
1

ROVEC: Runtime Optimization of Vectorized
Expression Evaluation for Column Store

Meng Li, Zheyu Miao, Di Wu, Feifei Li, Sheng Wang, Wei Cao, Zhi Qiao
Yubin Ruan, Yukun Liang, Jimmy Yang, Haipeng Dai, Guihai Chen

Abstract—Due to the increasing demand for scalable and interactive data analytics, column stores have become the de-facto choice in
many analytical databases. As a common and fundamental operation in column stores, expression evaluation has a remarkable effect
on many queries. To speed up expression evaluation, vectorized techniques such as Single-Instruction-Multiple-Data (SIMD)
instructions are widely used. However, there are few works concerning dedicated optimizations for SIMD-based expression evaluation
for column stores. In this paper, we propose a runtime optimization framework named ROVEC that enables effective optimizations for
SIMD-based expression evaluation. The key idea is to optimize logical expression at execution time, by leveraging lightweight
compression and fine-grained statistics associated with the compressed data. ROVEC removes unnecessary type casting and finds
the tightest type during evaluation, which maximizes the concurrent operands in SIMD instructions. ROVEC can be applied to many
expression-evaluation-intensive operators (e.g., table scan and theta join) for different data types (e.g., numeric, time and string). To
validate the effectiveness of ROVEC, we integrate it into a columnar database PolarDB-C. Our evaluation results show that ROVEC
improves up to 125% (60% on average) throughput of table scan and up to 50% (30% on average) latency of theta join.

Index Terms—Expression Evaluation, SIMD, Column Database

F

1 INTRODUCTION

ANALYTICAL databases based on columnar storage (e.g.,
Redshift [1], Snowflake [2], and Vectorwise [3]) have

become the de-facto choice for enabling scalable and in-
teractive analytics over a large amount of data, due to
their excellent I/O efficiency. In a column store, data from
different columns is separated into different physical files,
while data from the same column is grouped as consecutive
fix-sized blocks that are compressed into files. Such a storage
layout allows faster evaluation on selected columns without
loading irrelevant columns as in traditional row stores,
catering to the rising demands of large-scale interactive
queries and analysis. Furthermore, a block-level statistical
summary (e.g., min/max) is associated with each block,
which can be used to further reduce I/O by bypassing
evaluations on obviously unqualified or qualified blocks [4].

However, block-wise information has been poorly used
regarding expression evaluation [4]. On one hand, at the
SQL-layer, the block-wise information cannot be used by a
SQL-layer optimizer since they usually work on column-
wise statistics where block-wise information is transparent
to them. On the other hand, at the executor-layer, the block-

• Meng Li is with State Key Laboratory for Novel Software Technology,
Nanjing University. Zheyu Miao is with Zhejiang University.
E-mail: menson@smail.nju.edu.cn, zheyu.mzy@alibaba-inc.com

• Di Wu, Feifei Li, Sheng Wang, Wei Cao, Zhi Qiao, Yubin Ruan, Yukun
Liang, and Jimmy Yang are with Alibaba.
E-mail: {wd154004, lifeifei, sh.wang, mingsong.cw, george.qz, yubin.ryb,
liangyukun.lyk, xinjun.y}@alibaba-inc.com

• Haipeng Dai and Guihai Chen are with State Key Laboratory for Novel
Software Technology, Nanjing University.
E-mail: {haipengdai,gchen}@nju.edu.cn

• Feifei Li and Guihai Chen are the corresponding authors.

Executor

Query
Runtime Optimization

#1

#1

...

#2 #n...

Block-wise Statistics

Optimized Expressions

ROVEC

Data

SQL

Optimizer
#2 #n

Target Expression

Fig. 1: Runtime Optimization

wise information is only used in the most straightforward
way, e.g., filtering out simple predicates evaluation on a
block according to its min/max values [4]. Such poor uti-
lization is due to the inevitable overhead of looking up to
the block-level summaries, especially if not enough benefits
are achieved. To make full use of the block-wise informa-
tion, we observe a particular optimization opportunity: type
reduction of expression evaluation, i.e., packing data into
smaller types with block-wise information to improve the
parallelism of widely-used SIMD-based evaluation. Note
that SIMD instructions are widely used for expression eval-
uation in column stores [5], [6], [7], by conducting the same
operation on multiple values simultaneously. The benefits
of type reduction can be further amplified by newer SIMD
instructions (e.g., AVX-512) since their (wider) registers ac-
commodate more values at one time.

However, type reduction for general expressions is non-
trivial due to overflow/underflow and block-by-block op-
timization overhead. Hence, it is no wonder that only
some simple expressions, like constant predicates1 [5] and
boolean predicates2 [8], [9], are supported. Another similar

1. The predicates between a column field and a constant.
2. The predicates only containing comparisons operations, and ex-

cluding arithmetic and other operations like + or IN .

2

type optimization from Vectorwise [10] is also discussed
in Section 6. Therefore, how to support type reduction
for general (e.g., non-constant or non-boolean) expressions
remains unsolved. To address this problem, we propose
ROVEC (Run-time Optimization of Vectorized Expression
evaluation for Column store), which is embedded in ex-
ecution engines and is a complement to traditional SQL-
layer optimizers. As shown in Figure 1, ROVEC takes an
expression and a block summary as input and outputs an
executable expression for each block individually. Its key
idea is to postpone the optimizations to execution time, in
order to utilize fine-grained block-wise statistics for type
reduction of (input/intermediate) data during evaluation.
In ROVEC, several optimization rules are carefully selected
and laid out to maximize the chances of type reduction with
minimized overhead. Particularly, considering the wide use
of lightweight compression schemes [11], [12], [13] in col-
umn stores, ROVEC unfolds the decompression process of a
compressed block as a subexpression, which creates further
opportunities for type reduction. Also note that some rules
are already implemented in compilers like LLVM [14] and
GCC [15], which however, cannot be borrowed directly
here, due to block-by-block compiling latency. Finally, we
emphasize that ROVEC is not a column store but just an
expression evaluation framework, which can interact with
column stores through a concise API and thus does not
require major architectural changes of column stores.

Challenges. There are four major challenges for the
design and implementation of the ROVEC framework.

The first challenge is how to choose proper compression
schemes that bring in opportunities for runtime optimiza-
tion. To address this challenge, we have defined a set
of element-addressable (EA) schemes, which are a subset
of widely-used lightweight compression schemes that can
decompress each compressed value independently. These
schemes are applicable to various data types, including
numeric, time, and string. Besides, in ROVEC, both EA
schemes and non-element-addressable (NEA) schemes can
be applied in combination, i.e., applying EA on raw data and
then NEA on EA-compressed data. During evaluation, only
the NEA layer is decompressed and provided to ROVEC.

The second challenge is how to avoid under-
flow/overflow during type reduction. To address this chal-
lenge, a lightweight type safe reduction algorithm is pro-
posed in Algorithm 1, which firstly estimates (or calculates)
the value range of each node of the input expression, and
then finds the tightest type for each expression node.

The third challenge is how to mitigate the overheads
from block-wise optimization. ROVEC optimizes expression
evaluation for each block individually, which inevitably
introduces overheads that may outweigh the benefits if not
carefully handled. To address this challenge, ROVEC only
relies on tiny block-wise summaries that can be persistently
cached in memory, making lookups to them highly efficient.
Besides, ROVEC only needs to traverse the expression tree
a few times for each block, which is negligible (i.e., < 9%)
compared to the subsequent computation on the block.

The fourth challenge is how to make ROVEC applicable
to different operators. To that end, ROVEC is designed as a
standalone component, such that all operators can interact
with it seamlessly. To obtain optimized expressions, each

operator only needs to provide the logical expression along
with corresponding block-wise statistics. Hence, the support
for different operators can be implemented independently.
The expression evaluation intensive operators like table scan
and theta join [16] have been supported in ROVEC.

