) < )
</p>





( ) < ) < )
 ( ) < )
 ( ) < )
</p>



< E > < E >



( ) < ) < )
 ( ) < )
 ( ) < )
</p>



( )



• Secure Query Processing



( ) < ) < )
 ( ) < )
 ( ) < )
</p>

э

- Secure Query Processing
  - Secure Nearest Neighbor (SNN)



∃→ < ∃→</p>

- Secure Query Processing
  - Secure Nearest Neighbor (SNN)



∃→ < ∃→</p>

э

- Secure Query Processing
  - Secure Nearest Neighbor (SNN)



∃→ < ∃→</p>

Bin Yao, Feifei Li, Xiaokui Xiao Secure Nearest Neighbor Revisited

・ロン ・四 と ・ ヨ と ・ ヨ と

= 990

• Existing work has examined the problems of answering basic SQL queries [1], executing aggregate queries [2], and performing range queries [3], over an encrypted database

- [1] H. Hacigumus, B. R. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in the database service provider model. In SIGMOD, 2002
- 9 [2] E. Mykletun and G. Tsudik. Aggregation queries in the database-as-a-service model. In DBSec, 2006
- [3] E. Shi, J. Bethencourt, H. T.-H. Chan, D. X. Song, and A. Perrig. Multi-dimensional range query over encrypted data. In IEEE Symposium on Security and Privacy, pages 350C364, 2007

э.

- Existing work has examined the problems of answering basic SQL queries [1], executing aggregate queries [2], and performing range queries [3], over an encrypted database
- Hu et al. [4] and Wong et al. [5] deal with the SNN problem; the solutions thus proposed, however, are insecure and can be attacked efficiently

- [1] H. Hacigumus, B. R. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in the database service provider model. In SIGMOD, 2002
- 9 [2] E. Mykletun and G. Tsudik. Aggregation queries in the database-as-a-service model. In DBSec, 2006
- [3] E. Shi, J. Bethencourt, H. T.-H. Chan, D. X. Song, and A. Perrig. Multi-dimensional range query over encrypted data. In IEEE Symposium on Security and Privacy, pages 350C364, 2007
- [4] H. Hu, J. Xu, C. Ren, and B. Choi. Processing private queries over untrusted data cloud through privacy homomorphism. In ICDE, pages 601C612, 2011
- [5] W. K. Wong, D. W.-L. Cheung, B. Kao, and N. Mamoulis. Secure knn computation on encrypted databases. In SIGMOD, pages 139C152, 2009

- Existing work has examined the problems of answering basic SQL queries [1], executing aggregate queries [2], and performing range queries [3], over an encrypted database
- Hu et al. [4] and Wong et al. [5] deal with the SNN problem; the solutions thus proposed, however, are insecure and can be attacked efficiently
- Fully homomorphic encryption encryption due to Craig Gentry, "A Fully Homomorphic Encryption Scheme (Ph.D. thesis)": mostly of theoretical interest, impractical, and inefficient for large data.
- [1] H. Hacigumus, B. R. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in the database service provider model. In SIGMOD, 2002
- 9 [2] E. Mykletun and G. Tsudik. Aggregation queries in the database-as-a-service model. In DBSec, 2006
- [3] E. Shi, J. Bethencourt, H. T.-H. Chan, D. X. Song, and A. Perrig. Multi-dimensional range query over encrypted data. In IEEE Symposium on Security and Privacy, pages 350C364, 2007
- [4] H. Hu, J. Xu, C. Ren, and B. Choi. Processing private queries over untrusted data cloud through privacy homomorphism. In ICDE, pages 601C612, 2011
- [5] W. K. Wong, D. W.-L. Cheung, B. Kao, and N. Mamoulis. Secure knn computation on encrypted databases. In SIGMOD, pages 139C152, 2009

= 990

• Three parties:

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

= 990

- Three parties:
  - A *data owner* who has a database *D* that contains *d*-dimensional Euclidean objects/points, and outsources *D* to a server that cannot be fully trusted.
  - A *client* (or multiple of them) who wants to access and pose queries to *D*.
  - A *server* that is *honest but potentially curious* in the tuples in the database and the queries from the clients.

(B) < B)</p>

- Three parties:
  - A *data owner* who has a database *D* that contains *d*-dimensional Euclidean objects/points, and outsources *D* to a server that cannot be fully trusted.
  - A *client* (or multiple of them) who wants to access and pose queries to *D*.
  - A *server* that is *honest but potentially curious* in the tuples in the database and the queries from the clients.
- Objective:

(B) < B)</p>

- Three parties:
  - A *data owner* who has a database *D* that contains *d*-dimensional Euclidean objects/points, and outsources *D* to a server that cannot be fully trusted.
  - A *client* (or multiple of them) who wants to access and pose queries to *D*.
  - A *server* that is *honest but potentially curious* in the tuples in the database and the queries from the clients.
- Objective:
  - To enable the client to perform NN queries without letting the server learn contents about the query (and its result) or the tuples in the database.
  - To ensure the SNN method is as secure as the encryption method *E* used by the data owner.

