
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Spatial Approximate String Search
Feifei Li Member, IEEE , Bin Yao, Mingwang Tang, Marios Hadjieleftheriou

Abstract—This work deals with the approximate string search in large spatial databases. Specifically, we investigate range queries
augmented with a string similarity search predicate in both Euclidean space and road networks. We dub this query the spatial
approximate string (SAS) query. In Euclidean space, we propose an approximate solution, the MHR-tree, which embeds min-wise
signatures into an R-tree. The min-wise signature for an index node u keeps a concise representation of the union of q-grams from
strings under the sub-tree of u. We analyze the pruning functionality of such signatures based on the set resemblance between
the query string and the q-grams from the sub-trees of index nodes. We also discuss how to estimate the selectivity of a SAS

query in Euclidean space, for which we present a novel adaptive algorithm to find balanced partitions using both the spatial and
string information stored in the tree. For queries on road networks, we propose a novel exact method, RSASSOL, which significantly
outperforms the baseline algorithm in practice. The RSASSOL combines the q-gram based inverted lists and the reference nodes based
pruning. Extensive experiments on large real data sets demonstrate the efficiency and effectiveness of our approaches.

Index Terms—approximate string search, range query, road network, spatial databases

✦

1 INTRODUCTION

Keyword search over a large amount of data is an important
operation in a wide range of domains. Felipe et al. has recently
extended its study to spatial databases [17], where keyword
search becomes a fundamental building block for an increasing
number of real-world applications, and proposed the IR2-Tree.
A main limitation of the IR2-Tree is that it only supports exact
keyword search. In practice, keyword search for retrieving
approximate string matches is required [3], [9], [11], [27],
[28], [30], [36], [43]. Since exact match is a special case
of approximate string match, it is clear that keyword search
by approximate string matches has a much larger pool of
applications. Approximate string search is necessary when
users have a fuzzy search condition, or a spelling error when
submitting the query, or the strings in the database contain
some degree of uncertainty or error. In the context of spatial
databases, approximate string search could be combined with
any type of spatial queries. In this work, we focus on range
queries and dub such queries asSpatial Approximate String
(SAS) queries. An example in the Euclidean space is shown
in Figure 1, depicting a common scenario in location-based
services: find all objects within a spatial ranger (specified
by a rectangular area) that have a description that is similar
to “theatre”. We denote SAS queries in Euclidean space as
(ESAS) queries. Similarly, Figure 2 extends SAS queries to
road networks (referred as RSAS queries). Given a query point
q and a network distancer on a road network, we want
to retrieve all objects within distancer to q and with the
description similar to “theatre”, where the distance between
two points is the length of their shortest path.

A key issue in SAS queries is to define the similarity

• Feifei Li and Mingwang Tang are with the School of Computing,University
of Utah. E-mail:{lifeifei, tang}@cs.utah.edu. Bin Yao is with the Depart-
ment of Computer Science and Engineering, Shanghai Jiao Tong University
(contact author). E-mail: yaobin@cs.sjtu.edu.cn. MariosHadjieleftheriou
is with the AT&T Labs Research. E-mail: marioh@research.att.com.

Q : r, theatre, τ = 2

p1: Moe’s

p2: ymca club

p3: theaters

p4: theater

p5: grocery

p10: gym

p9: shaw’s market

p8: Commonwealth ave

p7: theatre

p6: barnes noble

Fig. 1. An example of ESAS query.

Q : r, theatre, τ = 2, q =

p1: Moe’s

p2: ymca club

p3: theaters

p4: theater

p5: grocery

p10: gym

p9: shaw’s market

p8: Commonwealth ave

p7: theatre

p6: barnes noble

r

r

r r

Fig. 2. An example of RSAS query.
between two strings. Theedit distancemetric is often adopted
[3], [9], [11], [27], [28], [30], [36], [43]. Specifically, given
strings σ1 and σ2, the edit distance betweenσ1 and σ2,
denoted asε(σ1, σ2), is defined as the minimum number
of edit operationsrequired to transform one string into the
other. Theedit operationsrefer to an insertion, deletion, or
substitution of a single character. Clearly,ε is symmetric, i.e.,
ε(σ1, σ2) = ε(σ2, σ1). For example, letσ1 =‘theatre’ and
σ2 =‘theater’, thenε(σ1, σ2) = 2, by substituting the first ‘r’
with ‘e’ and the second ‘e’ with ’r’. Wedo notconsider the
generalized edit distance in which the transposition operator
(i.e., swapping two characters in a string while keeping others
fixed) is also included. The standard method for computing
ε(σ1, σ2) is a dynamic programming formulation. For two
strings with lengthsn1 andn2 respectively, it has a complexity
of O(n1n2). That said, given the edit distance thresholdτ = 2,
the answer to the ESAS query in Figure 1 is{p4, p7}; the
answer to the RSAS query in Figure 2 is{p7}.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

A straightforward solution to any SAS query is to use any
existing techniques for answering the spatial component ofan
SAS query and verify the approximate string match predicate
either in post-processing or on the intermediate results ofthe
spatial search. We refer to them as thespatial solution.

In the Euclidean space, we can instantiate thespatial
solution using R-trees. While being simple, thisR-tree so-
lution could suffer from unnecessary node visits (higher IO
cost) and string similarity comparisons (higher CPU cost).
To understand this, we denote the exact solution to an ESAS

query asA and the set of candidate points that have been
visited by the R-tree solution asAc. An intuitive observation
is that it may be the case that|Ac| ≫ |A|, where| · | denotes
set cardinality. In an extreme example, considering an ESAS

query with a query string that does not have any similar strings
within its query range,A = ∅. So ideally, this query should
incur a minimum query cost. However, in the worst case, an
R-tree solution could possibly visit all index nodes and data
points from the R-tree. In general, the case thatr contains
a large number of points could lead to unnecessary IO and
CPU overhead, since computing the edit distance between
two strings has a quadratic complexity (to the length of the
string). The fundamental issue here is that the possible pruning
power from the string match predicate has been completely
ignored by the R-tree solution. Clearly, in practice a combined
approach that prunes simultaneously based on the string match
predicate and the spatial predicate will work better.

For RSAS queries, the baseline spatial solution is based on
the Dijkstra’s algorithm. Given a query pointq, the query range
radius r, and a string predicate, we expand fromq on the
road network using the Dijkstra algorithm until we reach the
points distancer away fromq and verify the string predicate
either in a post-processing step or on the intermediate results
of the expansion. We denote this approach as theDijkstra
solution. Its performance degrades quickly when the query
range enlarges and/or the data on the network increases. This
motivates us to find a novel method to avoid the unnecessary
road network expansions, by combining the prunings from
both the spatial and the string predicates simultaneously.

Similarly, another straightforward solution in both ESAS

and RSAS queries is to build a string matching index and
evaluate only the string predicate, completely ignoring the
spatial component of the query. After all similar strings are
retrieved, points that do not satisfy the spatial predicateare
pruned in a post-processing step. We dub this thestring
solution. First, the string solution suffers the same scalability
and performance issues (by ignoring one dimension of the
search) as thespatial solution. Second, we want to enable the
efficient processing of standard spatial queries (such as nearest
neighbor queries, etc.) while being able to answer SAS queries
additionally in existing spatial databases, i.e., a spatial-oriented
solution is preferred in practice in spatial databases.

Another interesting problem is theselectivity estimationfor
SAS queries. The goal is to accurately estimate the size of
the results for an SAS query with cost significantly smaller
than that of actually executing the query itself. Selectivity
estimation is very important for query optimization purposes
and data analysis and has been studied extensively in database

research for a variety of approximate string queries and spatial
range queries [1], [33].

Thus, our main contributions are summarized as follows:
• We formalize the notion of SAS queries and the related

selectivity estimation problem in Section 2.
• We introduce a new index for answering ESAS queries

efficiently in Section 3.2, which embeds min-wise signa-
tures of q-grams from sub-trees into the R-tree nodes
and converts the problem into that of evaluating set
resemblance using min-wise signatures.

• We present a novel and robust selectivity estimator for
ESAS queries in Section 3.3. Our idea is to leverage an
adaptive algorithm that finds balanced partitions of nodes
from any R-tree based index based on both the spatial and
string information in the R-tree nodes. The identified par-
titions are used as the buckets of the selectivity estimator.

• We design RSASSOL in Section 4 for RSAS queries. The
RSASSOL method partitions the road network, adaptively
searches relevant subgraphs, and prunes candidate points
using both the string matching index and the spatial
reference nodes. Lastly, an adapted multi-points ALT
algorithm (MPALT) is applied, together with the exact
edit distances, to verify the final set of candidates.

• We demonstrate the efficiency and effectiveness of our
proposed methods for SAS queries using a comprehensive
experimental evaluation in Section 5. For ESAS queries,
our experimental evaluation covers both synthetic and real
data sets of up to10 millions points and6 dimensions.
For RSAS queries, our evaluation is based on two large,
real road network datasets, that contain up to 175,813
nodes, 179,179 edges, and 2 millions points on the road
network. In both cases, our methods have significantly
outperformed the respective baseline methods.

We survey the related work in Section 6. The paper con-
cludes with Section 7.

2 PROBLEM FORMULATION

Formally, a spatial databaseP contains points with strings.
Each point inP may be associated with one or more strings.
For brevity and without loss of generality, here we assume that
each point inP has one associated string. Our methods can
be easily generalized to handle multiple strings per point (see
online Appendix D [31]). Hence, a data setP with N points
is the following set:{(p1, σ1), . . . , (pN , σN)}. Different points
may contain duplicate strings. In the sequel, when the context
is clear, we simply use a pointpi to denote both its geometric
coordinates and its associated string.

In the Euclidean space, each point is specified by its
geometric coordinates in ad dimensional space. In a road
network G, we haveG = (V, E), whereV (E) denotes the
set of nodes (edges) inG. We index nodes inG by unique ids,
and specify an edge by its two end-nodes, placing the node
with the smaller id first. That said, each pointpi ∈ P resides
on an edge(ni, nj) ∈ E, whereni, nj ∈ V andni < nj . We
locatepi by (ni, nj) and its distance offset toni.

A spatial approximate string(SAS) queryQ consists of two
parts: the spatial predicateQr and the string predicateQs. In
this paper we concentrate on usingrangequeries as the spatial

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

Symbol Description
P the set of points with strings
gσ the set ofq-grams of the stringσ
τ the edit distance threshold
ε(σ1, σ2) the edit distance between stringsσ1 andσ2

ρ(A,B) the set resemblance of two setsA andB
bρ(A,B) an unbiased estimator forρ(A,B)
s(gp) the min-wise signature ofgp

Θ(b),
Q

(b) the area, perimeter of a blockb
k number of buckets
G = (V, E) road network with vertex (edge) setV (E)
d(p1, p2) network distance betweenp1 andp2

VR the set of reference nodes
d−(p1, p2) a lower bound ofd(p1, p2)
d+(p1, p2) an upper bound ofd(p1, p2)

Fig. 3. Frequently used notations.

predicate. In the Euclidean space,Qr is defined by a query
rectangler; in road networks, it is specified by a query pointq
and a radiusr. In both cases, the string predicateQs is defined
by a stringσ and an edit distance thresholdτ .

Let the setAr = {px|px ∈ P ∧px is contained inr} if P is
in the Euclidean space; or,Ar = {px|px ∈ P ∧ d(q, px) ≤ r}
if P is in a road network andd(q, p) is the network distance
between two pointsq andp.

Let the setAs = {px|px ∈ P ∧ ε(σ, σx) ≤ τ}. We define
the SAS query as follows:

Definition 1 (SAS query) An SAS query Q : (Qr, Qs) re-
trieves the set of pointsA = Ar ∩As.

The problem ofselectivity estimation for anSAS query Qis
to efficiently (i.e., faster than executingQ itself) and accurately
estimate the size|A| of the query answer.

We useσp to denote the associated string of a pointp
and assume thatP is static. Extending our techniques to the
general case with multiple strings per point, or with other
spatial query types, and dealing with dynamic updates will be
discussed in the online Appendix D [31]. Figure 3 summarizes
the notations frequently used in the paper.

3 THE ESAS QUERIES

3.1 Preliminaries

Let Σ be a finite alphabet of size|Σ|. A string σ of lengthn
hasn characters (possibly with duplicates) inΣ∗.