Contributions. We make contributions to the runtime
optimization of expression evaluation in three folds. Firstly,
we propose a runtime optimization framework ROVEC for
expression evaluation, which adopts several novel runtime
optimizations to better exploit type reduction under SIMD-
based execution. Secondly, to the best of our knowledge,
we are the first to generalize the concept of type reduction
under lightweight compression schemes and combine it
with SIMD-based execution, which is shown to help achieve
significant performance gain in various workloads. Thirdly,
we conduct extensive evaluations to verify the effective-
ness of ROVEC on different data sets, by plugging it into
a column database PolarDB-C, (the columnar version of
PolarDB, [17], [18], a cloud-native database developed
within Alibaba for Alibaba Cloud). Our results show that,
compared with PolarDB-C, ROVEC increases up to 125%
(60% on average) throughput of table scan and reduces up
to 50% (30% on average) latency of theta join.

2 BACKGROUND

Column-block storage format. In such storage format,
consecutive records from a column are grouped into blocks,
which are then compressed and stored into files. Besides,
each block is associated with a block summary (containing
Min, Max, Sum, compression schemes and etc.). Due to
data distribution variances, blocks from the same column
may yield different compression ratios and types.

Element-addressable scheme. Suppose C is a com-
pression scheme, Ĉ is its decompression scheme, and
{s1, · · · , sn} is a data block . C is element-addressable if
compressed data C(si) can be decoded independently, i.e.,
si = Ĉ(C(si)). Example schemes in ROVEC are as below:

(1) Single-value scheme. Single-value scheme applies to
the case that all values within a block are identical. This
scheme is simple but useful in many cases, e.g., date field of
stock data within the same day. This scheme is applicable to
both numeric and non-numeric data types.

(2) Dictionary scheme. Dictionary compression is a
widely-used scheme, which maps each distinct value from
long-length records to a short-length index. Then, we re-
place each value with its corresponding index in the com-
pressed block. Dictionary scheme is used for string type.

(3) FOR scheme. FOR (i.e., frame of reference) [19] com-
presses a block by storing the delta between each value
and the minimum value within the block. Since deltas are
usually much smaller than original values, they can be
loaded into smaller types and thus reduce the total volume.
FOR scheme is used for numeric values.

(4) GCD scheme. GCD (i.e., greatest common divisor)
scheme compresses a block by replacing each original value
with the one divided by the greatest common divisor of
all values within the block. Specifically, suppose sGCD de-
notes GCD of the block, then the block is compressed to
{ s1
sGCD

, · · · , sn
sGCD
}. GCD is applicable to numerical values.

3

Physical
Execution Plan

Generation

Block-summary
Based

Simplification

Compression-
aware

Expression
Unfolding

Constant
Folding

Type
Reduction

Input
Logical Expression

... #1#n

Output
Block Summary

#1#n ...

Optimized Expressions

Fig. 2: Overview of ROVEC Framework

3 DESIGN OF ROVEC
In this section, we introduce the critical designs of ROVEC
as shown in Figure 2. We start with the insight behind our
framework design and the key optimization rule leveraged
by it named type reduction. To better demonstrate each
component, we provide a running example of expression
evaluation, and then the full elaboration on each step.

Generally, the optimization opportunity of ROVEC origi-
nates from the block summaries, which cannot be utilized by
a conventional SQL-layer optimizer since they usually work
on column-wise statistics. To make full use of the block-
wise information, a particular optimization opportunity is
observed: type reduction. Evaluating expression with type
reduction can be beneficial in three ways: (1) coherent
evaluation procedure that combines decompression and
expression together seamlessly; (2) avoiding the overhead
of transferring (between cache, memory or storage) data of
wider types; (3) faster SIMD-based evaluation (with smaller
data types). However, the support of type reduction of gen-
eral expressions is non-trivial due to underflow/overflow
and optimization overhead. To address the first problem,
we propose a lightweight algorithm, which supports first
estimating the value ranges of each expression node and
then reducing the type of each node to the tightest one.
To address the second problem, in ROVEC, a collection
of lightweight optimization rules are carefully selected
and laid out to maximize the chances of type reduction
while the overall optimization overhead is maintained to
be negligible. Particularly, the second rule, i.e., unfolding
the lightweight schemes as subexpressions, further empow-
ers type reduction optimization by enabling operations on
compressed data directly. As for the other rules, they aim
at removing redundant expression evaluation regarding
constants. The removed evaluation makes the expressions
provided to the type reduction module as simple and tidy
as possible, which correspondingly reduces the overhead
of the type-reduction procedure. During runtime, ROVEC
traverses the expression and applies the associated rules as
shown in Figure 2.

Compared with previous works, our main novelty lies
in building a runtime (i.e., execution time) lightweight op-
timizer that aims to reduce the evaluation overhead block
by block. Note that some optimization rules (e.g., constant
folding) in ROVEC may not be new but are used in a
significantly different way compared with previous works
in the SQL layer. In the first fold, we are the first to combine
these optimizations together and bring them into the execu-
tion layers with negligible overhead. In the second fold, if
directly applying our optimizations rules in the SQL layer
(based on the coarse column-level statistics), only limited
or even no performance gain will be achieved; in contrast,
based on the fine-grained block-wise statistics, a significant
performance gain can be achieved. For example, considering

1 2 4 8 1 6
2
4
6
8

1 0
1 2
1 4
1 6
1 8
2 0

 i n t 8
 i n t 1 6
 i n t 3 2
 i n t 6 4

T h r e a d s

Th
rou

gh
pu

t (b
illio

n r
ow

s/s
)

Fig. 3: Micro Bench of Type Reduction

that the data values from a whole column usually cover
a broad range, reducing the evaluation type of the data
from a whole column is usually infeasible, which, however,
is feasible within our fine-grained block-wise optimization
framework. In the third fold, instead of a straightforward
combination of existing optimization rules, the applied opti-
mizations in our work are elaborately selected and carefully
ordered to maximize the chances of our key optimization
rule, i.e., type reduction.

3.1 Key Optimization: Type Reduction
Usually, an expression is evaluated with its input data types,
which are derived from the user-defined table scheme.
However, accessing compressed data inevitably incurs data
type promotion i.e., converting from small compressed type
to the larger defined type in the table schema. Recall that
evaluations of predicates like (>) can be easily accelerated
by SIMD instructions. In addition, since SIMD operates on
fixed-length registers, using smaller types allows for more
values processed by one single instruction. In principle, up
to 2× throughput improvement can be achieved when the
value width is reduced by half. We conduct a microbench-
mark to demonstrate the end-to-end performance of SIMD
instructions (i.e., AVX512) for equality predicate evaluation
of different integer types, as depicted in Figure 3. The results
show that 25% ∼ 40% throughput improvement is observed
when the type is reduced by one level (i.e., width reduced
by half). We call it type reduction throughout this paper.

The most direct opportunity for type reduction lies in the
block summary. Unlike data types defined in table schema,
which have to cover the possible maximum value in the
entire column, fine-grained statistics in block summary can
reflect distributions of contained block-wise values more ac-
curately. For example, in expression COL1 > COL2, if both
fields (e.g., in INT64 type) can be covered by a smaller type
(e.g., INT16), predicate (>) can also be evaluated on this
smaller type. Moreover, a more aggressive type reduction
can be achieved if the evaluation can be conducted directly
on compressed smaller types, which, however, needs to
be based on proper (i.e., element-addressable) compression
schemes. To achieve that, we need to unfold the decompres-
sion process of element-addressable compression schemes
as subexpressions and embed it into the logical expression.