- Three parties:
  - A *data owner* who has a database *D* that contains *d*-dimensional Euclidean objects/points, and outsources *D* to a server that cannot be fully trusted.
  - A *client* (or multiple of them) who wants to access and pose queries to *D*.
  - A *server* that is *honest but potentially curious* in the tuples in the database and the queries from the clients.
- Objective:
  - To enable the client to perform NN queries without letting the server learn contents about the query (and its result) or the tuples in the database.
  - To ensure the SNN method is as secure as the encryption method *E* used by the data owner.
  - Adversary model: same as whatever model in which *E* is secure, e.g, IND-CPA, IND-CCA.

• Database 
$$D = \{p_1, \ldots, p_N\}$$
, where  $p_i \in \mathbb{R}^d$ .

・ロン ・四 と ・ ヨ と ・ ヨ と …

= 990

- Database  $D = \{p_1, \ldots, p_N\}$ , where  $p_i \in \mathbb{R}^d$ .
- E(D): encryption of D under a secure encryption function E.

▶ ★ 문 ▶ ★ 문 ▶

∃ nar

- Database  $D = \{p_1, \ldots, p_N\}$ , where  $p_i \in \mathbb{R}^d$ .
- E(D): encryption of D under a secure encryption function E.
- Goal: find a method S such that S(E(q), E(D)) = E(nn(q, D)), where q ∈ ℝ<sup>d</sup>, without letting the SP learn contents about either the query (and its results) or the tuples in D.

- Database  $D = \{p_1, \ldots, p_N\}$ , where  $p_i \in \mathbb{R}^d$ .
- E(D): encryption of D under a secure encryption function E.
- Goal: find a method S such that S(E(q), E(D)) = E(nn(q, D)), where q ∈ ℝ<sup>d</sup>, without letting the SP learn contents about either the query (and its results) or the tuples in D.
- Standard security model, such as indistinguishability under chosen plaintext attack (IND-CPA), or indistinguishability under chosen ciphertext attack (IND-CCA).

ゆう くほう くほう 二日

- Database  $D = \{p_1, \ldots, p_N\}$ , where  $p_i \in \mathbb{R}^d$ .
- E(D): encryption of D under a secure encryption function E.
- Goal: find a method S such that S(E(q), E(D)) = E(nn(q, D)), where q ∈ ℝ<sup>d</sup>, without letting the SP learn contents about either the query (and its results) or the tuples in D.
- Standard security model, such as indistinguishability under chosen plaintext attack (IND-CPA), or indistinguishability under chosen ciphertext attack (IND-CCA).
- To appear in ICDE'13.

ゆう くほう くほう 二日

# Insecurity of Existing Methods

 First attempt: Wai Kit Wong, David Wai-Lok Cheung, Ben Kao, Nikos Mamoulis: Secure kNN computation on encrypted databases. SIGMOD 2009

A B + A B +

э

# Insecurity of Existing Methods

- First attempt: Wai Kit Wong, David Wai-Lok Cheung, Ben Kao, Nikos Mamoulis: Secure kNN computation on encrypted databases. SIGMOD 2009
  - Basic idea: construct a "secure" encryption function that preserves the dot product between a query point and a database point.

(B) < B)</p>

# Insecurity of Existing Methods

- First attempt: Wai Kit Wong, David Wai-Lok Cheung, Ben Kao, Nikos Mamoulis: Secure kNN computation on encrypted databases. SIGMOD 2009
  - Basic idea: construct a "secure" encryption function that preserves the dot product between a query point and a database point.
  - Attack we found: after learning only *d* query points and their encryptions, a linear system of *d* equations can be formed to decrypt any encrypted *p* ∈ *D*.

(∃) < ∃)</p>

 Second attempt: Haibo Hu, Jianliang Xu, Chushi Ren, Byron Choi: Processing private queries over untrusted data cloud through privacy homomorphism. ICDE 2011

- Second attempt: Haibo Hu, Jianliang Xu, Chushi Ren, Byron Choi: Processing private queries over untrusted data cloud through privacy homomorphism. ICDE 2011
  - Basic idea: Using homomorphic encryption to encrypt each entry in a multi-dimensional index; Guide the search by using the homomorphic operations between (encrypted) *q* and entry *e*.

