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Motivation - Pushing code to data. Flexibility of customized data mode at storage.

e Gap between serverless and it's states. e Pushing code to data greatly narrows the gap. e Users can leverage the flexibility of general
e Users pay for additional idle time waiting for e V8 language runtime to isolate code, much programming language to implement customized
data from external storage service. lower isolation cost than process isolation. data structures and logic.
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Design - Data store and CSA builtin co-design to avoid runtime exits.

e Data store implemented C++. e Optimization: map data into V8 runtime. e Data are stored in hash tables in data store.
e Embed V8 runtime to isolate functions. e Allow functions to access data without e Data store implements data lookup function in C++.
e Functions access data through V8 builtin across exiting V8 runtime. e CSA builtin implements the same data lookup logic.
language boundary. e Eliminate boundary crossing costs. e CSA (CodeStubAssembler) is the intermediate
e Problem: boundary crossing costs. representation used by V8 runtime internally.
_ e JavaScript functions access data through CSA builtin
V8 engine without exiting V8 runtime.
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Results - Reduce data movements. High speed data access with CSA.

e Projection, query the first 4 bytes of a value. e Graph query over Facebook social graph. e A 1 hop query visits about 25 nodes.

e \Without Shredder clients need to fetch the e Shredder 60X better performance than e A 2 hop query visits about 700 nodes.
whole value. remote get/put. e A 4 hop query visits more than 400k nodes.

e Bound by network bandwidth. e CSA 3X better performance than w/o CSA. e CSA enables direct access to in-memory

e Push projection logic to Shredder to reduce data (achieves 10s of GB/s data access
data movements. speed).
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