4

Expression: and

and

> <

+ 900 a 100

a b

 Block Summary,
 Column

True

 Block Summary,
 Column

FOR Scheme

SQL Type
BIGINT

Storage Type
UINT8

Min: 0
Max: 80

FOR Scheme

SQL Type
BIGINT

Min: 500
Max: 3000

Storage Type
UINT16

(a) Simplification

>(int64)

+(int64) 900(int64)

Cast(int64)

+(int64)

0(int64)

a(uint8)

Cast(int64)

+(int64)

500(int64)

b(uint16)

Unfolded Expression Tree

and

True

Min Min

(b) Expression Unfolding

Constant Folded Tree

>(int64)

+(int64) 400(int64)

Cast(int64)

a(uint8)

Cast(int64)

b(uint16)

(c) Constant Folding

>(uint16)

+(uint16)

Cast(uint16)

a(uint8)

b(uint16)

Type Reduced Tree

400(uint16)

(d) Type Reduction

Fig. 4: Running Example

Specifically, considering that element-addressable schemes
enable operations on per-element granularity, their decom-
pression can be unfolded into subexpressions as follows:

• Single-value can be represented as a single constant;
• Dictionary can be represented as a dictionary lookup operator;
• FOR can be represented as a pair of Cast and Add operators;
• GCD can be represented as a pair of Cast and Mul operators.

With the unfolded decompression above, type reduction
optimization will not only be conducted within the unfolded
subexpression but will also be propagated to other (com-
parison or arithmetic) operations in the logical expression.
For example, the comparison between string values com-
pressed by Dictionary scheme can be converted into the
comparison between (length-reduced in bytes) dictionary
indexes. Besides, if COL1 and COL2 are compressed with
FOR scheme, the above expression can be rewritten as
COL1′ > COL2′+(Min2−Min1), where COL1′ and COL2′

are the compressed values, and Min1 and Min2 are mini-
mum values in the corresponding block summaries. Apart
from the comparison operators, other arithmetic operators
(such as +,−, ∗, /) can also be optimized in a similar fashion.
In summary, with type reduction, we can significantly boost
the expression evaluation, which could be further boosted if
the data are compressed into smaller types.

3.2 A Running Example

Before diving into the details, we first give a running exam-
ple to illustrate the intention of each rule. In Figure 4(a), the
example expression is (a+b > 900 and a < 100), where a and
b are columns of BIGINT type and compressed with FOR
scheme into storage type of UINT8 and UINT16. Besides,
an example block summary (denoted by âN) of block aN
(the Nth block of column a) is also shown in the figure, as
well as the block summary b̂N of block bN .

Block-summary based simplification. This stage aims at
identifying the potential constants in the given expression
with the statistics from the block summary. As shown in
Figure 4(a), in the given expression (a+b > 900 and a < 100),
the subexpression, i.e., a < 100, might result in a constant
according to the block summary âN . Specifically, as the max
field (i.e., Max(âN)) is smaller than 100, this subexpression
(a < 100) is evaluated to be True and thus leads to the
simplified expression (a+ b > 900 and True).

Compression-aware expression unfolding. This stage
aims at, for each block, unfolding the compression schemes
into subexpressions to be further optimized in the later
stages. As shown in Figure 4(b), ROVEC unfolds col-
umn a as CastToInt64(aN) + Min(âN), and column b as
CastToInt64(bN) +Min(b̂N) similarly.

Constant folding. This stage aims at eliminating re-
dundant evaluation regarding constants. For example, con-
stants (e.g., Min(aN) and Min(bN)) have been explicitly
embedded into the expression during the unfolding stage.
Now, we can swap the constants to the right side of the
expression, resulting the new expression CastToInt64(aN)+

CastToInt64(bN) > 900− (Min(âN)−Min(b̂N)). Therefore,
the costly arithmetic evaluation, e.g., CastToInt64(aN) +

Min(âN), is eliminated as is shown in Figure 4(c).
Type reduction. In Figure 4(c), without type-reduction,

block aN and bN need to be promoted to INT64 during eval-
uation, which is time-consuming and unfriendly to SIMD.
On the contrary, ROVEC estimates the value ranges of the
expression rooted by node (>) recursively. Since the max
value of aN and bN are 80 (80 − 0) and 2500 (3000 − 500),
aN + bN is no larger than 2580 and can be covered by type
UINT16. A feasible type reduction is shown in Figure 4(d).

Physical expression generation. To generate the ex-
ecutable expression (i.e., the physical plan), we assign a
physical implementation to each node in the expression
tree, and convert recursive tree-like execution to sequential
queue-based execution via DFS (depth-first search).

3.3 Optimization Strategy in ROVEC
In this subsection, we elaborate on the optimization rules of
ROVEC in Figure 2. Note that the capability of ROVEC is
not limited to the rules listed, and additional rules can be
appended on-demand to handle new compression schemes,
statistical summary (e.g., bloom filter), and patterns (e.g.,
SQL functions).

3.3.1 Summary-based Simplification
Summary-based simplification is the first stage, which uti-
lizes fine-grained statistics from the block summary to re-
duce computation within the given expression at runtime.
Recall that a block summary is associated with each data
block and contains block-wise statistics. Especially, the fol-
lowing statistics are extensively utilized: min/max, SQL

5

data type, storage data type, and compression schemes.
To simplify an expression, ROVEC first traverses the input
expression via DFS to identify optimizable patterns. An
optimizable pattern is an expression sub-tree that can be
potentially evaluated as a constant with the help of block
summary (True or False, e.g., a < 100). If any optimizable
pattern is recognized as a constant, the corresponding sub-
tree will be replaced by the constant. In this way, the con-
ventional element-wise evaluation is replaced by block-wise
evaluation, which only needs to be done once per block.

3.3.2 Compression-aware Expression Unfolding

Expression unfolding is an important stage that opens the
gate for effective type reduction. As mentioned, each col-
umn is compressed in the unit of blocks and needs to be
decompressed when an expression involves the evaluation
over this column. However, since the compressed values
are stored in smaller data types, decompressing them not
only incurs extra computation overhead but also misses the
opportunity to reduce the evaluation data type. To address
this issue, we propose to unfold the decompression process
for each data block as a subexpression according to the
schemes applied to the block.

During the unfolding process, the strategies for different
schemes are not the same. For the GCD scheme, we need
to unfold the greatest common divisor of the block as a
constant in the expression. For the Single-value scheme,
unfolding the compressed block is equivalent to replacing
it with the single constant from the block summary. As
for Dictionary scheme, we reinterpret a data item into the
corresponding dictionary index. Note that ROVEC does
not restrict a block to be compressed by only one scheme.
If a block is compressed by multiple schemes in cascade,
ROVEC unfolds the applied schemes one by one according
to their applied order. By doing so, instead of decom-
pressing values directly, ROVEC unfolds the decompression
process as a subexpression, which can be optimized in the
follow-up stages.

3.3.3 Constant Folding

Constant Folding stage takes the output from the previous
stage as input and aims at removing redundant evaluations.
As discussed in Section 3.3.1, constants might be generated
and embedded in the expression. Such constants can be
further propagated to simplify the unfolded expression. For
example, the expression (a+b > 900 and True) is equivalent
to (a+ b > 900) based on the conjunction simplification rule.

We also discover other opportunities that can further
prune out computation regarding constants. A typical case
is called constant swap, as shown in Figure 4(c). Note that
overflow/underflow issues need not be worried during the
constant swap, since value ranges of intermediate evalua-
tions can be inferred from Min/Max values of the block
summaries, and if needed, properly capped. In summary,
constant folding helps remove redundant evaluations by
merging intermediate evaluations that only involve con-
stants, which is also applicable for Single-value, Dictionary,
and GCD schemes.