A B > A B >

- Second attempt: Haibo Hu, Jianliang Xu, Chushi Ren, Byron Choi: Processing private queries over untrusted data cloud through privacy homomorphism. ICDE 2011
  - Basic idea: Using homomorphic encryption to encrypt each entry in a multi-dimensional index; Guide the search by using the homomorphic operations between (encrypted) *q* and entry *e*.
  - Attack we found: In the above process, the server learns if *q* lies to the left or the right of another point, in each dimension, which leads to a binary search to efficiently recover any encrypted point.

#### Hardness of the Problem: OPE

- Order-preserving encryption (OPE) is a set of functions  $\{\mathcal{E}, \mathcal{E}^{-1}, op\}$ , such that:
  - $\mathcal{E}(m) = c$ ,  $\mathcal{E}^{-1}(c) = m$  (here we omit the keys).
  - $op(c_1, c_2) = 1$  if  $m_1 < m_2$ ;  $op(c_1, c_2) = -1$  if  $m_1 > m_2$ .

Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, Yirong Xu: Order-Preserving Encryption for Numeric Data. SIGMOD 2004

#### Hardness of the Problem: OPE

- Order-preserving encryption (OPE) is a set of functions  $\{\mathcal{E}, \mathcal{E}^{-1}, op\}$ , such that:
  - $\mathcal{E}(m) = c$ ,  $\mathcal{E}^{-1}(c) = m$  (here we omit the keys).
  - $op(c_1, c_2) = 1$  if  $m_1 < m_2$ ;  $op(c_1, c_2) = -1$  if  $m_1 > m_2$ .

#### Theorem

A truly secure OPE does not exist in standard security models, such as IND-CPA. It also does not exist even in much relaxed security models, such as the indistinguishability under ordered chosen-plaintext attack (IND-OCPA).

Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, Yirong Xu: Order-Preserving Encryption for Numeric Data. SIGMOD 2004 Alexandra Boldyreva, Nathan Chenette, Younho Lee, Adam O'Neill: Order-Preserving Symmetric Encryption. EUROCRYPT 2009 Alexandra Boldyreva, Nathan Chenette, Adam O'Neill: Order-Preserving Encryption Revisited: Improved Security Analysis and Alternative Solutions. CRYPTO 2011

・ 同 ト ・ ヨ ト ・ ヨ ト

Given E(D) = {E(p<sub>1</sub>),..., E(p<sub>N</sub>)}, suppose we have a secure SNN method S such that: S(E(q), E(D)) → E(nn(q, D)) without the knowledge of E<sup>-1</sup>.

伺 ト イヨ ト イヨ ト ・ ヨ ・ ク ۹ (~

- Given  $E(D) = \{E(p_1), \ldots, E(p_N)\}$ , suppose we have a secure SNN method S such that:  $S(E(q), E(D)) \rightarrow E(nn(q, D))$  without the knowledge of  $E^{-1}$ .
- We can construct an OPE,  $\{\mathcal{E}, \mathcal{E}^{-1}, op\}$ , based on  $S(\cdot)$ !

Given E(D) = {E(p<sub>1</sub>),..., E(p<sub>N</sub>)}, suppose we have a secure SNN method S such that: S(E(q), E(D)) → E(nn(q, D)) without the knowledge of E<sup>-1</sup>.

• We can construct an OPE,  $\{\mathcal{E}, \mathcal{E}^{-1}, op\}$ , based on  $S(\cdot)$ !



Given E(D) = {E(p<sub>1</sub>),..., E(p<sub>N</sub>)}, suppose we have a secure SNN method S such that: S(E(q), E(D)) → E(nn(q, D)) without the knowledge of E<sup>-1</sup>.

• We can construct an OPE,  $\{\mathcal{E}, \mathcal{E}^{-1}, op\}$ , based on  $S(\cdot)$ !



Given E(D) = {E(p<sub>1</sub>),..., E(p<sub>N</sub>)}, suppose we have a secure SNN method S such that: S(E(q), E(D)) → E(nn(q, D)) without the knowledge of E<sup>-1</sup>.

• We can construct an OPE,  $\{\mathcal{E}, \mathcal{E}^{-1}, op\}$ , based on  $S(\cdot)$ !



Given E(D) = {E(p<sub>1</sub>),..., E(p<sub>N</sub>)}, suppose we have a secure SNN method S such that: S(E(q), E(D)) → E(nn(q, D)) without the knowledge of E<sup>-1</sup>.

• We can construct an OPE,  $\{\mathcal{E}, \mathcal{E}^{-1}, op\}$ , based on  $S(\cdot)$ !



伺い くさい くさい しきし

• How to construct  $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$ ?