3.1.1 Edit distance pruning

Computing edit distance exactly is a costly operation. Sev-
eral techniques have been proposed for identifying candidate
strings within a small edit distance from a query string fast
[4], [11], [33]. All of them are based onq-grams and aq-gram
counting argument.

For a stringσ, its q-grams are produced by sliding a window
of lengthq over the characters ofσ. To deal with the special
case at the beginning and the end ofσ, that have fewer thanq
characters, one may introduce special characters, such as “#”
and “$”, which are not inΣ. This helps conceptually extend
σ by prefixing it with q − 1 occurrences of “#” and suffixing
it with q − 1 occurrences of “$”. Hence, eachq-gram for the
string σ has exactlyq characters.

Example 1 The q-grams of length2 for the stringtheatre
are{#t, th, he, ea, at, tr, re, e$}. Theq-grams of length2 for
the stringtheater are{#t, th, he, ea, at, te, er, r$}.

To handle duplicates in theq-grams of a string, we associate
a counter with eachuniqueq-gram to indicate the number of
times it appears in the string. For example:

Example 2 The q-grams of length2 for the stringaabaa are
{(#a, 1), (aa, 1), (ab, 1), (ba, 1), (aa, 2), (a$, 1)}.

Clearly, a string of lengthn will haven−q+1 q-grams with
eachq-gram having lengthq. Let gσ be the set ofq-grams of
the stringσ. It is also immediate from the above example that
strings within a small edit distance will share a large number
of q-grams. This intuition has been formalized in [19], [42]
and others. Essentially, if we substitute a single character in
σ1 to obtain σ2, then theirq-gram sets differ by at mostq
q-grams (the length of eachq-gram). Similar arguments hold
for both the insertion and deletion operations. Hence,

Lemma 1 [From [19]] For strings σ1 and σ2 of length|σ1|
and|σ2|, if ε(σ1, σ2) = τ , then|gσ1

∩gσ2
| ≥ max(|σ1|, |σ2|)−

1 − (τ − 1) ∗ q.

3.1.2 The min-wise signature

The min-wise independent families of permutations were first
introduced in [6], [12]. A family of min-wise independent
permutationsF must satisfy equation (1) below. Let the
universe of elements beU , for any setX that is defined by
elements fromU , i.e., X ⊆ U , for any x ∈ X , when π is
chosen at random inF we have:

Pr(min{π(X)} = π(x)) =
1

|X |
. (1)

In equation (1),π(X) produces a permutation ofX and
π(x) is the location value ofx in the resulted permutation,
and min{π(X)} = min{π(x)|x ∈ X}. In other words, all
elements of any fixed setX have an equal probability to be
the minimum value for setX under permutationπ from a
min-wise independent family of permutations. The min-wise
independent family of permutations is useful for estimating
set resemblance. The set resemblance of two setsA andB is
defined as:

ρ(A, B) =
|A ∩ B|

|A ∪ B|
.

Broder et al. has shown in [6] that a min-wise independent
permutationπ could be used to construct an unbiased estimator
for ρ(A, B), specifically, let:

ρ̂(A, B) = Pr(min{π(A)} = min{π(B)}).

Thenρ̂(A, B) is an unbiased estimator forρ(A, B). Based on
this, one can define themin-wise signatureof a setA usingℓ
min-wise independent permutations from a familyF as:

s(A) = {min{π1(A)}, min{π2(A)}, . . . , min{πℓ(A)}}, (2)

then, ρ̂(A, B) could be estimated as:

ρ̂(A, B) =
|{i|min{πi(A)} = min{πi(B)}}|

ℓ
.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

The above can be easily extended tok sets,A1, . . . , Ak:

ρ̂(A1, . . . , Ak) =
|{i|min{πi(A1)} = · · ·min{πi(Ak)}}|

ℓ
.

(3)
Implementation of min-wise independent permutations re-

quires generating random permutations of a universe and
Broder et al. [6] showed that there is no efficient implemen-
tation of a family of hash functions that guarantees equal
likelihood for any element to be chosen as the minimum
element of a permutation. Thus, prior art often uses linear hash
functions based on Rabin fingerprints to simulate the behavior
of the min-wise independent permutations since they are easy
to generate and work well in practice [6]. Let

h(x) = (αλxλ + αλ−1x
λ−1 + · · · + α1x + α0) mod p,

for large random primep andλ. We generate independently at
randomℓ linear hash functionsh1, . . . , hℓ and let anyπi = hi

for i = 1, . . . , ℓ.

3.2 The MHR-tree

Suppose the disk block size isB. The R-tree [21] and its
variants (e.g., R∗-tree [5]) share a similar principle. They first
group≤ B points that are in spatial proximity into a minimum
bounding rectangle (MBR), which is stored in a leaf node.
When all points inP are assigned into MBRs, the resulting
leaf node MBRs are then further grouped together recursively
till there is only one MBR left. Each nodeu in the R-tree is
associated with the MBR enclosing all the points stored in its
subtree, denoted by MBR(u). Each internal node also stores
the MBRs of all its children.

For a range queryr, we start from the root and check the
MBR of each of its children, then recursively visit any node
u whose MBR intersects or falls insider. When a leaf node
is reached, all the points that are insider are returned. R∗-
trees achieve better performance in general than the original
R-trees. In the following, we used R∗-trees in our construction
and simply use the notationR-tree to denote an R∗-tree.

To incorporate the pruning power of edit distances into the
R-tree, we can utilize the result from Lemma 1. The intuition
is that if we store theq-grams for all strings in a subtree rooted
at an R-tree nodeu, denoted asgu, given a query stringσ,
we can extract the queryq-gramsgσ and check the size of the
intersection betweengu and gσ, i.e., |gu ∩ gσ|. Then we can
possibly prune nodeu by Lemma 1, even ifu does intersect
with the query ranger. Formally,

Lemma 2 Letgu be the set for the union ofq-grams of strings
in the subtree of nodeu. For a SAS query withQs = (σ, τ),
if |gu ∩ gσ| < |σ| − 1 − (τ − 1) ∗ q, then the subtree of node
u does not contain any element fromAs.

Proof: gu is a set, thus, it contains distinctq-grams. The
proof follows by the definition ofgu and Lemma 1.

By Lemma 2, we can introduce string-based pruning into
the R-tree by storing setsgu for all R-tree nodesu. However,
the problem of doing this is thatgu becomes extremely
large for nodes located in higher levels of the tree. This
not only introduces storage overhead, but more importantly,
it drastically reduces the fan-out of the R-tree and increases
the query cost. To address this issue, we embed the min-wise

signature ofgu in an R-tree node, instead ofgu itself. The
min-wise signatures(gu) has a constant size (see Equation
2; assumingℓ is some constant), and this means that|s(gu)|
(its size) is independent of|gu|. We term the combined R-tree
with s(gu) signatures embedded in the nodes as theMin-wise
signature with linearHashing R-tree (MHR-tree). The rest of
this section explains its construction and query algorithms.

3.2.1 The construction of the MHR-tree
For a leaf level nodeu, let the set of points contained inu be
up. For every pointp in up, we compute itsq-gramsgp and
the corresponding min-wise signatures(gp). Note that in order
to compute the min-wise signatures(gu) for the nodeu, we
do not need to computegu (which can be costly, space-wise).
One can do this much more efficiently. Specifically, lets(A)[i]
be theith element for the min-wise signature of a setA, i.e.,
s(A)[i] = min{πi(A)}. Given the set of min-wise signatures
{s(A1), . . . , s(Ak)} of k sets, by Equation 2, we have:

s(A1 ∪ · · · ∪ Ak)[i] = min{s(A1)[i], . . . , s(Ak)[i]}, (4)

for i = 1, . . . , ℓ, since each element in a min-wise signature
always takes the smallest image for a set.

We can obtains(gu) using Equation 4 ands(gp)’s for every
point p ∈ up, directly. We store all (p, s(gp)) pairs in nodeu,
ands(gu) in the index entry that points tou in u’s parent.

For an index level nodeu, let its child entries be
{c1, . . . , cf} wheref is the fan-out of the R-tree. Each entry
ci points to a child nodewi of u, and contains the MBR
for wi. We also store the min-wise signature of the node
pointed to by ci, i.e., s(wi). Clearly, gu = ∪i=1,...,fgwi

.
Hence,s(gu) = s(gw1

∪ · · · ∪ gwf
); based on Equation 4,

we can computes(gu) using s(gwi
)’s. This implies that we

do not have to explicitly producegu to get s(gu), i.e., there
is no need to storegwi

’s.
This procedure is recursively applied in a bottom-up fashion

until the root node of the R-tree has been processed.

3.2.2 Query algorithms for the MHR-tree
The query algorithms for the MHR-tree generally follow the
same principles as the corresponding algorithms for the spatial
query component. However, we would like to incorporate the
pruning method based onq-grams and Lemma 2 without the
explicit knowledge ofgu for a given R-tree nodeu. We need
to achieve this with the help ofs(gu). Thus, the key issue
boils down to estimating|gu ∩ gσ| usings(gu) andσ.

We can easily computegσ and s(gσ) from the query
string once, using the same hash functions that were used for
constructing the MHR-tree. When encountering a nodeu, let
g refer to gu ∪ gσ (g cannot be computed explicitly asgu is
not available). We computes(g) = s(gu∪gσ) based ons(gu),
s(gσ) and Equation 4. Next, we estimate the set resemblance
ρ(g, gσ) betweeng andgσ as follows:

ρ̂(g, gσ) =
|{i|min{hi(g)} = min{hi(gσ)}}|

ℓ
. (5)

Equation 5 is a direct application of Equation 3. Note that:

ρ(g, gσ) =
|g ∩ gσ|

|g ∪ gσ|
=

|(gu ∪ gσ) ∩ gσ|

|(gu ∪ gσ) ∪ gσ|
=

|gσ|

|gu ∪ gσ|
. (6)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

Algorithm 1 : QUERY-MHR(MHR-treeR, Ranger, String
σ, int τ)

Let L be a FIFO queue initialized to∅, let A = ∅;1

Let u be the root node ofR; insertu into L;2

while L 6= ∅ do3

Let u be the head element ofL; pop outu;4

if u is a leaf nodethen5

for every pointp ∈ up do6

if p is contained inr then7

if8

|gp ∩ gσ| ≥ max(|σp|, |σ|)− 1− (τ − 1) ∗ q
then

if ε(σp, σ) < τ then Insertp in A;9

else10

for every child entryci of u do11

if r and MBR(wi) intersectthen12

Calculates(g = gwi
∪ gσ) based on13

s(gwi
), s(gσ) and Equation 4;

Calculate ̂|gwi
∩ gσ| using Equation 9;14

if ̂|gwi
∩ gσ| ≥ |σ| − 1 − (τ − 1) ∗ q then15

Read nodewi and insertwi into L;16

ReturnA.17

Based on Equations 5 and 6 we can estimate|gu ∪ gσ| as:

̂|gu ∪ gσ| =
|gσ|

ρ̂(g, gσ)
. (7)

Finally, we can estimateρ(gu, gσ) by:

ρ̂(gu, gσ) =
|{i|min{hi(gu)} = min{hi(gσ)}}|

ℓ
. (8)

Note thatρ(gu, gσ) = |gu ∩ gσ|/|gu ∪ gσ|. Hence, based on
Equations 7 and 8 we can now estimate|gu ∩ gσ| as:

̂|gu ∩ gσ| = ρ̂(gu, gσ) ∗ ̂|gu ∪ gσ|. (9)

Given the estimation ̂|gu ∩ gσ| for |gu ∩ gσ|, one can then
apply Lemma 2 to prune nodes that cannot possibly contain
points from As. Specifically, an R-tree nodeu could be
pruned if ̂|gu ∩ gσ| < |σ| − 1 − (τ − 1) ∗ q. Since ̂|gu ∩ gσ|
is only an estimation of|gu ∩ gσ|, the pruning based on

̂|gu ∩ gσ| may lead to false negatives (if̂|gu ∩ gσ| < |gu∩gσ|).
However, empirical evaluation in Section 5 suggests that when
a reasonable number of hash functions have been used in the
min-wise signature (our experiment indicates thatℓ = 50 is
good enough for large databases with10 million points), the
above estimation is very accurate.

