33. Narrowing the Gap Between Serverless and its State with
Storage Functions

4 Utah Scalable Computer Systems T University of Utah
*Tian Zhang, Dong Xie, Feifei Li, Ryan Stutsman

Motivation - Pushing code to data. Flexibility of customized data mode at storage.

e Gap between serverless and it's states. e Pushing code to data greatly narrows the gap. e Users can leverage the flexibility of general
e Users pay for additional idle time waiting for e V8 language runtime to isolate code, much programming language to implement customized
data from external storage service. lower isolation cost than process isolation. data structures and logic.

7,

NN ~ 50 us c >
S Network costs A - Data W
|
A_ Data between servers — — Graph
. . Functions
Serverless Storage ~20 us —
Function Service Kernel bypass to A < Data W G
| |
: | reduce latency — — (IITT]
- (113 F
f ,,4‘!.4 8 Streaming Z
e >! | ———“: > 2 us " “‘ Functions = o LA
_ 2 | Push code to data, | A I . Data |]
Idle time é;\--— ! > process isolation cost S IS
B - L
\\ | »}
i
h l I |f_ _______ |
e \ I
; | V8 runtime isolation, ~31ns | | A | Data | .
| | boundary crossing cost L S | s
| Functions

Design - Data store and CSA builtin co-design to avoid runtime exits.

e Data store implemented C++. e Optimization: map data into V8 runtime. e Data are stored in hash tables in data store.
e Embed V8 runtime to isolate functions. e Allow functions to access data without e Data store implements data lookup function in C++.
e Functions access data through V8 builtin across exiting V8 runtime. e CSA builtin implements the same data lookup logic.
language boundary. e Eliminate boundary crossing costs. e CSA (CodeStubAssembler) is the intermediate
e Problem: boundary crossing costs. representation used by V8 runtime internally.
_ e JavaScript functions access data through CSA builtin
V8 engine without exiting V8 runtime.
V8::Context V8::Context V8::Context
V8 engine
V8::Context V8::Context V8::Context ! IR N CSA
‘*\:\ TF_BUILTIN(HTGet,
vy Bl BUD i "
JavaScript JavaScript — / : I — / —— Y 3 7 —~ A—
___________________ e e el =
C++ C++ C++
Data Data Data Data Data Data =~ Hashtable
1L | 774, db_val_t* ht_get(hashtable_t* ht,
— " __— _— _— _— NIC = —F P uint32_t key) {
Data store NIC Data store NIC e) 7

Results - Reduce data movements. High speed data access with CSA.

e Projection, query the first 4 bytes of a value. e Graph query over Facebook social graph. e A 1 hop query visits about 25 nodes.

e \Without Shredder clients need to fetch the e Shredder 60X better performance than e A 2 hop query visits about 700 nodes.
whole value. remote get/put. e A 4 hop query visits more than 400k nodes.

e Bound by network bandwidth. e CSA 3X better performance than w/o CSA. e CSA enables direct access to in-memory

e Push projection logic to Shredder to reduce data (achieves 10s of GB/s data access
data movements. speed).

N 14 L | | | | | l E 2.0 w 350 800 | I

?n. 12 — | ()] ?ﬁ‘ 300 = 3 Shredder |

o ok o :

S 19 L +—= Remote get/put | © 15}k 1o 250 B Shredder w/o CSA 700 -

= gl — Shredder | = x 500 i B Remote get/put || — Shredder

= 2 1.0} 15 i | v i +—+ Shredder w/jo CSA

2 6| - 3 2 150 | - A 600

= r= = = *—+ Remote get/put

2 4T . & 05| 15 100t i s

e 2 - o S 50 _ < 500 _

P—E 0 | | | | . : f_: 0.0 -IF—: 0 ;

_ 16B 32B 64B 128B 256B 512B 1kB 2kB ~ 1-hop graph queries. - 2-hop graph queries. T 400 -

2 n 5 2. @

G a 231 14 ~ 300 .

- © 2pk 1© 15F . £

O x X o

Iz g 1br 1= 10}] 2 200 . -

- = 10} 1 £

© o o 0.5 F . 100 .

- 5 O I 18 .

*(E 0.0 | | | | | | f_: 0 . "E 0.0 ' 0= —¥ * s

O 16B 32B 64B 128B 256B 512B 1kB 2kB 3-hop graph queries. 4-hop graph queries. 1-hop 2-hop 3-hop 4-hop

Value Size