御 と く ヨ と く ヨ と …

= 900

- How to construct  $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$ ?
- Observe that by our construction,  $\mathcal{E}(m_i) = E(p_i)$ , and  $\mathcal{E}(m_j) = E(p_j)$ .

□ > < E > < E > E の < ⊙

- How to construct  $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$ ?
- Observe that by our construction,  $\mathcal{E}(m_i) = E(p_i)$ , and  $\mathcal{E}(m_j) = E(p_j)$ .
- Define function traverse( $\mathcal{E}(m_i)$ ) which outputs *i*!

御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 臣 ∽ � � �

- How to construct  $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$ ?
- Observe that by our construction,  $\mathcal{E}(m_i) = E(p_i)$ , and  $\mathcal{E}(m_j) = E(p_j)$ .
- Define function traverse( $\mathcal{E}(m_i)$ ) which outputs *i*!



• • = • • = •

- How to construct  $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$ ?
- Observe that by our construction,  $\mathcal{E}(m_i) = E(p_i)$ , and  $\mathcal{E}(m_j) = E(p_j)$ .
- Define function traverse( $\mathcal{E}(m_i)$ ) which outputs *i*!



• • = • • = •

- How to construct  $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$ ?
- Observe that by our construction,  $\mathcal{E}(m_i) = E(p_i)$ , and  $\mathcal{E}(m_j) = E(p_j)$ .
- Define function traverse( $\mathcal{E}(m_i)$ ) which outputs *i*!



• • = • • = •

- How to construct  $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$ ?
- Observe that by our construction,  $\mathcal{E}(m_i) = E(p_i)$ , and  $\mathcal{E}(m_j) = E(p_j)$ .
- Define function traverse( $\mathcal{E}(m_i)$ ) which outputs *i*!



• • = • • = •

- How to construct  $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$ ?
- Observe that by our construction,  $\mathcal{E}(m_i) = E(p_i)$ , and  $\mathcal{E}(m_j) = E(p_j)$ .
- Define function traverse( $\mathcal{E}(m_i)$ ) which outputs *i*!



• • = • • = •

- How to construct  $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$ ?
- Observe that by our construction,  $\mathcal{E}(m_i) = E(p_i)$ , and  $\mathcal{E}(m_j) = E(p_j)$ .
- Define function traverse( $\mathcal{E}(m_i)$ ) which outputs *i*!



• • = • • = •

-

- How to construct  $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$ ?
- Observe that by our construction,  $\mathcal{E}(m_i) = E(p_i)$ , and  $\mathcal{E}(m_j) = E(p_j)$ .
- Define function traverse( $\mathcal{E}(m_i)$ ) which outputs *i*!



A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- How to construct  $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$ ?
- Observe that by our construction,  $\mathcal{E}(m_i) = E(p_i)$ , and  $\mathcal{E}(m_j) = E(p_j)$ .
- Define function traverse( $\mathcal{E}(m_i)$ ) which outputs *i*!



A B > A B >

- How to construct  $op(\mathcal{E}(m_i), \mathcal{E}(m_j))$ ?
- Observe that by our construction,  $\mathcal{E}(m_i) = E(p_i)$ , and  $\mathcal{E}(m_j) = E(p_j)$ .
- Define function traverse( $\mathcal{E}(m_i)$ ) which outputs *i*!



• It only says it is hard to output E(nn(q, D))! What if we relax this restriction and allow something "less precise"?

- It only says it is hard to output E(nn(q, D))! What if we relax this restriction and allow something "less precise"?
- Extreme case: just return E(D) and ask client to decrypt and find nn(q, D). Obviously secure! But expensive!

A B A A B A

- It only says it is hard to output E(nn(q, D))! What if we relax this restriction and allow something "less precise"?
- Extreme case: just return E(D) and ask client to decrypt and find nn(q, D). Obviously secure! But expensive!
- The SVD (secure voronoi diagram) method:

- It only says it is hard to output E(nn(q, D))! What if we relax this restriction and allow something "less precise"?
- Extreme case: just return E(D) and ask client to decrypt and find nn(q, D). Obviously secure! But expensive!
- The SVD (secure voronoi diagram) method:
  - create partitions based on the voronoi cells of D.