The ESAS query algorithm is presented in Algorithm 1.
When the object is a data point (line6), we can obtain|gp∩gσ|
exactly; gp is not stored explicitly in the tree, but can be
computed on the fly by a linear scan ofσp. We also know
the lengths of bothσp andσ at this point. Hence, in this case,
Lemma 1 is directly applied in line8 for better pruning power.
When eitherσp or σ is long, calculating|gp∩gσ| exactly might
not be desirable. In this case, we can still uses(gp) ands(gσ)

to estimate ̂|gp ∩ gσ| using Equation 9. When the object is
an R-tree node, we apply Equation 9 and Lemma 2 to prune

(lines 14-17), in addition to the pruning by the query ranger
and the MBR of the node (line13).

3.3 Selectivity estimation for ESAS queries

Another interesting topic for approximate string queries in
spatial databases is selectivity estimation. Several selectivity
estimators for approximate string matching have been pro-
posed, none though in combination with spatial predicates.
Various techniques have been proposed specifically for edit
distance [25], [28], [33]. A state of the art technique based
on q-grams and min-wise signatures isVSol [33]. It builds
inverted lists withq-grams as keys and string ids as values;
one list per distinctq-gram in input strings. Each list is
summarized using the min-wise signature of the string ids
in the list. The collection on min-wise signatures and their
correspondingq-grams (one signature per distinctq-gram) is
the VSolselectivity estimator for a data setP .

VSol uses theL-M similarity for estimating selectivity.
L = |σ| − 1 − (τ − 1) ∗ q is the number of matchingq-
grams two strings need to have for their edit distance to be
possibly smaller thanτ (based on Lemma 1).M is the number
of q-grams in VSol that match someq-grams in the query
string σ. The L-M similarity quantifies the number of string
ids contained in the correspondingM inverted lists that share
at leastL q-grams with the query. Clearly, if a given data string
shares at leastL q-grams withσ, then the corresponding string
id should appear in at leastL of theseM lists. Identifying the
number of such string ids (in other words the selectivity of
the query), amounts to estimating the number of string ids
appearing inL lists, for all M chooseL combinations of lists
(each hasL lists from M candidate lists). Denote the set of
string ids that appear in allL lists in thei-th combination with

Li, 1 ≤ i ≤

(
M
L

)
. The L-M similarity is defined as:

ρLM = | ∪ Li|. (10)

If we can estimateρLM , we can estimate the selectivity as
ρLM

|P | . ComputingρLM exactly is very expensive, as it requires
storing inverted lists for allq-grams in the database explicitly
and also enumerating allM chooseL combinations of lists. As
it turns out, estimatingρLM using the inverted list min-wise
signatures ofVSolis straightforward. Further details appear in
[33] and are beyond the scope of this paper.

A key observation in [33] is that the number of neighbor-
hoods (denote it withη) in the data setP greatly affectsVSol’s
performance. A neighborhood is defined as a cluster of strings
in P that have a small edit distance to the center of the cluster.
For a fixed number of strings, sayN , the smaller the value
of η is, the more accurate the estimation provided byVSol
becomes. We refer to this observation as theminimum number
of neighborhoods principle.

However,VSoldoes not address our problem where selec-
tivity estimation has to be done based on both the spatial and
string predicates of the query. The general principle behind
accurate spatial selectivity estimation is to partition the spatial
data into a collection of buckets so that data within each bucket
is as close as possible to a uniform distribution (in terms of
their geometric coordinates). We denote this as thespatial
uniformity principle. Every bucket is defined by the MBR

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

of all points enclosed in it. Each point belongs to only one
bucket and buckets may overlap in the areas they cover. Given
a range queryr, for each bucketb that intersects withr we
compute the area of intersection. Then, assuming uniformity,
the estimated number of points fromb that also fall intor is
directly proportional to the total number of points inb, the
total area ofb and the area of intersection betweenb and r.
This principle has been successfully applied by several work
[1], [20], which mostly differ on how buckets are formed.

That said, the basic idea of our selectivity estimator is to
build a set of buckets{b1, . . . , bk} for some budgetk. Let the
number of points in thei-th bucket beni and its area beΘ(bi).
For each bucketbi, we build aVSolestimatorVSoli based on
the min-wise signatures of theq-gram inverted lists of the
strings contained in the bucket. The selectivity estimation for
an ESAS queryQ = {r, (σ, τ)} is done as follows. For every
bucketbi that intersects withr, we calculate the intersection
areaΘ(bi, r) and theL-M similarity ρi

LM of strings inbi with
σ, usingVSoli. Let Abi

denote the set of points frombi that
satisfyQ, then |Abi

| is estimated as:

|̂Abi
| = ni

Θ(bi, r)

Θ(bi)

ρi
LM

ni
=

Θ(bi, r)

Θ(bi)
ρi

LM . (11)

Our challenge thus becomes how to integrate the minimum
number of neighborhoods principle fromVSol into the spatial
uniformity principle effectively when building thesek buckets.

3.3.1 The partitioning metric

Formally, given a data setP , we defineη as the number of
neighborhoods inP . The strings associated with the points
in one neighborhood must have an edit distance that is less
thanτ ′ from the neighborhood cluster center. We can use any
existing clustering algorithm that does not imply knowledge
of the number of clusters (e.g., correlation clustering [14]) to
find all neighborhoods inP (notice that edit distance without
character transpositions is a metric, hence any clustering
algorithm can be used). Given a rectangular bucketb in d-
dimensions, letnb be the number of points inb, ηb the number
of neighborhoods, and{X1, . . . , Xd} the side lengths ofb in
each dimension. Theneighborhood and uniformity qualityof
b is defined as:

∆(b) = ηbnb

∑

1,...,d

Xi (12)

Intuitively, ∆(b) measures the total “uncertainty” of all points
in bucketb along each dimension and each neighborhood ofb,
if we useb, nb andηb to succinctly represent points assuming a
uniform probability of a point belonging to any neighborhood
in every dimension. For a bucketb, a larger value of∆(b)
leads to larger errors for estimating string selectivity over b
using Equation 11. Intuitively, the larger the perimeter ofa
bucket, the more error the spatial estimation for the point’s
location introduces; the larger the number of neighborhoods
the larger the error ofVSolbecomes.

Thus, our problem is to buildk buckets{b1, . . . , bk} for the
input data setP and minimize the sum of theirneighborhood
and uniformity qualities, i.e., min

∑k
i=1

∆(bi), wherek is a
budget specified by the user.

Once suchk buckets are found, we build and maintain their
VSolestimators and use Equation 11 to estimate the selectivity.
Unfortunately, we can show that ford > 1, this problem is
NP-hard (proof in online Appendix A [31]).

Theorem 1 For a data setP ∈ Rd and d > 1, k > 1, let
bi,p be the set of points contained inbi. Then, the problem
of finding k buckets{b1, . . . , bk}, s.t. ∀i, j ∈ [1, k], i 6= j,
bi,p∩bj,p = ∅, bi = MBR(bi,p), bi, bj are allowed to overlap,
and

⋃k
i=1

bi,p = P , min
∑k

i=1
∆(bi) is NP-hard.

Given this negative result, in what follows, we present effective
heuristics that work well in practice as alternatives.

3.3.2 The adaptive R-tree algorithm

We first illustrate our main ideas using a simple, greedy prin-
ciple, which proceeds in multiple iterations. In each iteration,
one bucket is produced. At theith iteration, we start with
a seed as the first point inbi, randomly selected from the
unassigned points (points not chosen by existing buckets),
and keep adding points tobi until no reduction to the overall
“uncertainty” of the current configuration can be introduced.
The overall “uncertainty” of a given configuration is estimated
by the sum of the uncertainty of existing buckets (b1 to bi),
and the assumption that the remaining, unassigned points are
uniformly distributed intok − i buckets. The detail of this
algorithm is discussed in online Appendix B [31].

Directly applying the greedy algorithm on a large spatial
database is very expensive. Note that the R-tree is a data
partitioning index and its construction metrics are to minimize
the overlap among its indexing nodes as well as the total
perimeter of its MBRs. Hence, the MBRs of the R-tree
serve as an excellent starting point for building the buckets
for our selectivity estimator. This section presents a simple
adaptive algorithm that builds the buckets based on the R-tree
nodes, instead of constructing them from scratch. We term this
algorithm theAdaptive R-Tree Algorithm.

Given an R-tree and a budgetk, descending from the root,
we find the first level in the tree that has more thank nodes,
say it hasκ > k nodes{u1, . . . , uκ}. Our task is to group
theseκ nodes intok buckets, with the goal of minimizing the
sum of theirneighborhood and uniformity qualities.

We follow an idea similar to the greedy algorithm and
produce one bucket in each round. In the pre-processing step
we find the number of neighborhoods for each R-tree node,
denoted with{ηu1

, . . . , ηuκ
}, and the number of points that

are enclosed by each node, denoted with{nu1
, . . . , nuκ

}.
Let ni and ηi be the number of points and the number of
neighborhoods in bucketbi respectively. In thei-th round, we
select the node with the left-most MBR (by the left vertex
of the MBR) from the remaining nodes as the initial seed
for bucket bi. Next, we keep adding nodes, one at a time,
until the overall value for the neighborhood and uniformity
quality for bi and the remaining nodes cannot be reduced.
When adding a new nodeuj to bi, we update the number
of neighborhoods forbi by clustering points covered by the
updatedbi again. This could be done in an incremental fashion
if we know the existing clusters for bothbi and uj [15].

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

For remaining nodes, we assume that they are grouped into
k − i buckets in a uniform and independent fashion. Let
remaining nodes be{ux1

, . . . , uxℓ
} for someℓ ∈ [1, κ − i],

and eachxi ∈ [1, κ]. Then, the number of points that are
covered by these nodes isn =

∑ℓ
i=1

nuxi
. We let η be the

average number of neighborhoods for the remaining buckets,
i.e., η =

∑ℓ
i=1

ηuxi
/(k − i). Similar to the greedy algorithm,

we define the uncertainty for the current configuration as:

U ′(bi) = ηi ·ni ·Π(bi,p)+η ·n·

(
Θ(
⋃ℓ

i=1
uxi,p)

k − i

)1/d

·d (13)

Π(bi,p) is the perimeter of the MBR ofbi,p, Θ(
⋃ℓ

i=1
uxi,p)

is the area for the MBR of the remaining points covered by
the remaining nodes{ux1

, . . . , uxℓ
}. We can find this MBR

easily by finding the combined MBR of the remaining nodes.
Given Equation 13, the rest of the adaptive R-tree algorithm

follows the same grouping strategy as the greedy algorithm.
Briefly, we calculate the values ofU ′(bi) by adding each
remaining node to the currentbi. If no node addition reduces
the value ofU ′(bi), the i-th round finishes and the current
bi becomes thei-th bucket. Otherwise, we add the node that
gives the smallestU ′(bi) value to the bucketbi, and repeat.

When there arek − 1 buckets constructed, we group all
remaining nodes into the last bucket and stop the search.
Finally, once allk buckets have been identified, we build the
VSolestimator for each bucket. For thei-th bucket, we keep
the estimator, the total number of points and the bucket MBR
in our selectivity estimator. Given an ESAS query, we simply
find the set of buckets that intersects with the query ranger
and estimate the selectivity using Equation 11.

4 THE RSAS QUERIES

In this case, since the locations of points are constrained by
the road network and represented by the edge holding the
point and the distance offset to the edge end, the MHR-tree
is not applicable in this context. In order to handle large
scale datasets, we adopt a disk-based road network storage
framework and develop external-memory algorithms.

4.1 Disk-based road network representation

We adopt a disk-based storage model to our setting that groups
network nodes based on their connectivity and distance, as
proposed in [39]. Figure 4 demonstrates an instance of our
model for the network shown in Figure 2. In our model, the
adjacency list and the points are stored in two separate files,
each is then indexed by a (separate) B+-tree. To facilitate our
query algorithm, a small setVR of nodes fromV is selected
as thereference nodes. The distance between two nodes, two
points, or a node and a point is the length of the shortest
(network) path connecting two objects of concern.

For each nodeni, we store its distance to each of the
reference nodes inVR (collectively denoted by RDISTi in
Figure 4) and the number of adjacent nodes ofni (e.g.3 for
n1 in Figure 4) at the beginning of its adjacency list. How to
selectVR and compute RDIST for each node will be discussed
in Section 4.2. For each adjacent nodenj of ni, we store

the adjacent node ID, the length of the edgee = (ni, nj)
(NDIST(ni, nj) in Figure 4) and a pointer to the points group
on e. If e does not contain any point, a null pointer is stored.
A B+-tree is built on the adjacency list file. The key of this
tree is the node id and the value is a pointer to its adjacency
list. For example, in Figure 4, given the node idn1, we can
find its adjacency list from the B+-tree which containsn1’s
RDIST, number of adjacent nodes, and each of its adjacent
nodes (n2, n3, andn5): their distances ton1 and the pointers
to the points group on each corresponding edge.

n1, Rdist1, 3
n2 Ndist(1, 2)

n3

n5

Ndist(1, 3)

Ndist(1, 5)

n2, Rdist2, 3
n1 Ndist(1, 2)

n4

n5

Ndist(2, 4)

Ndist(2, 5)

· · ·

.