Algorithm 1: ReduceType
Data: expression node n
Result: type reduced expression

1 for c in the child nodes of n do
2 ReduceType(c);

3 {Tout, Tin} = DoEstimate(n); /* estimated tightest

type */

4 if n.Tin > Tin then
5 if n is the root node and n.Tout < Tout then
6 add a Cast node (from n.Tout to Tout) as n’s

parent;

7 n.Tout = Tout;
8 DoReduce(n, Tin);

3.3.4 Type Reduction
The type reduction stage takes the output from previous
steps as input and outputs a type-reduced expression. It
is a novel optimization mechanism proposed by ROVEC,
which enables runtime acceleration of expression evalua-
tion. This optimization opportunity originates from two as-
pects. First, compression schemes may reduce user-defined
SQL types into smaller data types. Second, the parallelism
of SIMD-based evaluation benefits from smaller data types,
i.e., evaluating more operands (i.e., values) as the size of
each operand decreases. For example, in the Intel AVX-
512 instruction set, a SIMD instruction can handle 64 bytes
of operands. It can only process 8 items if they are 64-bit
integers, but up to 64 items if they are 8-bit integers. Type
reduction packs items into a type as small as possible so that
a set of items can be evaluated with fewer instructions.

However, unlike normal type assignments in SQL op-
timizer, one important consideration in ROVEC is to avoid
introducing new overflow/underflow issues while reducing
evaluation type. To solve this problem, ROVEC first esti-
mates the value range of each intermediate expression node,
and then reduces its type to the tightest one that covers the
estimated range. This estimation is feasible since block-wise
statistics reflect the value range within each block.

The main procedure of type reduction is shown in Al-
gorithm 1. It traverses the input expression tree via DFS to
identify the tightest (input/output) types for each node, i.e.,
each node firstly estimates its range (Step 3, Algorithm 1),
and secondly reduces its type (Step 4− 8, Algorithm 1).

In the first phase, each node estimates its output range
according to its own node type and the output ranges of its
direct child nodes by invoking Algorithm 2. For example,
the constant and field nodes derive their output ranges from
the block summaries (Step 1 − 3 and 4 − 5 in Algorithm 2,
respectively). As for the scalar functions, their output ranges
are derived from the output ranges of direct child nodes,
e.g., function Add in Step 8− 12 of Algorithm 2. However, if
estimation is not feasible, the range of each node’s original
type is returned (Step 14 − 16, Algorithm 2). With the
estimated range, the type reduction process is triggered for
each node to chooses its tightest type.

With the estimated type, the reduction process is trig-
gered for each node when its estimated type is smaller
than the original type (Step 4 − 7, Algorithm 1), and then
Algorithm 3 is invoked to reduce the type of the direct child
nodes (Step 8, Algorithm 1). Specifically, if a child node is a

6

Algorithm 2: DoEstimate
Data: expression node n
Result: estimated tightest output type tout and input

type tin
1 if n.op is Const then
2 n.max = n.val, n.min = n.val;
3 tout = tin = the tightest type covering the range;

else if n.op is Field then
4 derive n.min and n.max from block summary;
5 tout = tin = the tightest type covering the range;

else if n.op is Predicate then
6 n.min = 0, n.max = 1, tout = boolean;
7 tin = the tightest type covering children’s output

type;

else if n.op is Add then
8 n.max = n.children[0].max+ n.children[1].max;
9 n.min = n.children[0].min+ n.children[1].min;

10 tout = the tightest type covering the range of n;
11 tchild = the tightest type covering children’s output

type;
12 tout = tin = the larger type between tr and tchild ;

else if other specific operations then
13 /* operation-specific estimations */

else if Unsupported estimation then
14 tout = n.Tout, tin = n.Tin ;
15 n.min = min value in tout, n.max = max value in

tin ;

16 return {tout, tin};

Algorithm 3: DoReduce
Data: expression node n, new input type Tin

Result: None
1 n.Tin = Tin;

for c in child nodes of n do
2 if c.op is Cast then

if c.Tin is the same as Tin then
3 remove the Cast node c;

else if c.Tout > Tout then
4 c.Tout = Tin ; /* Cast to a smaller type */

else if c.op is Const then
5 c.Tout = c.Tin = Tin;

else if c.op is Scalar Function and c.Tout < Tin then
6 add a Cast node (from c.Tout to Tin) as n’s

parent;

type casting (Cast) node, its output type is reduced to the
input type Tin as Step 2 − 4 of Algorithm 3 shows. In the
best case, if the reduced output type is equal to its original
input type, the Cast node can be entirely removed (Step 3,
Algorithm 2). Constant nodes can be modified directly, as
they do not involve any calculation (Step 5, Algorithm 3).
As for the child scalar function nodes, their output types
remain unchanged since they are already reduced to the
tightest type (Step 7, Algorithm 1). However, in case that
the input type is larger than the output type of a child
scalar function node, a new Cast node will be added as
Step 6 of Algorithm 3 shows. In such scenarios, adding a
new type casting node to the current node is equivalent to
postponing the type casting of child nodes, which could be
further optimized in the later steps.

Theta

Join

Table

Scan

Table

Scan

ROVEC

Expr + Statistics

Optimized Expr

Optimizter

Executor

Query

Data

Fig. 5: System Implementation

4 SYSTEM IMPLEMENTATION

In this section, we demonstrate how ROVEC can be im-
plemented on top of an existing database system, taking
PolarDB-C as an example. It is noteworthy that the adoption
of ROVEC does not require major architectural changes.

4.1 Overview
As shown in Figure 5, ROVEC is implemented as a stan-
dalone component that all execution operators can interact
with it seamlessly through a concise API. For each inter-
action, ROVEC receives the logical expression along with
corresponding block summaries as input and outputs a
block-wise optimized expression. The execution framework
of PolarDB-C follows the traditional volcano architecture,
where rows are pulled from child operators. Each pull action
fetches a data chunk (i.e., thousands of rows from the same
block) from a child operator. Besides, each pulled chunk is
attached with an extra block ID, which can be used to retrieve
the block summary required by ROVEC.

4.2 Operator Support
Table scan. Table scan operator scans the underlying

columnar table to extract the IDs of qualified rows given
a predicate. During a table scan, ROVEC is triggered for
each row group (a group of rows from the same block), and
it generates an optimized predicate to enable fast evaluation
of the current block using SIMD.

Theta join. There are different ways to implement a theta
join. The most generic approach, which can handle arbitrary
theta-join conditions, is the (block) nested loop join. Nested
loop join is a computation-intensive operator but with the
best coverage in terms of supported join types. It fetches
data chunks from both child nodes and compares all pairs
of rows via a nested loop. For each pair of chunks (i.e., one
from the left child and the other one from the right child),
ROVEC is triggered to generate an optimized join predicate.

Other operators. Note that with the support for table
scan and generic theta join, ROVEC can support standard
SPJ queries (as well as Group By, since Group By relies on
similar semantics as projection). How to extend ROVEC to
support nested query blocks with cross-block optimization
is an interesting future work that we will explore.

4.3 Non-Element-Addressable Scheme
In this subsection, we illustrate how to support Non-
Element-Addressable (NEA) schemes, which refers to com-
pression schemes other than the Element-Addressable (EA)
schemes defined in Section 2. Example NEA schemes in-
clude GZip [20], Run-length-encoding [11].

7

 P o l a r D B - C w i t h R O V E C P o l a r D B - C V e c t o r w i s e C l i c k h o u s e D B 2 - B L U Q u i c k s t e p H y r i s e

Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8 Q 1 0 Q 1 2 Q 1 4 Q 1 5 Q 1 6 Q 1 9 Q 2 00 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0

T P C - H Q u e r i e s

Th
rou

gh
pu

t (b
illio

n r
ow

s/s
)

(a) Thread Count = 1

Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8 Q 1 0 Q 1 2 Q 1 4 Q 1 5 Q 1 6 Q 1 9 Q 2 00

5

1 0

1 5

2 0

T P C - H Q u e r i e s

Th
rou

gh
pu

t (b
illio

n r
ow

s/s
)

(b) Thread Count = 32

Fig. 6: Overall Table Scan Performance on TPC-H

From a system’s perspective, ROVEC does not exclude
other compression schemes. Specifically, both EA and NEA
can be applied in ROVEC in a stacked way, i.e., apply EA
on raw data first and then NEA on EA-compressed data.
Correspondingly, during evaluation time, only the NEA
layer is decompressed, so that high compression ratio and
runtime optimization opportunities can be both sustained.