- It only says it is hard to output E(nn(q, D))! What if we relax this restriction and allow something "less precise"?
- Extreme case: just return E(D) and ask client to decrypt and find nn(q, D). Obviously secure! But expensive!
- The SVD (secure voronoi diagram) method:
  - create partitions based on the voronoi cells of D.
  - $E(D) = \{E(G_1), E(G_2), \ldots\}.$



- It only says it is hard to output E(nn(q, D))! What if we relax this restriction and allow something "less precise"?
- Extreme case: just return E(D) and ask client to decrypt and find nn(q, D). Obviously secure! But expensive!
- The SVD (secure voronoi diagram) method:
  - create partitions based on the voronoi cells of D.
  - $E(D) = \{E(G_1), E(G_2), \ldots\}.$
  - send partition configurations (the boundaries) to clients, client only needs to ask for the encryption of a given partition by partition id (which is figured out locally).



- It only says it is hard to output E(nn(q, D))! What if we relax this restriction and allow something "less precise"?
- Extreme case: just return E(D) and ask client to decrypt and find nn(q, D). Obviously secure! But expensive!
- The SVD (secure voronoi diagram) method:
  - create partitions based on the voronoi cells of D.
  - $E(D) = \{E(G_1), E(G_2), \ldots\}.$
  - send partition configurations (the boundaries) to clients, client only needs to ask for the encryption of a given partition by partition id (which is figured out locally).



프 ( ) ( ) ( ) (

・ロン ・回 と ・ ヨ と ・ ヨ と …

= 990

- Secure Voronoi Diagram (SVD):
  - Preprocessing at the data owner
  - Query processing at the client

A B + A B +

- Secure Voronoi Diagram (SVD):
  - Preprocessing at the data owner
  - Query processing at the client

→ ∃ → → ∃ →

• Preprocessing at the data owner:

白 ト イヨト イヨト

Ξ.

• Preprocessing at the data owner:



< E > < E >

• Preprocessing at the data owner:



æ

< E > < E >

• Preprocessing at the data owner:



< 注→ < 注→

æ

• Preprocessing at the data owner:



< 注→ < 注→

æ

• Preprocessing at the data owner:



(E)

• Preprocessing at the data owner:



æ

- Secure Voronoi Diagram (SVD):
  - Preprocessing at the data owner
  - Query processing at the client

• Query processing at the client:

白 ト イヨト イヨト

Ξ.

• Query processing at the client:



★ E ► < E ►</p>

• Query processing at the client:



A B M A B M

• Query processing at the client:



A B M A B M

• Query processing at the client:



• Query processing at the client:



• Query processing at the client:



• Query processing at the client:



回 と く ヨ と く ヨ と



Ξ.

★ 문 ► ★ 문 ►



回 と く ヨ と く ヨ と

э.



回 と く ヨ と く ヨ と



★ 문 ► ★ 문 ►



**(**)  $B_i$  is an axis-parallel *d*-dimensional box and  $B_i \cap B_j = \emptyset$  for any  $i \neq j$ 

( ) < ) < )
 ( ) < )
 ( ) < )
</p>

э



B<sub>i</sub> is an axis-parallel *d*-dimensional box and B<sub>i</sub> ∩ B<sub>j</sub> = Ø for any i ≠ j
G<sub>i</sub> = {p<sub>j</sub>|vc<sub>j</sub> is contained or intersected by B<sub>i</sub>}

(B)

э



B<sub>i</sub> is an axis-parallel d-dimensional box and B<sub>i</sub> ∩ B<sub>j</sub> = Ø for any i ≠ j
G<sub>i</sub> = {p<sub>j</sub>|vc<sub>j</sub> is contained or intersected by B<sub>i</sub>}

∃→ < ∃→</p>



B<sub>i</sub> is an axis-parallel d-dimensional box and B<sub>i</sub> ∩ B<sub>j</sub> = Ø for any i ≠ j
G<sub>i</sub> = {p<sub>j</sub>|vc<sub>j</sub> is contained or intersected by B<sub>i</sub>}

∃→ < ∃→</p>



B<sub>i</sub> is an axis-parallel d-dimensional box and B<sub>i</sub> ∩ B<sub>j</sub> = Ø for any i ≠ j
G<sub>i</sub> = {p<sub>j</sub>|vc<sub>j</sub> is contained or intersected by B<sub>i</sub>}

< ∃ > < ∃ >



B<sub>i</sub> is an axis-parallel d-dimensional box and B<sub>i</sub> ∩ B<sub>j</sub> = Ø for any i ≠ j
G<sub>i</sub> = {p<sub>j</sub>|vc<sub>j</sub> is contained or intersected by B<sub>i</sub>}

(B)



B<sub>i</sub> is an axis-parallel d-dimensional box and B<sub>i</sub> ∩ B<sub>j</sub> = Ø for any i ≠ j
G<sub>i</sub> = {p<sub>j</sub>|vc<sub>j</sub> is contained or intersected by B<sub>i</sub>}

(B)

