
33. Narrowing the Gap Between Serverless and its State with 
Storage Functions

*Tian Zhang, Dong Xie, Feifei Li, Ryan Stutsman

Design - Data store and CSA builtin co-design to avoid runtime exits.
● Data store implemented C++.
● Embed V8 runtime to isolate functions.
● Functions access data through V8 builtin across 

language boundary.
● Problem: boundary crossing costs.

● Optimization: map data into V8 runtime.
● Allow functions to access data without 

exiting V8 runtime.
● Eliminate boundary crossing costs.

● Data are stored in hash tables in data store.
● Data store implements data lookup function in C++.
● CSA builtin implements the same data lookup logic.
● CSA (CodeStubAssembler) is the intermediate 

representation used by V8 runtime internally.
● JavaScript functions access data through CSA builtin 

without exiting V8 runtime.

Results - Reduce data movements. High speed data access with CSA.
● Projection, query the first 4 bytes of a value.
● Without Shredder clients need to fetch the 

whole value.
● Bound by network bandwidth.
● Push projection logic to Shredder to reduce 

data movements.

● Graph query over Facebook social graph.
● Shredder 60X better performance than 

remote get/put.
● CSA 3X better performance than w/o CSA.

● A 1 hop query visits about 25 nodes.
● A 2 hop query visits about 700 nodes.
● A 4 hop query visits more than 400k nodes.
● CSA enables direct access to in-memory 

data (achieves 10s of GB/s data access 
speed).

Motivation - Pushing code to data. Flexibility of customized data mode at storage.
● Gap between serverless and it’s states.
● Users pay for additional idle time waiting for 

data from external storage service.

● Pushing code to data greatly narrows the gap.
● V8 language runtime to isolate code, much 

lower isolation cost than process isolation.

● Users can leverage the flexibility of general 
programming language to implement customized 
data structures and logic.

Utah Scalable Computer Systems University of Utah