Our runtime optimizer ROVEC, as a plugin embedded
in the query executor, does not change the architecture of the
database system like the underlying storage engine in which
NEA is applied. Therefore, whether NEA is used or not
in the underlying storage engine is transparent to ROVEC.
Moreover, applying EA will not affect the effectiveness of
subsequent NEA. In other words, even if NEA is applied,
the performance gap between ROVEC and the comparison
system (PolarDB-C) is generally unchanged since their per-
formance will increase/decrease simultaneously.

5 EXPERIMENTAL EVALUATION

To validate the effectiveness of ROVEC, we conduct an
experimental evaluation for ROVEC by integrating it into
a columnar database PolarDB-C. We extensively evaluate
ROVEC with queries extracted from TPC-H [21] and a
real-world a recommendation system workload. The exper-
iments include evaluations of two expression-intensive dif-
ferent operators (i.e., table scan and theta join), together with
comparisons with other systems. Note that considering that
there are other operators (other than table scan and theta
join) that dominates the execution time of queries in TPC-H,
we extract the table scan and theta join queries from TPC-
H to directly demonstrate the performance improvement
brought by ROVEC.

5.1 Experimental Setup
Hardware. The experiments are conducted on a server

with 32 cores based on Intel Xeon Platinum 8163 CPU
(@2.50GHz), 128GB memory, and 1.0TB SSD.

Metric. To achieve a head-to-head comparison, we use
throughput (i.e., the number of rows scanned per second)
as the metric to measure the performance of the table scan
operator. For the theta join operator, we use latency (i.e., end-
to-end response time) as the metric. Higher throughput or
lower latency indicates better performance.

Baseline systems. In the experiments, we compare
ROVEC with the original PolarDB-C, as well as other SIMD-
based column databases including Vectorwise (or Actian

Vector) [22], ClickHouse [23], DB2 with BLU [9] (DB2-BLU
for short), QuickStep [24], and Hyrise [25]. Vectorwise is a
column database deeply integrated with many query pro-
cessing innovations such as vectorized execution model [26].
Particularly, Vectorwise extensively exploits performance-
critical features of modern CPUs like super-scalar execution
and SIMD instructions. ClickHouse is a linearly scalable and
hardware efficient column store [23], which utilizes SIMD
instructions but of an old version (i.e., AVX-256). DB2-BLU
is another column store with an innovated compression
scheme that enables multiple compressed values packed
into a register to improve the SIMD-based parallelism of
evaluating operations such as predicates and joins. As for
Quickstep, it is designed to be scaling-up and equipped with
a vast body of techniques for organizing data, optimizing,
scheduling and executing queries. Hyrise is a main memory
database, which automatically partitions tables into vertical
partitions of varying widths according to column access
pattern. PolarDB-C is implemented with the newest SIMD
instructions (i.e., AVX-512) at all layers, ranging from query
processing to data compression/decompression. Consider-
ing that the latest AVX-512 instructions are not supported
by all the systems above, PolarDB-C is used here as a base-
line for AVX-512-based systems. The comparison between
PolarDB-C and other systems reflects the effectiveness of
the AVX-512 instructions while the comparison between
PolarDB-C and ROVEC reflects the performance gain from
the proposed optimizations.

TPC-H dataset. We use 100GB TPC-H to evaluate the
table scan operator. For theta join operator, as it is highly
computation-intensive, we use 1GB TPC-H. Note that TPC-
H queries contain many different operators. To better
demonstrate the performance of the table scan operator,
we extract only those queries (or sub-queries) that require
expression evaluation, as listed in Table 1. These queries
are selected in the principle of covering as many types of
queries as possible. Considering that there is no theta join in
TPC-H, two theta join queries are synthetically constructed
as shown in Table 3, which is inspired by [27].

RO dataset. To further validate the effectiveness of
ROVEC in real-world applications, another dataset named
RO (Recommendation Online dataset) is used, which is
about 192GB and collected from the production environ-
ment of an online recommendation system. As RO is in
the production environment, it is disallowed to be imported
into systems (like Vectorwise) unavailable in the environ-
ment. Hence, only the results of ROVEC and PolarDB-C are

8

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q1
0

Q1
2

Q1
4

Q1
5

Q1
6

Q1
9

Q2
00 . 0

0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0

 R O V E C O F F
 R O V E C O N (D i s a b l e T y p e R e d u c t i o n)
 R O V E C O N (E n a b l e T y p e R e d u c t i o n)

Th
rou

gh
pu

t (b
illio

n r
ow

s/s
)

T P C - H Q u e r i e s
Fig. 7: Performance Break Down

E v a l u a t i o n O p t i m i z a t i o n G e n e r a t i o n O t h e r

9 1 % 8 6 % 9 1 % 8 8 % 8 6 % 8 7 % 8 3 % 8 3 % 8 0 % 8 0 %
7 % 9 % 5 % 7 % 8 % 6 % 8 % 7 % 9 % 9 %
1 % 2 % 1 % 1 % 2 % 1 % 2 % 2 % 2 % 2 %
1 % 2 % 3 % 4 % 5 % 6 % 7 % 7 % 9 % 9 %

Q1
,3 Q2 Q4

Q5
,10

,
14

,15
,20 Q6 Q7 Q8 Q1

2

Q1
6

Q1
90

2 0
4 0
6 0
8 0

1 0 0

Ov
erh

ea
d (

pe
rce

nta
ge

)

T P C - H Q u e r i e s
Fig. 8: Optimization Overhead

provided.
Storage and compression schemes. The data blocks

with fixed number of tuples or fixed size in space are both
feasible. By default, we inherit setting of PolarDB-C, which
is the former setting, i.e., fix number (65, 536) of tuples per
block and also adopted by column databases like [4], [28].
The default chunk size is 4096 for each operator. Besides,
FOR and GCD are used for data types of Integer, Decimal,
and Date. Dictionary is used for string data, and the single-
value scheme is used for all types whenever applicable.

5.2 Evaluation on TPC-H
We first evaluate all systems on TPC-H with extracted
queries from Table 1 and 3 and summarize the results as
follows: compared with PolarDB-C, ROVEC improves the
throughput of table scan by up to 120% (60% on average)
and reduces the latency of theta join by up to 50% (30%
on average). Besides, ROVEC outperforms other systems
significantly, i.e., over 5× average throughput improvement
for table scan and theta join queries.

5.2.1 Table Scan
We first evaluate scan extracted queries from TPC-H as
listed in Table 1. Then, we look into the detailed impact
from each component of ROVEC, including the acceleration
from type reduction and other optimizations as well as the
overhead from block-wise optimization. The scalability and
compression status (e.g., compression ratio) are also studied.
Finally, we study the impact of data skewness on ROVEC.

Overall table scan performance. Figure 6 shows the
overall throughput of all systems on TPC-H. Overall,
ROVEC achieves a significant improvement in throughput,
which is about 180% of PolarDB-C on average.

First, we look at the case of single-thread evaluation
as depicted in Figure 6(a). Compared with PolarDB-C,
we observe that the throughput of ROVEC is increased
by 82.5% on average. Among all issued queries, ROVEC
achieves the largest improvement on Q2, because of the
type reduction on column p size from type INTEGER to
type UINT8. Compared with other comparing systems, the
average throughput advantage of ROVEC grows even larger
than 600% on average. This performance gap comes majorly
from two aspects: (1) the runtime execution optimization
from ROVEC; and (2) the system infrastructure of PolarDB-
C, i.e., the use of AVX-512. In particular, the impact of system
infrastructure has been identified by comparing PolarDB-
C with other systems, which is about 427% on average.

Therefore, we conclude that the latest SIMD instructions
bring in significant performance benefits, which can be
further amplified by ROVEC.