э



- **(**)  $B_i$  is an axis-parallel *d*-dimensional box and  $B_i \cap B_j = \emptyset$  for any  $i \neq j$
- $G_i = \{p_j | vc_j \text{ is contained or intersected by } B_i\}$
- minimum  $|G_x|$  and minimum  $|G_x| |G_i|$ , which means low storage and communication overheads, as well as cheap encryption cost

프 ( ) ( ) ( ) (



- **(9)**  $B_i$  is an axis-parallel *d*-dimensional box and  $B_i \cap B_j = \emptyset$  for any  $i \neq j$
- $G_i = \{p_j | vc_j \text{ is contained or intersected by } B_i\}$
- minimum  $|G_x|$  and minimum  $|G_x| |G_i|$ , which means low storage and communication overheads, as well as cheap encryption cost

< ∃ >

-

→ □ → → モ → → モ →

Ξ.

- Square Grid (SG)
- Minimum Space Grid (MinSG)
- Minimum Maximum Partition(MinMax)

▶ < 글 ▶ < 글 ▶</p>

- Square Grid (SG)
- Minimum Space Grid (MinSG)
- Minimum Maximum Partition(MinMax)

▶ ★ 문 ► ★ 문 ►

・ロト ・回ト ・ヨト ・ヨト

= 990



◆□ > < E > < E > E の < ○</p>



< □> < □> < □> = □ = □

#### Merits:

• Demerits:

- Merits:
  - simple
  - minimum storage cost at client
- Demerits:

回 と く ヨ と く ヨ と

= 900

- Merits:
  - simple
  - minimum storage cost at client
- Demerits:
  - high storage and communication overheads, as well as expensive encryption cost because of highly unbalanced partitions when the data distribution is skewed

- Square Grid (SG)
- Minimum Space Grid (MinSG)
- Minimum Maximum Partition(MinMax)

# Minimum Space Grid (MinSG)

Bin Yao, Feifei Li, Xiaokui Xiao Secure Nearest Neighbor Revisited

回 と く ヨ と く ヨ と

э.

# Minimum Space Grid (MinSG)



白 と く ヨ と く ヨ と …

э.



白 ト ・ ヨ ト ・ ヨ ト …

э.



• A greedy algorithm: always split the maximum partition *G<sub>x</sub>* into smaller partitions

\* E > \* E >

э



- A greedy algorithm: always split the maximum partition *G<sub>x</sub>* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in  $B_x$



- A greedy algorithm: always split the maximum partition *G<sub>x</sub>* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in  $B_x$



- A greedy algorithm: always split the maximum partition *G<sub>x</sub>* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in  $B_x$



- A greedy algorithm: always split the maximum partition *G<sub>x</sub>* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in  $B_x$



- A greedy algorithm: always split the maximum partition *G<sub>x</sub>* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in  $B_x$



- A greedy algorithm: always split the maximum partition *G<sub>x</sub>* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in  $B_x$

(B)



- A greedy algorithm: always split the maximum partition *G<sub>x</sub>* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in  $B_x$
- $\bullet$  choose the  $\ell$  that leads to the minimum maximum partition

- ∢ ≣ →



- A greedy algorithm: always split the maximum partition *G<sub>x</sub>* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in  $B_x$
- $\bullet\,$  choose the  $\ell$  that leads to the minimum maximum partition



- A greedy algorithm: always split the maximum partition *G<sub>x</sub>* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in  $B_x$
- $\bullet\,$  choose the  $\ell$  that leads to the minimum maximum partition

- ∢ ⊒ →



- A greedy algorithm: always split the maximum partition *G<sub>x</sub>* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in  $B_x$
- $\bullet\,$  choose the  $\ell$  that leads to the minimum maximum partition

- ∢ ⊒ →



- A greedy algorithm: always split the maximum partition *G<sub>x</sub>* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in  $B_x$
- $\bullet\,$  choose the  $\ell$  that leads to the minimum maximum partition

- ∢ ⊒ →



- A greedy algorithm: always split the maximum partition *G<sub>x</sub>* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in  $B_x$
- $\bullet$  choose the  $\ell$  that leads to the minimum maximum partition

< ∃ >



- A greedy algorithm: always split the maximum partition *G<sub>x</sub>* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in  $B_x$
- $\bullet$  choose the  $\ell$  that leads to the minimum maximum partition



- A greedy algorithm: always split the maximum partition *G<sub>x</sub>* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in  $B_x$
- $\bullet\,$  choose the  $\ell$  that leads to the minimum maximum partition



- A greedy algorithm: always split the maximum partition *G<sub>x</sub>* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in  $B_x$
- $\bullet\,$  choose the  $\ell$  that leads to the minimum maximum partition