.

.

(n1, n3), 3

Odist1

Odist2

Odist3

Moe’s
ymca club

theaters

(n1, n5), 1

Odist4 theater

· · ·

.

.

.

Adjacency

list B+-tree

.

.

.

1

2

3

Points file

B+-tree

.

.

.

1

4

5

Adjacency list file

Points file

Fig. 4. Disk-based storage of the road network.

In the points file, the ids of points are assigned in such a way
that for points on the same edge (ni, nj), points are stored by
their offset distancesto the node with smaller idin ascending
order, and their ids are then sequentially assigned (crossing
over different edges as well). Note that for any edgee defined
by two nodesni andnj , we represente by always placing the
node with the smaller id first. That said, ifni < nj, then in
the adjacency list ofnj , the entry forni will have its pointer
to the points group pointing to the points group of(ni, nj)
(i.e., no duplication of points group will be stored).

We also store other information associated with a point (i.e.,
strings) after the offset distance. We store the points on the
same edge in apoints group. At the beginning of the points
group, we also store the edge information (i.e.,(ni, nj)) and
the number of points on the edge. The groups are stored in
a points file in the ascending order of the node ids defining
the edges. Then a B+-tree is built on this file with keys being
the first point id of each points group and values being the
corresponding points group. For example, the points file in
Figure 4 partially reflects the example in Figure 2. The ODISTi

is the offset distance of pointpi.
Our storage model supports our query algorithms seamlessly

and efficiently. Our design was inspired by the adjacency
list module in [35], [39]. The design of the points file is
motivated by our query algorithms. Lastly, in order to support
the efficient approximate string search on a collection of
strings, which is used as a component in our query algorithm,
we integrate theFilterTree from [30] into our storage model.
Please refer to online Appendix C [31] for details.

4.2 The RSASSOL algorithm

We partition a road networkG = {V, E} into m edge-disjoint
subgraphsG1, G2, . . . , Gm, wherem is a user parameter, and
build one string index (FilterTree) for strings in each subgraph.
We also select a small subsetVR of nodes fromV asreference

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

nodes: they are used to prune candidate points/nodes whose
distances to the query pointq are out of the query ranger.

A query.

Step 1: find all subgraphs that intersect with the query range.

Step 2: use the FilterTrees to retrieve the points with strings

that are potentially similar to the query string.

Step 3: prune away the candidate points by calculating the lower and

upper bounds of their distances to the query point.

Step 4: prune away the candidate points using the exact edit

distances between the query string and the candidate strings.

Step 5: check the exact distances of the remaining candidate

points to the query point.

Query results.

Fig. 5. Overview of the RSASSOL algorithm.
Conceptually, our RSAS query framework consists of five

steps (refer to Figure 5 and the comments in Algorithm 2).
Given a query, we first find all subgraphs that intersect with the
query range. Next, we use the FilterTrees of these subgraphsto
retrieve the points whose strings are potentially similar to the
query string. In the third step, we prune away some of these
candidate points by calculating the lower and upper bounds of
their distances to the query point, usingVR. The fourth step is
to further prune away some candidate points using the exact
edit distance between the query string and strings of remaining
candidates. After this step, the string predicate has been fully
explored. In the final step, for the remaining candidate points,
we check their exact distances to the query point and return
those with distances withinr.

We dub this algorithm RSASSOL and the rest of this section
presents the details of this algorithm. We used(o1, o2) to
denote the network distance of two objectso1, o2 (where an
object can be a network vertex, or a point on the network).

Pre-processing.To partition the network, in a nutshell, we
randomly selectm seeds fromP (points of interest residing on
the network) and construct the voronoi-diagram-like partition
of the network using these seeds. We denote this approach as
theRParalgorithm. Specifically, given a networkG = {V, E}
and the datasetP onG, RParrandomly samples a small subset
Ps of m seed points fromP . Then, it first initializesm empty
subgraphs, and assigns each point inPs as the “center” of
a distinct subgraph. Next, for each noden ∈ V , RPar finds
n’s nearest neighborp in Ps, and computesd(n, p). This can
be done efficiently using Erwig and Hagen’s algorithm [16],
with G andPs as the input. Next, for each edgee ∈ E with
e = (nl, nr), RPar insertse into the subgraph whose center
p minimizes min{d(p, nl), d(p, nr)} among all subgraphs.
When all edges are processed,RPar returns them edge-
disjoint subgraphs constructed. For each subgraphGi, we
collect the strings associated with points residing on edges
in Gi and build a FilterTree as in last section.

We also select a small subsetVR of nodes fromV as the

reference nodes. This is to help us leverage the reference-nodes
based distance pruning in a road network [18], [37], [38].
They also help us in our algorithm to compute the shortest
paths between the query point and the final set of candidate
points. How to selectVR greatly affects its effectiveness,
and we adopt the best selection strategy proposed in [18].
Essentially, a reference node should be picked up on the
boundary of the road network and as far away from each
other as possible. It is also shown in [18] that a small
constant number of reference nodes (e.g.,16) will be enough
to achieve excellent performance even for large road networks
and this only introduces a small linear space overhead, which
is acceptable in most applications.

Algorithm 2 : RSASSOL(networkG, Qr = (q, r), Qs = (σ, τ))

/* step 1: find subgraphs intersecting the query range */1

Find the setX of ids of all subgraphs intersecting(q, r);2

SetA = ∅, Ac = ∅;3

for each subgraph idi ∈ X do4

/* step 2: use the FilterTrees to retrieve points with strings that5

are potentially similar to the query string */
Find all point ids inGi whose associated stringsσ′6

may satisfyε(σ′, σ) ≤ τ using FilterTreei, and insert
them intoAc;
/* step 3: prune away points by calculating the lower and7

upper bounds of their distances to the query point using VR */
for every pointpi ∈ Ac do8

calculated+(pi, q) andd−(pi, q) as discussed;9

if d+(pi, q) ≤ r then10

if ε(σi, σ) ≤ τ then11

movepi from Ac to A;12

/* step 4: prune points using the exact edit distance13

between the query string and the candidate string */
else14

deletepi from Ac;15

else16

if d−(pi, q) > r then17

deletepi from Ac;18

/* step 4: same pruning as the step 4 above */19

for every pointpi ∈ Ac do20

if ε(σi, σ) > τ then21

deletepi from Ac;22

/* step 5: check the exact distances of the remaining candidate23

points to the query point */
Use theMPALT algorithm to find all pointsp’s in Ac24

such thatd(p, q) ≤ r, push them toA;
ReturnA.25

Query processing.The RSASSOL algorithm is presented in
Algorithm 2. First, we find all subgraphs that intersect with
the query range. We employ the Dijkstra’s algorithm (using the
Fibonacci heap) to traverse nodes inG (note that we ignore
points onG), starting from the query pointq. Whenever this
traversal meets thefirst node of a new subgraph, we examine
that subgraph for further exploration (line 2). The algorithm
terminates when we reach the boundary of the query range
(defined by the distancer to q). For each subgraphGi to
be examined, we use the approximate string search overGi’s

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

FilterTree as the next pruning step (line 6), to find points from
Gi that may share similar strings to the query string.

Then we further prune the candidate points using the
spatial predicate, by computing lower and upper bounds on
their distances toq using VR, in a similar way to the ALT
algorithm [18]. Recall that we have pre-computed and stored
the distance of every network node to every node inVR (the
set RDISTi in Figure 4). Given a candidate pointp on an edge
e = (ni, nj), the shortest path fromp to a reference nodenr

must pass through eitherni or nj . Thus, the network distance
d(p, nr) = min(d(p, ni) + d(ni, nr), d(p, nj) + d(nj , nr)).
Note thatd(ni, nr) andd(nj , nr) are available from RDISTi

and RDISTj , respectively;d(p, ni) is the distance offset ofp to
ni which is available in the adjacency list and then points file
of ni (ODIST in Figure 4); andd(p, nj) =NDIST(ni, nj) −
d(p, ni) where NDIST(ni, nj) is available in the adjacency
list of ni as well. We computed(p, nr) on the fly rather than
explicitly storing the distance between a point and a reference
node since the number of points is much larger than the
number of the nodes inG. By doing so, we avoid significant
space blowup. We can also computed(q, nr) in a similar way
(only once). In summary, our structure allows us to compute
d(p, nr) for any point and any reference node efficiently.

Given d(p, nr) and d(q, nr) for every nr ∈ VR, we then
obtain the distance lower and upper bounds betweenp andq
using the triangle inequality. Each reference node yields such
a pair of lower and upper bounds. We take the maximum (min-
imum) value from the lower (upper) bounds of all reference
nodes as the final lower (upper) bound ofd(p, q), denoted as
d−(p, q) andd+(p, q) respectively. Ifd+(p, q) ≤ r, we know
for surep satisfies the spatial predicate and we only need to
check the exact edit distance as the last measure (lines 10-
15); if d−(p, q) > r, we can safely removep (lines 17-18);
otherwise, we need to check both the exact edit distance and
computed(p, q) to complete the verification onp.

After the pruning byd−(p, q) andd+(p, q), we compute the
exact edit distances on the remaining candidate points inAc

(lines 21-22) and prune away points whose edit distances to
the query stringσ are larger thanτ . Note that for a pointp
satisfyingd+(p, q) ≤ r and the exact edit distance threshold,
it has already been removed fromAc and pushed toA before
this step. For all other remaining candidatesAc, we only need
to compute the exact network distances between them and
q to complete the algorithm. The naive solution is to apply
the ALT algorithm for everyp ∈ Ac and q to find their
shortest path [18]. However, this can be prohibitive when|Ac|
is still large. Next, we introduce an improvement,the MPALT
algorithm, which computes multiple shortest paths, within the
query range, simultaneously at once between a single source
point s and multiple destination points{t1, . . . , tm}.

We leverage on the distances computed and stored in our
storage model between a node to all reference nodes, which
allows us to compute lower and upper distance bounds for
d(n, t), for any given noden and any destination pointt,
during the expansion. They are computed in similar fashion to
that of the distance lower and upper bounds above ford(p, q).

The MPALT algorithm minimizes the access to the network
by avoiding the nodes that will not be on any shortest path

betweens and any destinationti. It also avoids repeatedly
access to the explored part of the network when calculating
multiple shortest paths to multiple destinations. The basic idea
works as follows. We start the expansion of the network from
s with the two nodes from the edge containings, and always
expand the network from an explored noden (by adding
adjacent nodes ofn to a priority queue and checking points on
corresponding edges) that has the shortest possible distance to
any one of the destinations. We also avoid inserting an adjacent
noden′ of n to the priority queue ifd+(n′, s) > r (but we
do check points on the edge(n, n′)).

s t1

a

b t2
Fig. 6. Expansion in MPALT .

The algorithm termi-
nates when the priority
queue becomes empty
(i.e., we have reached
the boundary of the
query range) or all the
destination points are
already met. Figure 6 illustrates the basic idea of theMPALT
algorithm in choosing the next node for expansion, where we
want to find the shortest paths froms to {t1, t2}. Instead
of finding these two paths independently by applying the
ALT algorithm twice on the same network,MPALT does this
simultaneously at once. Suppose the solid curves representthe
paths found so far and the dashed straight lines represent the
estimated lower distance-bounds, i.e., we have at this point
d(s, a), d(s, b), d+(s, t1), d−(s, t1), d+(s, t2), andd−(s, t2).
In this case, theMPALT will choose b as the next node
to expand asd(s, b) + d−(b, t2) is the best potential candi-
date for the shortest path (compared tod(s, b) + d−(b, t1),
d(s, a) + d−(a, t1), d(s, a) + d−(a, t2)).

Recall that we apply theMPALT algorithm usingq as s
andAc (candidates after the exact edit distance pruning) as
destination points{t1, . . . , tm}. Thus, whenever a destination
point is met inMPALT, it is output as one of the final answers.