Second, we turn to the evaluation with 32 threads. As
shown in Figure 6(b), ROVEC improves the throughput by
40% on average compared with PolarDB-C and over 500%
on average compared with other comparing systems. Com-
pared one thread evaluation, we find that the performance
gap between ROVEC and PolarDB-C tends to be smaller,
which results from memory bandwidth bottleneck. Among
all queries, ROVEC achieves the largest improvement on
Q10 by 62%, mainly because of the type reduction on
column o orderdate from type DATE to type UINT16.

Break-down analysis of performance gain. Here we
study the break-down performance improvements from dif-
ferent optimization components in ROVEC, such as type re-
duction, expression simplification, and unfolding. For type
reduction, we build an intermediate version of ROVEC that

Index Query
Q1 select count(*) from lineitem where l shipdate≤ date ‘1998-

12-01’ - interval ‘90’ day
Q2 select count(*) from part where p size = 30
Q3 select count(*) from orders where o orderdate ≤ ‘1995-3-15’
Q4 select count(*) from lineitem where l commitdate <

l receiptdate
Q5 select count(*) from orders where o orderdate≥ date ‘1994-

01-01’ and o orderdate < ‘1994-01-01’ + interval ‘1’ year
Q6 select count(*) from lineitem where l shipdate ≥ ‘1994-

1-1’ and l shipdate < ‘1994-1-1’ + interval ‘1’ year and
l discount between .06−0.01 and .06+0.01 and l quantity
< 24

Q7 select count(*) from lineitem where l shipdate between
‘1995-01-01’ and ‘1996-12-31’

Q8 select count(*) from part where p type = ‘ECONOMY AN-
ODIZED STEEL’

Q10 select count(*) from orders where o orderdate≥ date ‘1993-
10-01’ and o orderdate < ‘1993-10-01’ + interval ‘3’ month

Q12 select count(*) from lineitem where l receiptdate ≥ date
‘1994-01-01’ and l receiptdate < ‘1994-01-01’ + interval ‘1’
year and l shipmode in (‘MAIL’, ‘SHIP’)

Q14 select count(*) from lineitem where l shipdate≥ date ‘1995-
09-01’ and l shipdate < ‘1995-09-01’ + interval ‘1’ month

Q15 select count(*) from lineitem where l shipdate≥ date ‘1996-
01-01’ and l shipdate < ‘1996-01-01’ + interval ‘3’ month

Q16 select count(*) from part where p size in (49, 14, 23, 45, 19, 3,
36, 9)

Q19 select count(*) from lineitem where l shipmode in (‘AIR’,
‘AIR REG’) and l quantity ≥ 10 and l quantity ≤ 10 + 10
and l shipinstruct = ‘DELIVER IN PERSON’

Q20 select count(*) from lineitem where l shipdate≥ date ‘1993-
1-1’ and l shipdate < date add(‘1993-1-1’, interval ‘1’ year)

TABLE 1: Extracted TPC-H Table Scan Query

9

1 2 3 4 5
0

1 0
2 0
3 0
4 0
5 0

Q1
 (b

illio
n r

ow
s/s

)

R o w N u m b e r s

 Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8 Q 1 0 Q 1 2 Q 1 4 Q 1 5 Q 1 6 Q 1 9 Q 2 0

1 2 4 8 1 6 3 20 . 5
1
2
4
8

1 6
3 2

Th
rou

ghp
ut (

bill
ion

 ro
ws

/s)

T h r e a d C o u n t

Fig. 9: Thread Scalability

3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 04
6
8

1 0
1 2
1 4
1 6
1 8
2 0
2 2

Th
rou

ghp
ut (

bill
ion

 ro
ws

/s)

D a t a S c a l e (G B)

Fig. 10: Data Size Scalability

0 1 2 3 4
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

Th
rou

ghp
ut (

bill
ion

 ro
ws

/s)

S k e w n e s s

Fig. 11: Throughput vs. Skewness

switches off the type reduction stage, and compare it with
the full version of ROVEC in Figure 7. In the figure, we
denote this intermediate version as ROVEC ON (Disable
Type Reduction) and the full version as ROVEC ON (Enable
Type Reduction). Moreover, to measure the performance
gain from other optimization components (e.g., expression
simplification, and unfolding), we build a version without
any optimization and denote it as ROVEC OFF.

Type reduction. As shown in Figure 7, type reduction is
the dominant optimization contributing to the major perfor-
mance gain for all queries. Specifically, ROVEC ON (Enable
Type Reduction) increases the throughput by 57% compared
with ROVEC OFF, and by 40% compared with ROVEC
ON (Disable Reduction OFF). On average, over 80% of the
performance gain is from this optimization. Especially, for
query Q19, over 98% improvement is from type reduction.

Other optimizations. For all queries (except on Q4), we
observe that other optimization components (i.e., excluding
type reduction) improve throughput by 17% on average and
accounts for about 15% performance gain of ROVEC. In
Figure 7, ROVEC (Disable Type Reduction) on Q4 performs
worse than ROVEC OFF. This is because other optimizations
hardly work when comparing two data fields so that the
overhead of optimization outweighs the benefits. In sum-
mary, other optimizations also contribute to the throughput
improvement but with limited impact.

Optimization overhead. Here we study the optimization
overhead of ROVEC, which is mainly from expression opti-
mization for each input data block. Overall, the optimization
overhead only accounts for less than 9% of the total running
time, which is negligible compared with the performance
gain it brought. To deeply investigate this overhead, we di-
vide the entire query processing procedure into four stages:
optimization (i.e., Step 1 − 4 in Figure 2), generation (i.e.,
interpreting optimized expression into machine code as Step
5 in Figure 2 shows), evaluation (i.e., data fetching and ex-
pression evaluation) and other miscellaneous processes (e.g.,
query parsing and output handling). Figure 8 shows break-
down overheads of each stage in terms of the percentage
of the entire query execution time. For conciseness, similar
queries are combined as a group and it results in 10 groups
in total. As shown in Figure 8, the optimization stage ranks
second among all stages and only accounts for 7.45% of the
total running time on average. The evaluation stage is the
heaviest part, which accounts for 86% of the total running
time. For the rest two stages, they only account for about
10%. In summary, the optimization overheads are small ,
and negligibly affects query processing.

Storage and Compression Schemes. The application
of compression schemes can reduce the data volume
transferred between memory and disk, which is at the
cost of compression/decompression overhead. Therefore,
the compression schemes should be employed if the re-
duced data loading time is larger than the compres-
sion and decompression time. Considering that our paper
mainly targets an analytical database based on column
store, the data volume transferred is huge but can be
greatly reduced with compression schemes, whose (com-
pression/decompression) overhead is negligible [11], [12],
[13]. Thus, it’s no wonder that lightweight compression
schemes now have been the de-facto choice in column
databases like Vectorwise, Hyper, and C-Store. Moreover,
in our proposed optimization framework, the overhead is
further reduced when integrated together with the expres-
sion evaluation process. In summary, in our framework, the
compression schemes are applied by default.