< ∃ >



- A greedy algorithm: always split the maximum partition *G<sub>x</sub>* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in  $B_x$
- $\bullet$  choose the  $\ell$  that leads to the minimum maximum partition



- A greedy algorithm: always split the maximum partition *G<sub>x</sub>* into smaller partitions
- use a line going though the entire space and intersected with the voronoi vertex in  $B_x$
- $\bullet$  choose the  $\ell$  that leads to the minimum maximum partition

Merits:

Demerits:

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● � � � �

- Merits:
  - relatively balanced partitions: low storage and communication overheads, as well as cheap encryption cost
- Demerits:

- Merits:
  - relatively balanced partitions: low storage and communication overheads, as well as cheap encryption cost
- Demerits:
  - complicated partitioning process
  - not most balanced: small-sized partitions introduced by some unnecessary splitting

A B > A B >



<回><モン</td>

= 990



<回><モン</td>

= 990



回 と く ヨ と く ヨ と

э.



• We need a method that produce more balanced partitions!!

(▲ 문 ) (▲ 문 )

# SVD Partitioning

- Square Grid (SG)
- Minimum Space Grid (MinSG)
- Minimum Maximum Partition(MinMax)

白マ イヨマ イヨマ

白 ト ・ ヨ ト ・ ヨ ト …

э.



□ > < E > < E > E - のへで



• similar to MinSG in most part



• similar to MinSG in most part



- similar to MinSG in most part
- use **segments** going though the space bounded by  $B_x$  instead of lines going though the entire space to split partitions



- similar to MinSG in most part
- use **segments** going though the space bounded by  $B_x$  instead of lines going though the entire space to split partitions



- similar to MinSG in most part
- use **segments** going though the space bounded by  $B_x$  instead of lines going though the entire space to split partitions



- similar to MinSG in most part
- use **segments** going though the space bounded by  $B_x$  instead of lines going though the entire space to split partitions



- similar to MinSG in most part
- use **segments** going though the space bounded by  $B_x$  instead of lines going though the entire space to split partitions



- similar to MinSG in most part
- use **segments** going though the space bounded by  $B_x$  instead of lines going though the entire space to split partitions



- similar to MinSG in most part
- use **segments** going though the space bounded by  $B_x$  instead of lines going though the entire space to split partitions



- similar to MinSG in most part
- use **segments** going though the space bounded by  $B_x$  instead of lines going though the entire space to split partitions



- similar to MinSG in most part
- use **segments** going though the space bounded by  $B_x$  instead of lines going though the entire space to split partitions



- similar to MinSG in most part
- use **segments** going though the space bounded by  $B_x$  instead of lines going though the entire space to split partitions



- similar to MinSG in most part
- use **segments** going though the space bounded by  $B_x$  instead of lines going though the entire space to split partitions



- similar to MinSG in most part
- use **segments** going though the space bounded by  $B_x$  instead of lines going though the entire space to split partitions



- similar to MinSG in most part
- use **segments** going though the space bounded by  $B_x$  instead of lines going though the entire space to split partitions

프 ( ) ( ) ( ) (



- similar to MinSG in most part
- use **segments** going though the space bounded by  $B_x$  instead of lines going though the entire space to split partitions



- similar to MinSG in most part
- use **segments** going though the space bounded by  $B_x$  instead of lines going though the entire space to split partitions



- similar to MinSG in most part
- use **segments** going though the space bounded by  $B_x$  instead of lines going though the entire space to split partitions



- similar to MinSG in most part
- use **segments** going though the space bounded by  $B_x$  instead of lines going though the entire space to split partitions



- similar to MinSG in most part
- use **segments** going though the space bounded by  $B_x$  instead of lines going though the entire space to split partitions



- similar to MinSG in most part
- use **segments** going though the space bounded by  $B_x$  instead of lines going though the entire space to split partitions



- similar to MinSG in most part
- use **segments** going though the space bounded by  $B_x$  instead of lines going though the entire space to split partitions

э

Merits:

Demerits:

□ > \* ミ > \* ミ > ・ ミ ・ の < (~

- Merits:
  - most balanced partitions: low storage and communication overheads, as well as cheap encryption cost
- Demerits:

э.

- Merits:
  - most balanced partitions: low storage and communication overheads, as well as cheap encryption cost
- Demerits:
  - high storage cost at client

э.

## Comparison between MinSG and MinMax

白 と く ヨ と く ヨ と

2

#### Comparison between MinSG and MinMax



<回> < 回> < 回> < 回> -

2

## Comparison between MinSG and MinMax



 Clearly, MinMax achieves more balanced partitions than MinSG, which means lower storage and communication overheads, as well as cheaper encryption cost.