Lastly, we would like to point out, unlike the MHR-tree
in the Euclidean space which is an approximation solution,
RSASSOL is an exact algorithm for RSAS queries.

4.3 Selectivity estimation of RSAS queries

Selectivity estimation of range queries on road networks is
a much harder problem than its counterpart in the Euclidean
space. Several methods were proposed in [41]. However, they
are only able to estimate the number of nodes and edges in the
range. None can be efficiently adapted to estimate the number
of points in the range. One naive solution is to treat points as
nodes in the network by introducing more edges. This clearly
increases the space consumption significantly (and affectsthe
efficiency) since the number of points is typically much larger
than the number of existing nodes. Then we also have the
challenges of integrating the spatial selectivity estimator with
the string selectivity estimator in an effective way, as we did
for the Euclidean space. This turns out to be non-trivial and
we leave it as an open problem for future work.

5 EXPERIMENTAL EVALUATION

For ESAS queries, we implemented the R-tree solution and the
MHR-tree, using the widely adopted spatial index library. The

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

adaptive R-tree algorithm for the ESAS selectivity estimator
seamlessly works for both the R-tree and the MHR-tree. For
RSAS queries, we implemented the Dijkstra solution and the
RSASSOL method, based on the disk-based storage model
and the Flamingo package (http://flamingo.ics.uci.edu/, for
the FilterTree). The default page size is4KB and the fill
factor of all indexes is0.7. All experiments were executed
on a Linux machine with an Intel Xeon CPU at2GHz and
2GB of memory. Note that by ignoring one search dimension
completely,string solutionssuffer the similar issues as the
spatial solutions. We focus on using thespatial solutionsas the
baseline methods for comparison, since they are preferred in
spatial databases thanstring solutions(as discussed in Section
1 and Appendix D) and due to the space limitation.

Datasets.For ESAS queries, the real datasets were obtained
from the open street map project. Each dataset contains the
streets for a state in the USA. Each point has its longitude
and latitude coordinates and several string attributes. Wescale
the points’ coordinates into(0, 10000) in any dimension. We
combine the state, county and town names for a point as its
associated string. For our experiments, we have used the Texas
(TX) and California (CA) datasets, since they are the largest
few in size among different states. TheTX dataset has14
million points and theCA dataset has12 million points. The
real datasets are in two dimensions. To test the performance
of our algorithms on different dimensions for ESAS queries,
we use two synthetic datasets. In theUN dataset, points are
distributed uniformly in the space and in theRC dataset,
points are generated with random clusters in the space. For
both theUN and theRC datasets, we assign strings from our
real datasets randomly to the spatial points generated. The
default sizeN of the datasetP is 2 million. For theTX and
CA datasets, we randomly sample2 million points to create
the default datasets. For all datasets the average length ofthe
strings is approximately14.

To test RSAS queries, we use two real road network datasets,
NAN andCAN, obtained from theDigital Chart of the World
Server. In particular,NAN (CAN) captures the road network in
North America (California), and contains 175,813 nodes and
179,179 edges (21,048 nodes and 21,693 edges). We obtain a
large number of real locations with text information in North
America (California) from the open street map project and
assign strings into the road network based on their coordinates.
In the default datasets, we randomly sample2 million points
and assign them into theNAN andCAN road networks.

Setup.The spatial range predicater (a rectangle) in an ESAS

query is generated by randomly selecting a center pointcr

and a query area that is specified as a percentage of total
space, denoted asθ = area of r/Θ(P). To make sure that
the query will return non-empty results, we select the query
string as the associated string of the nearest neighbor ofcr

from P . The default value forθ is 3%. The default size of
the signature isℓ = 50 hash values (200 bytes). The spatial
range predicate of an RSAS query is generated by choosing
a point q on a randomly selected edge and the radiusr is a
network distance value. For RSAS queries, the default setup
is r = 500. Similarly, the query string is the same to the

associated string of the nearest neighbor ofq from P . The
default number of subgraphs ism = 100 and the number of
reference nodes is4. For all query performance experiments
we report averages over100 randomly generated queries. In
all cases, our experiments indicate that two-grams work the
best. Hence, the defaultq-gram length is2. In all cases,
the default edit distance threshold isτ = 2 and the default
N = |P | is 2, 000, 000. TX and NAN are the default dataset
for ESAS and RSAS queries, respectively. For all experiments,
unless otherwise specified, we varied the values of one specific
parameter of interest in thex-axis, while using the default
values for all other parameters.

5.1 The ESAS queries

We first study the impact of the signature size on the perfor-
mance of the MHR-tree. Figure 7 summarizes the results using
the TX dataset. The results from theCA dataset are similar.
The first set of experiments investigates the construction cost
of the two indexes. Since the MHR-tree has to store signatures
in its nodes, it has a smaller fan-out and a larger number of
nodes compared to the R-tree. This indicates that the MHR-
tree will need more space to store the nodes, and a higher
construction cost to compute the signatures and write more
nodes to the disk. This is confirmed by our experiments. Figure
7(a) indicates that the size of the MHR-tree increases almost
linearly with the increase of the signature size. Similar trend
holds for its construction cost as shown by Figure 7(b). Both
of its size and construction cost are approximatelyℓ

10
times

more expensive than the R-tree. A largerℓ value leads to
a higher overhead for the construction and storage of the
MHR-tree, but it improves its query accuracy. Recall that
the min-wise signature may underestimate the size of the
intersection used for pruning in Lemma 2. This could result in
pruning a subtree that contains some query results. Thus, an
important measurement reflecting the accuracy of MHR-tree
query results is therecall, the percentage of actual correct
answers returned. LetAx be the result returned by the MHR-
tree for an ESAS query, then the recall for this query is
simply |Ax|

|A| . Note thatAx will always be a subset of the
correct resultA, as the MHR-tree will never produce any
false positives (all points that pass the threshold test will be
finally pruned by their exact edit distances to the query string).
In other words, its precision is always1. Figure 7(c) shows
the recall of the MHR-tree using various signature sizes. Not
surprisingly, larger signatures lead to better accuracy. When
ℓ = 50 recall reaches about80%. Finally, the query cost of the
MHR-tree, for various signature sizes, is always significantly
lower than the cost of the R-tree, as shown in Figure 7(d). Its
query cost does increase with a larger signature, however, the
pace of this increment is rather slow. This means that we can
actually use larger signatures to improve the query accuracy
without increasing the query cost by much. However, this does
introduce more storage overhead and construction cost. Hence,
for our experiments, the default isℓ = 50.

Note that linear hashing is very cheap to compute in today’s
CPU. Hence, when comparing query performance in R-trees
and MHR-trees, the IO cost dominates and is already a very
good indicator of the overall query performance. As a result,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

20 30 40 50 60
0

200

400

600

800

1000

ℓ: signature size

in
d
e
x
 s

iz
e
:
(M

B
)

R−tree
MHR−tree

(a) index size.

20 30 40 50 60
0

300

600

900

1200

ℓ: signature size

c
o
n
s
tr

u
c
ti
o
n
 t
im

e
 (

s
e
c
s
)

R−tree
MHR−tree

(b) construction time.

20 30 40 50 60
0.2

0.4

0.6

0.8

1

ℓ: signature size

re
c
a

ll

MHR−tree

(c) recall.

20 30 40 50 60
0

1

2

3

4

ℓ: signature length

n
u

m
b

e
r

o
f

IO
s
:

x
1

0
3

R−tree
MHR−tree

(d) query performance.

Fig. 7. Impact of the signature size: TX dataset.

1% 5% 10% 15% 20%

5

10

15

20

25

query area / Θ(P)

n
u

m
b

e
r

o
f

IO
s
:

x
1

0
3

R−tree
MHR−tree

(a) vary θ, TX dataset.

1 2 3
0

1000

2000

3000

4000

τ

n
u
m

b
e
r

o
f
IO

s
:
x
1
0

3

R−tree
MHR−tree

(b) vary τ , TX dataset.

1 3 5 7 10

3

6

9

12

15

|P|=N: x10
6

n
u
m

b
e
r

o
f
IO

s
:
x
1
0

3

R−tree
MHR−tree

(c) vary N , TX dataset.

3 4 5 6
0

1

2

3

4

d: number of dimensions

n
u

m
b

e
r

o
f

IO
s
:

x
1

0
4

R−tree
MHR−tree

UN RC

(d) vary d, UN and RC datasets.

Fig. 8. Query performance, ℓ = 50.

we have omitted the running time comparison for queries
because of the space limit.

Using the default signature size ofℓ = 50, we further
investigate the improvement in query performance of MHR-
tree compared to the R-tree. The results are summarized by
Figure 8. Figure 8(a) shows the average number of IOs for
various query area sizes,θ, from 1% to 20%, using theTX
dataset. Clearly, R-tree becomes more and more expensive
compared to the MHR-tree when the query area increases. For
example, whenθ = 10%, R-tree is20 times more expensive in
terms of IO compared to MHR-tree, and this gap enlarges to
more than one order of magnitude for larger area sizes. This
is due to the fact that the cost of range queries for the R-tree
is proportional to the query area. On the other hand, the cost
of the MHR-tree increases rather slowly due to the additional
pruning power provided by the string predicate.

Next, we study the effect of the edit distance threshold, for
query areaθ = 3%. For τ = 1, 2, 3, the MHR-tree always
significantly outperforms the R-tree in Figure 8(b). Of course,
when τ keeps increasing, the R-tree cost remains constant,
while the MHR-tree cost increases. Hence, for largeτ values,
R-tree will be a better choice. Nevertheless, most approximate
string queries return interesting results only for smallτ values.

The next experiment, Figure 8(c), studies the scalability
of the MHR-tree by varying the data sizeN . Using theTX
dataset,N ranges from1 to 10 million. The MHR-tree scales
much better w.r.t.N . The IO difference between the MHR-tree
and R-tree enlarges quickly for larger datasets. For example,
Figure 8(c) shows that whenN reaches10 million, the IO cost
for a query withτ = 2, θ = 3% for the MHR-tree is more than
10 times smaller than the cost of the R-tree. Similar results
were observed for theCA dataset when we varyθ, τ andN .

We study the scalability of the two indexes for higher
dimensions. Using the defaultUN and RC datasets, for
d = 3, 4, 5, 6. Figure 8(d) shows that the MHR-tree always
outperforms the R-tree in all dimensions and also enjoys better
scalability w.r.t. the dimensionality of the dataset, i.e., the
MHR-tree outperforms the R-tree by larger margins in higher

dimensions. For all these experiments, withℓ = 50, the recall
of the MHR-tree stays between70% to 80%.

Finally, the relationship between the size of the MHR-tree
and its construction cost with respect to that of the R-tree is
roughly a constant, as we varyN andd. For ℓ = 50, they are
roughly 5 times the respective cost of the R-tree.

5.2 Selectivity estimation of ESAS queries

This section presents the experimental evaluation of our selec-
tivity estimator for ESAS queries. We have implemented both
the greedy algorithm and the adaptive R-tree algorithm. The
adaptive algorithm is much cheaper and works almost as well
in practice. Thus, we only report the results for the adaptive
algorithm. We refer to the estimator built by the R-tree based
adaptive algorithm as theadaptive estimator. An important
measure that is commonly used when measuring the accuracy
of a selectivity estimator is itsrelative error λ. Specifically,
for an ESAS query Q, let its correct answer beA, and the
number of results estimated by a selectivity estimator beξ,
then λ = |ξ−|A||

|A| . Lastly, k denotes the number of buckets
that the selectivity estimator is allowed to use.

Our first experiment is to study the relationship betweenk
andλ. Intuitively, more buckets should lead to better accuracy.
This is confirmed by the results in Figure 9 when we vary the
number of buckets from100 to 1500, on both theCA andTX
datasets. Note that our adaptive algorithm works for any R-tree
based index. Hence, in this experiment, we have tested it on
both the R-tree and the MHR-tree. Clearly, when more buckets
were used, the accuracy of the adaptive estimator improves.
On theCA dataset,λ improves from above0.5 to below0.1
when k changes from100 to 1500 (Figure 9(a)). On theTX
dataset,λ improves from above1.2 to 0.6 for the same setting
(Figure 9(b)). The results also reflect that our algorithm is
almost independent of the underlying R-tree variant, i.e.,the
results from the R-tree and the MHR-tree are similar. More
importantly, these results reveal that the adaptive estimator
achieves very good accuracy on both datasets when a small
number of buckets is used, sayk = 1000 on 2 million points.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

1% 5% 10% 15% 20%
0

0.2

0.4

0.6

0.8

query area / Θ (P)

λ
:
re

la
ti
v
e
 e

rr
o
r

TX
CA

(a) vary θ, CA and TX datasets.