In the evaluation, the applied encoding schemes depend
on data types: all numeric columns are encoded with FOR;
DATETIME with FOR and GCD; VARCHAR with Dictio-
nary; and Single-value scheme is used whenever possible.
To show the effectiveness of compression schemes, here we
investigate the compression status (e.g., compressed type
and compression ratio) of data in TPC-H dataset. In general,
most of the data can be compressed by element-addressable
schemes, and all schemes in Section 2 are used in the eval-
uation. On average, 100GB raw data is compressed to 52GB
files on disk, where the compression ratio is 2. To look into
the compression status, we select frequently used columns

Column SQL Type Compression
Scheme

Compression
Ratio

l linenumber Integer FOR, Single-value 4

l quantity Decimal(15,2) FOR, Single-value 4
l orderkey Integer FOR, Single-value 1.337
l extended
price Decimal(15,2) FOR, Single-value 2

l discount Decimal(15,2) FOR, Single-value 8

l receiptdate Date FOR, Single-value
GCD 4.002

l shipdate Date FOR, Single-value
GCD 4.002

l shipmode Char(10) FOR, Single-value
Dictionary 10

l shipinstruct Char(25) FOR, Single-value
Dictionary 25

TABLE 2: Compression Status of Lineitem Table

10

1 6 1 1 1 6 2 1 2 6 3 1
1 0 2

1 0 3

1 0 4 P o l a r D B - C w i t h R O V E C
 P o l a r D B - C
 V e c t o r w i s e

La
ten

cy
(s)

T h r e a d C o u n t
(a) Performance on Q1

1 2 4 8 1 6 3 20 . 5
1
2
4
8

1 6 P o l a r D B - C w i t h R O V E C
 P o l a r D B - C
 V e c t o r w i s e

La
ten

cy
(s)

T h r e a d C o u n t
(b) Performance on Q2

Q 1 Q 20
2 0
4 0
6 0
8 0

1 0 0

Ov
erh

ea
d (

pe
rce

nta
ge

)

T P C - H Q u e r i e s

 O t h e r s G e n e r a t i o n O p t i m i z a t i o n E v a l u a t i o n

6 6 . 5 %

8 . 8 %

0 . 8 %0 . 1 %
3 2 . 6 %

0 . 1 %
< 0 . 1 %

9 1 . 1 %

(c) Optimization Overhead

Fig. 12: Overall Theta Join Performance on TPC-H

from table Lineitem and list their compression statuses in
Table 2. There are 600, 037, 902 rows in the table, and all
columns are effectively compressed by ROVEC. For exam-
ple, field l linenumber is originally INTEGER (SQL type)
and compressed by FOR scheme, which makes all blocks
stored as UINT8 (storage type). For field l shipstruct, it is
compressed by Dictionary into UINT8 from CHAR(25).

Scalability. Here we study the scalability of ROVEC,
including both thread scalability and data size scalability.
Note that few new contentions are introduced in by ROVEC
since it only takes the tiny block summary and logical
expression as input, whose accessing overhead is negligi-
ble (only memory access) compared with the evaluation
overhead as shown in Figure 8. Therefore, the scalability of
ROVEC generally goes with the underlying column stores.

Thread scalability. Figure 9 shows the thread scalability
of ROVEC on 100G TPC-H dataset. Overall, the throughput
increases as the thread count increases. Among all queries,
Q16 gains the largest improvement (1292%), while Q2 gains
the smallest (475%). As can be seen in Figure 9, the through-
put increases by 894% on average when the thread count
increases from 1 to 32. However, the throughput growth
gradually slows down as the thread number increases. The
system achieves its peak throughput when the number of
threads reaches 16, and the throughput increment slows
down and almost stagnates when the number of threads
grows larger than 16. This is because the system has been
saturated and the resource contention (especially the buffer
pool contention we identified) from the underlying column
store becomes severe.

Data size scalability. Figure 10 shows the data size scalabil-
ity with 32 threads, and a 39% throughput improvement is
observed when the data size increases from 30GB to 100GB.
Overall, the throughput increases as the data size increases.
This is because SIMD-based evaluation becomes beneficial
when there are massive data blocks to be processed, which
dominates the cost of the query execution.

Skewness. Here we study how the skewness of data
distribution affects ROVEC. Since the default distribution
of TPC-H is uniform, we generate a skewed TPC-H from
the Zipf distribution tool [29] and set skewness factor to
0.1, 0.5, 1, 2, and 4. The larger skewness factor indicates that
the generated dataset concentrates on fewer distinct values.
Figure 11 shows the throughput of ROVEC on all queries
against different skewness factors. Overall, the throughput
increases as the data skewness increases. Specifically, when
the skewness factor increases from 0 to 4, the throughput
improves by 353% on average. It is because that a skewed

Index Query

Q1 select count(*) from lineitem, orders where
l extendedprice > o totalprice + 100000

Q2 select count(*) from customer, supplier where
c acctbal > s acctbal and c nationkey > s nationkey

TABLE 3: Theta Join Queries for TPC-H

dataset leads to fewer distinct values in a data block, which
makes compression schemes more effective. This situation
further opens up more opportunities for the type reduction
to convert values into smaller types, leading to higher
throughput. The increased opportunity of compression then
increases the possibilities of type reduction and thus the
throughput of ROVEC. We observe that the throughput
may suddenly encounter leap changes when the skewness
reaches some certain degrees (e.g., skewness factor from 1
to 2 in Figure 11). From a closer investigation, we find that
such leaps are caused by more effective type reduction, e.g.,
the type changes from UINT32 to UINT16.

5.2.2 Theta Join

Considering that there is no theta join in TPC-H, we syn-
thetically construct two theta join queries as listed in Table 3,
which are inspired by [27]. As theta join is not supported by
all compared systems (e.g., Clickhouse and DB2-BLU), we
present results of the representative system Vectorwise. Be-
sides, since evaluations like scalability and skewness share
similar trends to the results on the table scan operator, we
omit them from this section.

Overall theta join performance. Overall, as shown in
Figure 12(a) for Q1, ROVEC reduces the latency by 30% on
average compared with PolarDB-C, and 90% latency com-
pared with Vectorwise. For Q2 in Figure 12(b), the latency
of ROVEC is 90% of PolarDB-C when the thread number
increases from 1 to 32. Compared with Vectorwise, ROVEC
reduces the latency by 50% for one thread but shows over
2× latency with 32 threads. With closer observation, we
find that the performance stagnating of PolarDB-C with
multithread is due to resource contentions (especially the
buffer pool of the underlying column store) while Vector-
wise shows better scalability. Similar to that of the table scan
operator, the performance gain also mainly comes from the
full exploitation of SIMD and runtime optimizations from
ROVEC. Especially, SIMD instructions (i.e., AVX-512) greatly
accelerate the execution by one order of magnitude, and the
performance gain is further amplified by ROVEC (i.e., type
reduction) over 30%.

11

Q 1 Q 2 Q 30 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5 P o l a r D B - C w i t h R O V E C

 P o l a r D B - C

B u s i n e s s Q u e r i e sTh
rou

gh
pu

t (b
illio

n r
ow

s/s
)

(a) Table Scan Performance

1 2 4 8 1 6 3 20 . 2 5
0 . 5

1
2
4
8

1 6

 Q 1
 Q 2
 Q 3

T h r e a d C o u n tTh
rou

gh
pu

t (b
illio

n r
ow

s/s
)

(b) Scan Scalability Performance

Q 1 Q 20
2
4
6
8

1 0
1 2
1 4
1 6 P o l a r D B - C w i t h R O V E C

 P o l a r D B - C

B u s i n e s s Q u e r i e s

La
ten

cy
(s)

(c) Theta Join Performance

Fig. 13: Evaluations on Real-world Dataset RO

Index Query
Q1 select count(*) from itm detail where star id = 5

Q2
select count(*) from itm detail where

main cnt≤990 and cr rank=3

Q3

select count(*) from itm detail where
level1 in (50002766, 50016422,50050359,

124458005, 50026316, 500081841)
and time len 001 ≥ 10 and time len 001 ≤ 15)

and (cnt 030 between 300 and 999)

TABLE 4: Table Scan Queries for RO

Optimization overhead. As shown in Figure 12(c), the
optimization overhead accounts for about 0.8% of the total
execution time on Q1 and about 0.1% for Q2. The reason
behind such low overhead is the explosion of evaluation
workload compared with the table scan. In particular, differ-
ent from the single loop in the table scan, theta join requires
a nested loop through two columns, which takes much more
time and thus significantly outweighs the percentage of op-
timization overhead. Moreover, other costs in Q2 accounts
for more than 91.1% of the running time, which is caused
by the management of large output generated by theta join.
In summary, the optimization overhead (< 1%) is negligible
compared with the evaluation cost (> 30%).