э

Bin Yao, Feifei Li, Xiaokui Xiao Secure Nearest Neighbor Revisited

イロン イロン イヨン イヨン

= 990

• We examine the three methods: SG, MinSG and MinMax.

- ▲ 문 ▶ - ▲ 문 ▶

Ξ.

- We examine the three methods: SG, MinSG and MinMax.
- For each method, we test its running time of both partition phrase and encryption phrase, partition size, communication cost of both the preprocessing step and query step and query time.

- We examine the three methods: SG, MinSG and MinMax.
- For each method, we test its running time of both partition phrase and encryption phrase, partition size, communication cost of both the preprocessing step and query step and query time.
- C++, Linux, Intel Xeon 3.07GHz CPU and 8GB memory

( ) < ) < )
 ( ) < )
 ( ) < )
</p>

- We examine the three methods: SG, MinSG and MinMax.
- For each method, we test its running time of both partition phrase and encryption phrase, partition size, communication cost of both the preprocessing step and query step and query time.
- C++, Linux, Intel Xeon 3.07GHz CPU and 8GB memory
- Data sets
  - Points of interest in California(CA) and Texas(TX) from the *OpenStreetMap* project.
  - In each dataset, we randomly select 2 million points to create the largest dataset  $D_{max}$  and form smaller datasets based on  $D_{max}$ .

• • = • • = •

- We examine the three methods: SG, MinSG and MinMax.
- For each method, we test its running time of both partition phrase and encryption phrase, partition size, communication cost of both the preprocessing step and query step and query time.
- C++, Linux, Intel Xeon 3.07GHz CPU and 8GB memory
- Data sets
  - Points of interest in California(CA) and Texas(TX) from the *OpenStreetMap* project.
  - In each dataset, we randomly select 2 million points to create the largest dataset  $D_{max}$  and form smaller datasets based on  $D_{max}$ .
- Default settings.

| Symbol | Definition           | Default Value   |
|--------|----------------------|-----------------|
| D      | size of the dataset  | 10 <sup>6</sup> |
| k      | number of partitions | 625             |
| DT     | dataset type         | CA              |

• • = • • = •

# Attack on Existing SNN Methods

• Vary |D|: Wai Kit Wong, David Cheung, Ben Kao, Nikos Mamoulis:

Secure kNN computation on encrypted databases. SIGMOD 2009



# Attack on Existing SNN Methods

• Vary |D|: Haibo Hu, Jianliang Xu, Chushi Ren, Byron Choi: Processing private queries over untrusted data cloud through privacy homomorphism. ICDE 2011



## Partition size in different methods



## Partition size in different methods



# Query communication cost



э

## Query communication cost



# Total running time of the preprocessing step

• Vary k



## Total running time of the preprocessing step





## Query time for different methods

• Vary k



#### Query time for different methods

• Vary |D|



#### Running time of the partition phase



#### Running time of the partition phase



## Total size of E(D)



## Total size of E(D)



Other similarity metrics?

回 と く ヨ と く ヨ と

Ξ.

Other similarity metrics?

e High dimensions (beyond 2)?

□ > < E > < E >

- Other similarity metrics?
- e High dimensions (beyond 2)?
- Secure k nearest neighbors?

A B M A B M

э

- Other similarity metrics?
- e High dimensions (beyond 2)?
- Secure k nearest neighbors?
- Opdates?

(★ 문 ► ★ 문 ►

э

- Other similarity metrics?
- e High dimensions (beyond 2)?
- Secure k nearest neighbors?
- Opdates?
- Secure data analytics based on similarity search: clustering, content-based search, etc.

(B) < B)</p>

э

- Other similarity metrics?
- e High dimensions (beyond 2)?
- Secure k nearest neighbors?
- Updates?
- Secure data analytics based on similarity search: clustering, content-based search, etc.
- **(2)** Variants of similarity search: reverse nearest neighbors, skylines, etc.

( ) < ) < )
 ( ) < )
 ( ) < )
</p>

### Conclusion

• Design a new partition-based secure voronoi diagram (SVD) method.

▶ < 문 > < 문 >

- Design a new partition-based secure voronoi diagram (SVD) method.
- Implement the SVD with three partitioning methods.

→ ∃ → → ∃ →

- Design a new partition-based secure voronoi diagram (SVD) method.
- Implement the SVD with three partitioning methods.
- Future work
  - extending our investigation to higher dimensions, k nearest neighbors

# Thank You

#### $\ensuremath{\mathbb{Q}}$ and $\ensuremath{\mathbb{A}}$

Bin Yao, Feifei Li, Xiaokui Xiao Secure Nearest Neighbor Revisited

白 と く ヨ と く ヨ と …

= 900