1 2 3
0

0.2

0.4

0.6

0.8

τ

λ
:
re

la
ti
v
e
 e

rr
o
r

TX
CA

(b) vary τ , CA and TX datasets.

1 3 5 7 10
0

0.2

0.4

0.6

0.8

1

|P|=N: x10
6

λ
:
re

la
ti
v
e
 e

rr
o
r

TX
CA

(c) vary N , CA and TX datasets.

3 4 5 6
0.5

0.6

0.7

0.8

0.9

d: number of dimensions

λ
:
re

la
ti
v
e
 e

rr
o
r

UN
RC

(d) vary d, UN and RC datasets.

Fig. 11. Relative errors of the adaptive estimator, k = 1000.

0 300 600 900 1200 1500
0

0.2

0.4

0.6

k: number of buckets

λ
:
re

la
ti
v
e
 e

rr
o
r

R−tree
MHR−tree

(a) CA dataset.

0 300 600 900 1200 1500
0

0.3

0.6

0.9

1.2

k: number of buckets

λ
:
re

la
ti
v
e
 e

rr
o
r

R−tree
MHR−tree

(b) TX dataset.

Fig. 9. Errors of the adaptive estimator for ESAS queries.

Specifically, whenk = 1000, on the R-tree index, the adaptive
estimator has approximately only0.1 relative error on theCA
dataset (Figure 9(a)) and approximately0.6 relative error on
the TX dataset. The higherλ value from theTX dataset is
mainly due to the larger errors produced byVSol on strings
in theTX dataset. Note that accurate selectivity estimation for
approximate string search is a challenging problem in itself.
For example, when being used as a stand-alone estimator,VSol
on average has a relative error between0.3 to 0.9, depending
on the dataset used, as has been shown in [33]. Thus, relatively
speaking, our algorithm by combining the insights from both
the spatial and string distributions, works very well in practice.

Since the adaptive estimator has a slightly better accuracy
on the R-tree, in the sequel, we concentrate on the results from
the R-tree; the results from the MHR-tree are very similar.

The higher accuracy delivered by using a larger number of
buckets comes at the expense of space overhead and higher
construction costs. Figure 10 investigates these issues indetail.
Not surprisingly, the size of the selectivity estimator increases
with more buckets, as shown in Figure 10(a). Since theVSol
of each bucketb has to maintain the min-wise signatures of all
distinct q-grams of the strings contained inb and each min-
wise signature has a constant size, the size of each bucketb
entirely depends on the distinct number ofq-grams it contains
(denoted asgb). It is important to understand that the length
of the inverted list for everyq-gram does not affect the size
of each bucket, as the list is not explicitly stored. When more
buckets are used, the sum ofgbs over all buckets increases.
This value will increase drastically when a large number of
buckets is used, indicated by the pointk = 1500 in Figure
10(a). However, even in that case, due to the constant size
for the min-wise signatures, the overall size of the adaptive
estimator is still rather small, below25 MB for the CA and
TX datasets for2 million points. Whenk = 1000, the size of
the adaptive estimator is about6 MB for both datasets. On the
other hand, the construction cost of the adaptive estimatoris
almost linear to the number of bucketsk as shown in Figure

0 300 600 900 1200 1500
0

5

10

15

20

25

k: number of buckets

 s
iz

e
 o

f
th

e
 s

e
le

c
ti
v
it
y
 e

s
ti
m

a
to

r
(M

B
)

TX
CA

(a) size.

0 300 600 900 1200 1500

2600

2800

3000

3200

3400

3600

k: number of buckets

 c
o
n
s
tr

u
c
ti
o
n
 t
im

e
 (

s
e
c
s
)

TX
CA

(b) construction time.

Fig. 10. Size, construction cost of the adaptive estimator.

10(b). Note that the construction cost is a one time expense.
The small number of buckets and small size of the adaptive

estimator indicates that it can be easily stored in memory for
selectivity estimations. Thus, using it for selectivity estimation
incurs much less cost than executing the query itself on disk-
based datasets. We omitted these comparisons for brevity.

We further investigate the accuracy of the adaptive estimator
when varying other parameters. Given the results from Figures
9 and 10, we set the default number of buckets to1000.
The results are reported in Figure 11. These results indicate
that the adaptive estimator provides very good accuracy in
a large number of different settings. In general, the adaptive
estimator gives better accuracy in theCA dataset compared
to the TX dataset. The estimation, with a fixed number of
buckets, is more accurate for smaller query ranges (Figure
11(a)), smaller edit distance thresholds (Figure 11(b)), smaller
datasets (Figure 11(c)), and lower dimensions (Figure 11(d)).

5.3 The RSAS queries

We study the effectiveness of the RSASSOL algorithm for
RSAS queries in this section. Firstly, we investigate the effect
of the selection and the number of reference nodes, and the
number of subgraphs built by theRPar algorithm, in the pre-
processing step, to the RSASSOL algorithm.

The impacts of reference nodes selection on the query
performance come in two folds. First, different selection
strategy will end up in selecting different reference nodes.
Inspired by the results shown in [18] and our own observations,
the optimized planaralgorithm from [18] is always the best
strategy, given the same number of reference nodes. Second,
the number of reference nodes is also critical. Clearly, the
construction time and space overhead of having more reference
nodes expect to increase linearly with|VR| (since each node
n has to compute and stored(n, nr) for every nr ∈ VR).
This is exactly what we have observed in our experiments
and these results were omitted for brevity. On the other hand,
having more reference nodes, the lower and upper distance-
bounds tend to be tighter, leading to better pruning. But,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

125 250 500 1000 2000
0.01

0.1

1

10

r: query range

ru
nn

in
g

tim
e

(s
ec

s)

RsasSol
Dijkstra

(a) vary query range, NAN dataset.

1 2 3
0

0.2

0.4

0.6

τ

ru
nn

in
g

tim
e

(s
ec

s)

RsasSol
Dijstra

(b) vary τ , NAN dataset.

0.2 0.4 0.8 1.6 3.2
0

0.15

0.3

0.45

0.6

number of points: X 106

ru
nn

in
g

tim
e

(s
ec

s)

RsasSol
Dijkstra

(c) vary N, NAN dataset.

0

0.15

0.3

0.45

0.6

ru
nn

in
g

tim
e

(s
ec

s)

CAN NAN

RsasSol
Dijkstra

(d) vary dataset.

Fig. 14. Query performance for RSAS queries.

1 2 4 8 16
0

0.03

0.06

0.09

0.12

|V
R

|: number of reference node

ru
nn

in
g

tim
e

(s
ec

s)

NAN
CAN

Fig. 12. |reference nodes|.

1 10 100 1000 10000
0

0.05

0.1

0.15

m: number of subgraphs

ru
nn

in
g

tim
e

(s
ec

s)

NAN
CAN

Fig. 13. |subgraphs|.

more reference nodes also lead to higher computation costs to
calculate the lower and upper distance-bounds during query
processing. Therefore, we expect to see a sweet point of the
overall running time when we vary|VR|. Figure 12 shows
exactly this trend using the average running time of 100
queries. It shows that4 reference nodes provide the best
running time for both theNAN and CAN datasets. Thus, we
use|VR| = 4 across the board.

Next, we study the effect ofm, number of subgraphs, on
the running time of RSASSOL (using the average of 100
queries). Figure 13 shows that, whenm ≤ 100, the running
time decreases with more subgraphs. The reason is that more
subgraphs can refine the intersection area with a query range,
which avoids unnecessary string retrievals. However, having
more and more subgraphs also means more access to smaller
FilterTrees, which introduces query-overhead when searching
for approximate strings. Eventually, such overheads dominate
over the benefit of pruning more areas using more and smaller
subgraphs. Hence, the query cost increases whenm > 100 in
Figure 13. For bothNANandCANdatasets,m = 100 achieves
a good balance, which justifies our choice of the default value
for m. RPar is very efficient for partitioning nodes into these
subgraphs, and it is a one-time pre-processing cost. Hence,we
omitted these results due to the space limitation.

Next, we study the query performance of RSASSOL com-
pared against the baseline method, theDijkstra solution, in
Figure 14. The default dataset isNAN with 2 million points,
since it has more nodes and edges.

Figure 14(a) shows the average running time whenr varies
from 125 to 2000. Clearly, RSASSOL outperforms Dijkstra,
especially for larger query ranges; and the gap between the
two widens whenr increases. This is due to the fact that
the cost of the Dijkstra solution is strictly proportional to the
query range. On the other hand, the cost of the RSASSOL

algorithm increases rather slowly because of the combined
spatial and string-based pruning power. For example, when
r = 500, Dijkstra is10 times more expensive than RSASSOL;
and this gap enlarges to more than one order of magnitude for
larger ranges. In the follows, the default value ofr is 500.

0.2 0.4 0.8 1.6 3.2
1

100

200

300

400

500

number of points: X 106

sp
ac

e
co

m
su

m
pt

io
n

(M
B

)

RsasSol
Dijkstra

Fig. 15. Space of RSASSOL.

0

0.1

0.2

0.3

0.4

0.5

CAN NAN

ru
nn

in
g

tim
e

(s
ec

s)

 RsasSol

 RsasSol−1245 RsasSol−145

RsasSol−1345

Fig. 16. Steps in RSASSOL.

Figure 14(b) shows the effect of differentτ values for
τ = 1, 2, 3. RSASSOL has always outperformed the Dijk-
stra solution. The next experiment, shown in Figure 14(c),
investigates the scalability of both algorithms by varyingthe
size of the datasetP on the road network, whereN = |P |
changes from200, 000 to 2, 000, 000. Clearly, RSASSOL has
much better scalability compared to the Dijkstra solution.For
example, whenN reaches 2 million, RSASSOL is 10 times
faster than the Dijkstra solution.

Next, we tested their performance on theCAN dataset as
well. The trends are very similar. Figure 14(d) compares the
average running time of one query for RSASSOL and Dijkstra
on CAN andNAN, side-by-side, using default values forr, τ ,
andN . RSASSOL outperforms Dijkstra by10 to 15 times.

Figure 15 shows the space usage of RSASSOL compared
against theDijkstra solution, using theNAN dataset. Both
of them introduce a space consumption that is linear to
input datasets. RSASSOL has a higher space consumption
since it additionally utilizes the FilterTrees to accelerate the
approximate string matching and stores the distances from the
nodes to the reference nodes (e.g. RDISTi) for the third step
pruning. Nevertheless, these overhead are still linear to the
input datasets in the worst case. That said, the size of our
storage structure for RSASSOL is less than 2.5 times of the
space consumption for theDijkstra solution (which has almost
no space overhead) in the worst case when we have increased
the number of points on the road network from 200,000 points
to 2 million points.

Lastly, we demonstrate the effectiveness of different prun-
ings used in RSASSOL in Figure 16. In particular, we show the
pruning power of steps2 and 3, namely the FilterTrees and
the lower and upper distance bounds, on the datasetsCAN
andNAN. In Figure 16, RSASSOL-1345, RSASSOL-1245, and
RSASSOL-145 stand for the RSASSOL solution without the
pruning of step2, or without step3, or without both of
steps2 and 3, respectively. On both datasets, the step2 is
very effective, which prunes away most of the candidates. On
CAN, step 3 prunes away about30% candidates. However,
step3 has little pruning power onNAN. These results show

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

that combining these different prunings seamlessly into one
solution (i.e., the RSAS solution) is effective and necessary.

6 RELATED WORK

The IR2-tree was proposed in [17] to perform exact keyword
search withkNN queries in spatial databases. The IR2-tree
cannot support spatial approximate string searches, neither
their selectivity estimation was addressed therein. Authors in
[45], [46] study the m-closest keywords query in Euclidean
space, where the proposed bR∗-tree cannot handle the approx-
imate string search neither. Two other relevant studies appear
in [7], [13] where ranking queries that combine both the spatial
and text relevance to the query object were investigated.

Another related work appears in [2] where the LBAK-
tree was proposed to answer location-based approximate-
keyword queries which are similar to our definition of spatial
approximate string queries in the Euclidean space. The basic
idea in the LBAK-tree is to augment a tree-based spatial index
(such as an R-tree) withq-grams of subtree nodes to support
edit-distance based approximate string/keyword searches. The
LBAK-tree was proposed after our study on SAS queries in
the Euclidean space [44] (the conference version of this work),
and it has been compared against the MHR-tree in [2]. Their
results have shown that the LBAK-tree has achieved better
query time than the MHR-tree, but using more space. Note that
the LBAK-tree returns exact answers for the ESAS queries,
and the MHR-tree returns approximate answers. We did not
compare to the LBAK-tree with the MHR-tree in this work
since detailed comparison of the two was already available
in [2]. That said, for ESAS queries, the LBAK-tree should
be adopted when exact answers are required; when space
consumption must be small and approximate solutions are
acceptable, the MHR-tree is the candidate.

To the best of our knowledge, RSAS queries and selectivity
estimation of SAS queries have not been explored before.

Approximate string search alone has been extensively stud-
ied in the literature [3], [8], [9], [11], [19], [27], [30], [32],
[36], [40], [42], [43]. These works generally assume a simi-
larity function to quantify the closeness between two strings.
There are a variety of these functions such as edit distance and
Jaccard. Many approaches leverage the concept ofq-grams.
Our main pruning lemma is based upon a direct extension
of q-gram based pruning for edit distance that has been used
extensively in the field [19], [40], [42]. Improvements to the
q-grams based pruning has also been proposed, such asv-
grams [43], where instead of having a fixed length for all
grams variable length grams were introduced, or the two-level
q-gram inverted index [26].

Note that in the literature “approximate string matching”
also refers to the problem of finding a pattern string approxi-
mately in a text, which is the problem surveyed in Navarro’s
paper [34] in 2001. The problem in our paper is different: we
want to search in a collection (unordered set) of strings to find
those similar to a single query string (“selection query”).We
used “approximate string search” to refer to our problem, see
an excellent tutorial on this topic [22];q-grams based solution
for the edit-distance metric has become the norm, see [3], [9],
[11], [27], [28], [30], [32], [36], [43] and references therein.

The state-of-the-art in [30], [32] have conclusively shownthat
the q-grams based solution is the best method for the edit-
distance based metric.

The q-grams based solution for edit-distance is also espe-
cially effective for the relatively short strings [30], which is
the case for our problem (e.g. a large set of geo-tags rather
than a long text document). That said, applying other metrics
and/or other approximate string matching methods is definitely
an interesting open problem to investigate.

Another well-explored topic is the selectivity estimationof
approximate string queries [10], [23], [24], [28], [29], [33].
Most of them use the edit distance metric andq-grams to
estimate selectivity. Other work uses clustering [25]. Our
selectivity estimation builds on theVSol estimator proposed
in [33]. Finally, special treatment was provided for selectivity
of approximate string queries with small edit distance [28]and
substring selectivity estimation was examined in [23], [29].

Our effort for selectivity estimation in ESAS queries is also
related to selectivity estimation for spatial range queries [1],
[20]. Typically, histograms and partitioning based methods
are used. Our approach is based on similar principles but we
also take into account the string information and integratethe
spatial partitioning with the knowledge of string distribution.
We did not address the selectivity estimation of RSAS queries.
As discussed in Section 4.3, Selectivity estimation of range
queries on road networks is a much harder problem than
its counterpart in the Euclidean space. Several methods for
selectivity estimation for range queries on road networks were
proposed in [41]. However, they are only able to estimate the
number of nodes and edges in the range (not the number of
points residing on the network in the range). How to extend
these techniques for points and combine them with string
predicates presents interesting challenges for future work.

7 CONCLUSION

This paper presents a comprehensive study for spatial ap-
proximate string queries in both the Euclidean space and
road networks. We use the edit distance as the similarity
measurement for the string predicate and focus on the range
queries as the spatial predicate. We also address the problem of
query selectivity estimation for queries in the Euclidean space.
Future work include examining spatial approximate sub-string
queries, designing methods that are more update-friendly,and
solving the selectivity estimation problem for RSAS queries.

REFERENCES

[1] S. Acharya, V. Poosala, and S. Ramaswamy. Selectivity estimation in
spatial databases. InSIGMOD, pages 13–24, 1999.

[2] S. Alsubaiee, A. Behm, and C. Li. Supporting location-based
approximate-keyword queries. InGIS, pages 61–70, 2010.

[3] A. Arasu, S. Chaudhuri, K. Ganjam, and R. Kaushik. Incorporating
string transformations in record matching. InSIGMOD, pages 1231–
1234, 2008.

[4] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins.
In VLDB, pages 918–929, 2006.

[5] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. The R∗-
tree: an efficient and robust access method for points and rectangles. In
SIGMOD, pages 322–331, 1990.

[6] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-
wise independent permutations (extended abstract). InSTOC, pages
327–336, 1998.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 15

[7] X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k prestige-based
relevant spatial web objects.Proc. VLDB Endow., 3:373–384, 2010.

[8] K. Chakrabarti, S. Chaudhuri, V. Ganti, and D. Xin. An efficient filter
for approximate membership checking. InSIGMOD, pages 805–818,
2008.

[9] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robustand
efficient fuzzy match for online data cleaning. InSIGMOD, pages 313–
324, 2003.

[10] S. Chaudhuri, V. Ganti, and L. Gravano. Selectivity estimation for string
predicates: Overcoming the underestimation problem. InICDE, pages
227–238, 2004.

[11] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for
similarity joins in data cleaning. InICDE, pages 5–16, 2006.

[12] E. Cohen. Size-estimation framework with applications to transitive
closure and reachability.Journal of Computer and System Sciences,
55(3):441–453, 1997.

[13] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k most
relevant spatial web objects.PVLDB, 2(1):337–348, 2009.

[14] E. D. Demaine, D. Emanuel, A. Fiat, and N. Immorlica. Correlation
clustering in general weighted graphs.Theoretical Computer Science,
361(2):172–187, 2006.

[15] C. Ding and X. He. Cluster merging and splitting in hierarchical
clustering algorithms. InICDM, pages 139–146, 2002.

[16] M. Erwig and F. Hagen. The graph voronoi diagram with applications.
Networks, 36:156–163, 2000.

[17] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword searchon spatial
databases. InICDE, pages 656–665, 2008.

[18] A. V. Goldberg and C. Harrelson. Computing the shortestpath: A∗

search meets graph theory. InSODA, pages 156–165, 2005.
[19] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan,

and D. Srivastava. Approximate string joins in a database (almost) for
free. In VLDB, pages 491–500, 2001.

[20] D. Gunopulos, G. Kollios, J. Tsotras, and C. Domeniconi. Selectivity
estimators for multidimensional range queries over real attributes. The
VLDB Journal, 14(2):137–154, 2005.

[21] A. Guttman. R-trees: a dynamic index structure for spatial searching.
In SIGMOD, pages 47–57, 1984.

[22] M. Hadjieleftheriou and C. Li. Efficient approximate search on string
collections. PVLDB, 2(2):1660–1661, 2009.

[23] H. V. Jagadish, R. T. Ng, and D. Srivastava. Substring selectivity
estimation. InPODS, pages 249–260, 1999.

[24] L. Jin and C. Li. Selectivity estimation for fuzzy string predicates in
large data sets. InVLDB, pages 397–408, 2005.

[25] L. Jin, C. Li, and R. Vernica. Sepia: estimating selectivities of
approximate string predicates in large databases.The VLDB Journal,
17(5):1213–1229, 2008.

[26] M.-S. Kim, K.-Y. Whang, J.-G. Lee, and M.-J. Lee. n-gram/2l: a space
and time efficient two-level n-gram inverted index structure. In VLDB,
pages 325–336, 2005.

[27] N. Koudas, A. Marathe, and D. Srivastava. Flexible string matching
against large databases in practice. InVLDB, pages 1078–1086, 2004.

[28] H. Lee, R. T. Ng, and K. Shim. Extending q-grams to estimate selectivity
of string matching with low edit distance. InVLDB, pages 195–206,
2007.

[29] H. Lee, R. T. Ng, and K. Shim. Approximate substring selectivity
estimation. InEDBT, pages 827–838, 2009.

[30] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering algorithms for
approximate string searches. InICDE, pages 257–266, 2008.

[31] F. Li, B. Yao, M. Tang, and M. Hadjieleftheriou. Spatialapproximate
string search. Technical report, School of Computing, University of
Utah, 2011. http://www.cs.utah.edu/∼lifeifei/papers/sas.pdf.

[32] G. Li, J. Feng, and C. Li. Supporting search-as-you-type using sql in
databases.TKDE, To Appear, 2011.

[33] A. Mazeika, M. H. Böhlen, N. Koudas, and D. Srivastava.Estimating
the selectivity of approximate string queries.ACM TODS, 32(2):12–52,
2007.

[34] G. Navarro. A guided tour to approximate string matching. ACM
Comput. Surv., 33:31–88, 2001.

[35] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in
spatial network databases. InVLDB, pages 802–813, 2003.

[36] S. Sahinalp, M. Tasan, J. Macker, and Z. Ozsoyoglu. Distance based
indexing for string proximity search. InICDE, pages 125–136, 2003.

[37] J. Sankaranarayanan and H. Samet. Distance oracles forspatial net-
works. In ICDE, pages 652–663, 2009.

[38] J. Sankaranarayanan, H. Samet, and H. Alborzi. Path oracles for spatial
networks.PVLDB, 2:1210–1221, 2009.

[39] S. Shekhar and D. ren Liu. Ccam: A connectivity-clustered access
method for networks and network computations.IEEE Transactions
on Knowledge and Data Engineering, 9:410–419, 1997.

[40] E. Sutinen and J. Tarhio. On using q-gram locations in approximate
string matching. InESA, pages 327–340, 1995.

[41] E. Tiakas, A. N. Papadopoulos, A. Nanopoulos, and Y. Manolopoulos.
Node and edge selectivity estimation for range queries in spatial net-
works. Inf. Syst., 34:328–352, 2009.

[42] E. Ukkonen. Approximate string-matching with q-gramsand maximal
matches.Theor. Comput. Sci., 92(1):191–211, 1992.

[43] X. Yang, B. Wang, and C. Li. Cost-based variable-length-gram selection
for string collections to support approximate queries efficiently. In
SIGMOD, pages 353–364, 2008.

[44] B. Yao, F. Li, M. Hadjieleftheriou, and K. Hou. Approximate string
search in spatial databases. InICDE, pages 545 – 556, 2010.

[45] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and M. Kitsuregawa.
Keyword search in spatial databases: Towards searching by document.
In ICDE, pages 688–699, 2009.

[46] D. Zhang, B. C. Ooi, and A. Tung. Locating mapped resources in web
2.0. In ICDE, pages 521–532, 2010.

PLACE
PHOTO
HERE

Feifei Li received the BS degree in computer en-
gineering from the Nanyang Technological Uni-
versity in 2002 and the PhD degree in com-
puter science from the Boston University in 2007.
He was an assistant professor in the Computer
Science Department, Florida State University
between 2007 and 2011. Since Aug 2011, He
has been an assistant professor in the School
of Computing, University of Utah. His research
interests include databases, data management,
and big data analytics.

PLACE
PHOTO
HERE

Bin Yao received the BS degree and the MS de-
gree in computer science from the South China
University of Technology in 2003 and 2007, and
the PhD degree in computer science from the
Florida State University in 2011. He has been
an assistant professor in the Department of
Computer Science and Engineering, Shanghai
Jiao Tong University since 2011. His research
interestes are management and indexing of large
databases, and scalable data analytics.

PLACE
PHOTO
HERE

Mingwang Tang received the BS degree and
the MS degree in computer science from the
Sichuan University in 2006 and 2009 respec-
tively. He was a PhD student in the Computer
Science Department, Florida State University
from Sep 2009 to Aug 2011. After that, he has
been a PhD student in School of Computing,
University of Utah, since Sep 2011. His research
interests include query processing, query opti-
mization, and data analytics for large data.

PLACE
PHOTO
HERE

Marios Hadjieleftheriou received the electri-
cal and computer engineering diploma in 1998
from the National Technical University of Athens,
Greece, and the PhD degree in computer sci-
ence from the University of California, Riverside,
in 2004. He has worked as a research associate
at Boston University. Currently, he is working for
AT&T Labs Research. His research interests are
in the areas of databases and data management
in general.

http://www.cs.utah.edu/~lifeifei/papers/sas.pdf

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Electronic Appendix to “Spatial Approximate
String Search”

Feifei Li Member, IEEE , Bin Yao, Mingwang Tang, Marios Hadjieleftheriou

✦

APPENDIX A: PROOF OF THEOREM 1
Proof: When ηb = 1 in Equation 12, our problem is

identical to the following problem (Definitions1, 2 in [3]):
given a setP of points, we want to findk partitions of P
with k MBRs to minimize the information loss ofP . Each
partition is represented by the MBR and the number of points
in the MBR. The information loss for a pointp in the ith
partition bi is defined as the amount of “uncertainty” in each
dimension ofp, which is

∑

1,...,d Xi. And the information loss
of P is the summation of information loss for all points inP .
This problem is proved to be an NP-hard problem (Theorem
2 in [3]) by reducing the PLANAR3-SAT, which is an NP-
complete problem [2], to this problem.

In a special case of our problem, we assume that: (i) all
associated strings are identical, thenηbi

= 1 for any bi; (ii)
d = 2. Then Equation 12 is equivalent to the definition of
information loss for each bucket in the above. Hence, any
instance of the above problem, which is NP-hard, can be
reduced to an instance of our problem.

APPENDIX B: ESAS SELECTIVITY ESTIMATOR:
THE GREEDY ALGORITHM

We first illustrate our main ideas using a simple, greedy
principle. The algorithm proceeds in multiple iterations.In
each iteration, one bucket is produced. At every iteration,we
start with a seed, randomly selected from the unassigned points
(the points that have not been covered by existing buckets).
Let Π(P) and Θ(P) be the perimeter and area of the MBR
that encloses a set of pointsP , andP be the unassigned points
at any instance.

At the beginning of thei-th iterationP = P −
⋃i−1

j=1 bj,p.
We also find the number of neighborhoodsη in P and store
the memberships of points in these neighborhoods. For thei-th
iteration, we initializebi,p with a seed randomly selected from
P , and setni = 1 andηi = 1. Then, we try to add points to
bi,p from P in a greedy fashion. Whenever we remove a point
p ∈ P and add it tobi,p, we updateni, ηi, andη accordingly.
We do not recompute the neighborhoods inP after a point

• Feifei Li and Mingwang Tang are with the School of Computing, University
of Utah. E-mail: {lifeifei, tang}@cs.utah.edu. Bin Yao is with the Depart-
ment of Computer Science and Engineering, Shanghai Jiao Tong University
(contact author). E-mail: yaobin@cs.sjtu.edu.cn. Marios Hadjieleftheriou
is with the AT&T Labs Research. E-mail: marioh@research.att.com.

is moved. Rather, we simply remove the corresponding point
from the already computed neighborhood. Since we have
stored the neighborhoods, updatingη after removing a point
is easy, i.e., we simply decreaseη by one when the last point
for some neighborhood has been removed. We re-compute the
neighborhoods ofbi,p after inserting a new point, or we can
simply add new points to existing neighborhoods and rebuild
neighborhoods periodically.

At any step, the total amount of “uncertainty” caused by
the current configuration ofbi andP is estimated as:

U(bi) = ηi · ni · Π(bi,p) +
η · |P |

k − i
·

(

Θ(P)

k − i

)1/d

· d (14)

In the above equation, the first term is simply∆(bi).
The second term estimates the “uncertainty” for the remain-
ing buckets by assuming that unassigned points are evenly
and uniformly distributed into the remainingk − i buckets.
More specifically, each remaining bucket has an extent of
(

Θ(P)
k−i

)1/d

· d, i.e., a square with an area ofΘ(P)
k−i . It has

|P |/(k − i) points andη Θ(P)/(k−i)

Θ(P)
neighborhoods, where

Θ(P)/(k − i) is the average area of each bucket (i.e., the
number of neighborhoods an unassigned bucket covers is
proportional to its area). Based on this information, we can
estimate∆(b) for any unassigned bucket overP and sum over
all of them yields the second term in Equation 14.

When deciding which point fromP to add intobi, we iterate
through every pointpj ∈ P . For eachpj , let bj

i be a bucket
containing pointsbi,p∪{pj} andP

′

= P −{pj}. We compute
U(bj

i) with P
′

as the unassigned points according to Equation
14. We select the pointpj with the minimumU(bj

i) among all
points satisfyingU(bj

i) < U(bi) and movepj from P to bi. If
no such point exists, i.e., for allpj, U(bj

i) ≥ U(bi), we let the
currentbi be thei-th bucket and proceed with bucketi+1 by
repeating the same process. The intuition is that further quality
improvement is not likely to occur by adding more points to
the i-th bucket. After the(k − 1)-th bucket is constructed,
the unassigned points form thek-th bucket. If fewer thank
buckets are created, we find all buckets with more than one
neighborhood and repeat the process. If for a given bucket no
more than one point can be added (an outlier), we select a
different seed.

The greedy algorithm hask − 1 rounds. In each round, we
have to repeatedly check all points fromP and select the best

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

Length filter
root

· · ·

aa
jo

zz

1
2

n

Prefix filter

Position filter· · ·

· · ·· · ·

1 2

An inverted list (point ids
whose associated strings have
elngth of 2 and the gram ”jo”
at position 2)

4
7
19
...

Fig. 17. An example of a FilterTree from [1].

point to add to the current bucket.P hasO(N) size, and in
the worst case, we may check every pointO(N) times. Hence,
the complexity of the greedy algorithms isO(kN2).

APPENDIX C: EFFICIENT APPROXIMATE
STRING SEARCH

In order to support the efficient approximate string search on
a collection of strings, which is used as a component in our
query algorithm, we leverage on the FilterTree from [1]. The
FilterTree combines several string filters (e.g., length filter,
position filter) with theq-gram inverted lists for a collection
of strings and organizes these filters in a tree structure. An
example is shown in Figure 17. The nodes in the first level
of the tree are grouped by the string length. The second level
nodes are grouped by different grams (in this example,2-
grams). Then we decide the children of each gram by the
position of that gram in the strings. Each such child node
maintains an inverted list of string ids (that contain this gram
at a particular position with a given length). We integrate the
FilterTree with our disk-based storage model. Specifically, in
each inverted list, we store the point ids that correspond to
the associated strings. In query processing, these point ids can
be used to search the B+-tree of the points file to retrieve the
corresponding strings and other information.

To answer an approximate string query on the collection of
strings indexed by the FilterTree, we traverse the FilterTree
from the root to leaves. We retrieve those inverted lists that
satisfy the length, prefix, and position filters. Then we call
one of the merging algorithms in [1], so that strings contain
enough number of commonq-grams to the query string can be
identified (an improved version of Lemma 1 by incorporating
the position and length filters as well).

APPENDIX D: OTHER ISSUES

Multiple strings. In the general case, points inP and/or the
query may contain multiple strings. For RSAS queries, as long
as a point has at least one string similar to the query string,
it will be returned for further processing. For a data point
with multiple strings in ESAS queries, we build one min-
wise signature for each string and take the union of these
signatures when computing the signature for the leaf node
containing this point. For a query with multiple strings and
corresponding thresholds (conjunctive logic), we apply the
string-related prunings in Algorithms 1 and 2 for each query

string. As soon as there is one string that does not satisfy the
pruning test, the corresponding node/point can be pruned.

Other spatial query types. It is possible to adapt our query
processing techniques to work with other spatial query types.
In this work, we show how to do this for nearest neighbor
queries, and leave the study of other query types as interesting
future works. Both our solutions in the Euclidean space and
the road networks are spatial-oriented, i.e., the underlying
structures of our algorithms are constructed based on spatial
queries, rather than string queries. Hence, they can easily
answer standard spatial queries (by just ignoring the string
predicate pruning), or be adapted to answer an approximate
string search integrated with other spatial query types (instead
of the range query we have investigated). Note that for this
reason, these approaches are preferred than astring solution
(as discussed in Section 1) in spatial databases. For example,
using astring solution to answer an approximate string search
with k nearest neighbor queries, one has to collect all points
with similar strings to the query string, and then in the post-
precessing step find thek nearest neighbors to the query point
among this set. Without the help of a spatial index (since this
set varies for different queries, it is not possible to buildany
structure in a pre-processing step prior to the query), thispost-
precessing step can be very expensive (especially when this
set is large or data is in higher dimensions, both are likely in
practice).

That said, to deal with nearest neighbor queries combined
with approximate string search, our solution works as follows.
In ESAS queries, one can also revise thekNN algorithm for
the normal R-tree to derive thekNN-MHR algorithm. The
basic idea is to use a priority queue that orders objects in the
queue with respect to the query point using the MinDist metric.
However, only nodes or data points that can pass the string
pruning test (similar to lines14-17 and lines8-9 respectively
in Algorithm 1) will be inserted into the queue. Whenever a
point is removed from the head of the queue, it is inserted in
A. The search terminates whenA hask points or the priority
queue becomes empty.

For RSAS queries, one can also revise the RSASSOL al-
gorithm to derive thekNN-RSASSOL algorithm. The basic
idea is to use a priority queue to order subgraphs or points
with respect to the possible minimum distance (i.e. the lower
bound or exact network distance) to the query point. The entry
in the priority queue can be a subgraph with distance to the
query point, or a point with a lower-bound distance or the
exact distance to the query point. If a subgraph is popped out,
then we get the candidate set from line4 in Algorithm 2) for
this subgraph and calculate lower bounds for all the candidate
points and push them into the priority queue. Whenever the
priority queue pops out a point with the lower bound, then we
apply the edit distance filtering on it. If it satisfies the string
predicate, we calculate the exact network distance using the
ALT algorithm and re-insert it to the priority queue. Otherwise,
we can safely delete it. The search terminates whenk points
with exact distances are popped out or the priority queue
becomes empty. We can also utilize theMPALT algorithm
by popping out a certain amount of points at one time when

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

we compute the exact distances.
Note that an in-depth study of the nearest neighbor queries

combined with the approximate string search, that is not
possible in this work due to the space limit, is still needed
as a future work.

Updates. In the Euclidean space, coupling the R-tree nodes
with the min-wise signatures in the MHR-tree complicates
dynamic updates. For the insertion of a new object, we follow
the R-tree insertion algorithm, then, compute the signature
for the newly inserted point and union its signature with the
signature for the leaf node that contains it, by taking the
smaller value for each position in the two signatures. For
those positions that the signature of the leaf node changes,
the changes propagate to the parent nodes in similar fashion.
The propagation stops when the values of the signature on
the affected positions from the children node are no longer
smaller than the corresponding elements for the signature of
the parent. On the other hand, deletion is a bit more involved.
If some positions in the signature of the deleted point have the
same values as the corresponding positions in the signatureof
the leaf node that contains the point, then we need to find the
new values for these positions, by taking the smallest values
from the corresponding positions of the signatures of all points
inside this node. These updates may propagate further up in the
tree and a similar procedure is needed as that in the insertion
case. It is important to note here that the addition of the
min-wise signatures does not affect the update performance
of the R-tree since signature updates never result in structural
updates. Hence, the update properties and performance of the
MHR-tree is exactly the same as that of the R-tree (subject to a
very small computation overhead of computing the signatures,
linear hashing, of some affected nodes).

Second, maintaining good selectivity estimators under dy-
namic updates is a challenging problem in general. Most
existing work for either spatial-alone or string-alone selectivity
estimation (see Section 6) concentrate on static datasets.For
our estimator, we can simply update the number of points that
fall into a bucket as well as adjust the shape of the bucket
by the changes of the MBRs of the R-tree nodes it contains.
However, the underlying neighborhoods in one bucket may
shift over time. Hence, the initial bucketization may no longer
reflect the actual data distribution. We can rebuild the buckets
periodically, e.g., after a certain number of updates, and the
in-depth examination of this problem is left as a future work.

Lastly, the updates of the disk-based storage model for the
RSAS queries mostly just follow the update algorithms for an
B+-tree and the FilterTree. We omit the details.

APPENDIX E: ACKNOWLEDGMENT

Mingwang Tang and Feifei Li were supported in part by NSF
Grant IIS-1212310. Feifei Li was also supported in part by an
2011-2012 HP IRP award.

REFERENCES

[1] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering algorithms for
approximate string searches. InICDE, pages 257–266, 2008.

[2] D. Lichtenstein. Planar formulae and their uses.SIAM J. Comput., pages
329–343, 1982.

[3] K. Yi, X. Lian, F. Li, and L. Chen. The world in a nutshell: Concise
range queries.TKDE, 23:139–154, 2011.