5.3 Evaluation on Real-world Dataset
In our evaluation, RO is compressed from 192GB to 100GB
and Table itm detail involved in table scan queries contains
over 150M rows. For the two tables involved in queries in
Table 4, there are 335, 073 and 39, 407 rows in table app dbm
and cust dbm, respectively. The evaluation results are sum-
marized as follows: compared with original PolarDB-C,
ROVEC improves the throughput of table scan by 58% and
reduces the latency of theta join by 30% on average.

Here, on RO dataset, only the evaluation results of
PolarDB-C and ROVEC are presented for the following
two reasons. Firstly, RO is collected from the production
environment of an online recommendation system and is
disallowed to be imported into systems unavailable in the
production environment. Secondly, as ROVEC is imple-
mented on top of a column database (PolarDB-C as an
example), the provided evaluation results of ROVEC and
PolarDB-C are already sufficient to show the performance
gain brought by ROVEC.

5.3.1 Table Scan
Overall performance. We evaluate ROVEC on RO with

queries in Table 4. As shown in Figure 13(a), ROVEC im-
proves the throughput by 58% on average compared with

Index Query

Q1 select count(*) from cust dbm a, app dbm b
where a.pv7 < b.pv7 and a.pv30 < b.pv30

Q2

select count(*) from cust dbm a, app dbm b where
a.cnt7 between b.cnt14

and b.cnt30 and a.cnt7 > b.cnt7

TABLE 5: Theta Join Queries for RO

PolarDB-C. For Q1 only containing an equality predicate
and Q2 involving conjunction, the throughput is increased
by 67% and 24%, respectively. As for the most complex
query Q3, the throughput is increased by over 80%.

Thread scalability. As shown in Figure 13(b), when
the thread count increase from 1 to 32, the throughput of
ROVEC improves by 700% on average, i.e., 360% on Q1,
500% on Q2, and 1126% on Q3. Besides, similar to that on
TPC-H, the throughput growth slows down as the threads
increase and even stalls when reaching 16 threads, which
is due to the system saturation and the resource contention
among threads. Specifically, when the thread count increases
from 1 to 32, the throughput improves by 700% on average,
i.e., 360% on Q1, 500% on Q2, and 1126% on Q3 respectively.

5.3.2 Theta Join
Overall, ROVEC shows significant improvement for theta
join, i.e., reducing the latency by 30%. Specifically, Q1 and
Q2 are the two commonly used queries in the recommenda-
tion system. As shown in Figure 13(c), ROVEC reduces the
latency by 15% for Q1 and by 50% for Q2 compared with
PolarDB-C. As shown in Figure 7, the performance gain
comes mostly from reducing type, which means the per-
formance gain is limited by the degree of data compression.
The performance gain of Q1 is limited by 15% as the field
pv7 and pv30 is only partially compressed, which leads to
limited performance gain. Meanwhile, as the field cnt7 from
table cust dbm and cnt7, cnt14, cnt30 from app dbm are well
compressed, the performance gain is increased by 50%.

6 RELATED WORK

Expression evaluation optimization. Expression evalua-
tion, included in operations like scans, joins, and predicates,
is often the dominant cost of query execution [30]. We also
note that Bitweaving is extraordinary for fast scan [8]. How-
ever, the functionality coverage of Bitweaving is limited, as
it only handles boolean predicates and loses efficacy when
predicates contain arithmetic operators, e.g., a + b > 100.
Besides, it has been shown that Bitweaving may suffer from

12

point accesses and scans with low selectivity [31]. In con-
trast, ROVEC aims at dynamically reducing the evaluation
type of intermediate data during evaluation. We also find
that a specific type optimization also reveals in DB2-BLU [9].
However, DB2-BLU is significantly different from ROVEC
in (1) DB2-BLU relies on a customized compression scheme
and storage format while ROVEC works with common
and simple lightweight compression schemes and storage
format; (2) more importantly, similar to Bitweaving, the
function coverage of DB2-BLU is limited to boolean (or leaf)
predicates. Note that SIMD-oriented type optimization is
also discussed in Vectorwise [10]. However, with careful
comparison, we find the type optimization in Vectorwise
is totally different from ROVEC. Vectorwise chooses the
smallest type to represent the fields in queries according
to the value domain after direct scanning and decompres-
sion [10]. Firstly, such type optimization may incur heavy
overheads from scanning and decompression while ROVEC
only relies on the lightweight block-wise statistics in block
summaries without scanning and decompression. More
importantly, Vectorwise ignores the opportunities that the
intermediate data types during evaluation could be could
be cast to smaller (smaller than the input data) types and
benefits later evaluations. For example, given expression
a(int32)−b(int32) > c(int16), if the result of a−b is covered
by type int16, then a purposely added cast a − b to int16
would be more beneficial to SIMD-based evaluation than
cast c to int32. Finally, the situation may get worse for
Vectorwise if no smaller types can be found as it burdens
the overheads but obtains no benefits. In contrast, instead
of decompression, ROVEC dives into the decompression
layer and brings the type reduction into the integration of
decompression and expression evaluation.

Compressed databases. Accessing data from disks in-
curs heavy I/O cost and has been a heavy burden to
many database systems. Compression is a canonical solu-
tion to reduce the data volume on disk and transferred to
memory and has been widely adopted by databases for
I/O-intensive workloads [32], [33], [34], [35]. In addition,
compression also saves storage space on disk. There have
been many works [32], [33], [34], [35] studying the impact
of compression techniques over database systems. Willhalm
et al. [7] proposed a SIMD-friendly scheme to decompress
and scan compressed data, which is however limited to the
bit-packed compression. Another work [36] is also a vari-
ant of the bit-packed compression scheme. These existing
approaches focus on the optimization of the decompression
process, which is independent of the subsequent expression
evaluation; and other techniques either rely on extra storage
space or a customized storage format. On the whole, these
algorithms focus on the optimization of the decompression
process and fail to optimize the decompression and eval-
uation as a whole. In contrast, ROVEC aims at the co-
optimization of decompression and evaluation processes,
which utilizes type reduction from lightweight compression
schemes to speed up SIMD-based evaluation.

Queries on compressed data. As for column database,
the data is stored column by column and thus increases
the similarity of adjacent data together with probability of
getting compressed. Benefited by the storage layout of the
column database, lightweight compression schemes [13] can

achieve a high compression ratio with low CPU cost [5].
Hence, they are far more popular in column stores com-
pared with heavy compression algorithms like GZip [20]
and LZO [37]. Previous works [5], [38] show how to query
on compressed data directly, but only dictionary compres-
sion is supported. In contrast, ROVEC not only supports
queries on compressed data with dictionary schemes, but
also other schemes like FOR, GCD and etc.. SBoost [5] em-
beds multiple compression schemes (including run-length,
bit-packed, dictionary, and delta), which is a storage engine
supporting data filtering on compressed data. However, it
is a storage engine with the ability of filtering data while
ROVEC is a runtime optimization framework in the execu-
tion layer supports multiple operators like table scan and
join. Apart from that, the predicate supported by SBoost
only includes comparison between compressed field and
a constant, which falls into a corner case of predicates
supported by ROVEC. However, ROVEC seeks to reduce
the evaluation type during general expressions evaluation.
Lang et al. proposed to build a customized index that
narrows the scan range [31], which however introduces
extra IO and lookup cost when the narrowed range is small.
Besides, the supported query types are rather limited (e.g.,
predicates between two data fields are not supported). Ghita
et al. proposed a white-box compression model that exposes
compression status to query executor [39]. However, it only
enables limited filter predicate push-down, while ROVEC
aims at the optimization of general expression evaluation.

7 CONCLUSION

In this paper, we study the optimizations of expression
evaluation in column databases and propose a runtime
optimization framework named ROVEC. The key insight
is to delay the expression optimization to execution time
and deeply exploit fine-grained block summary to optimize
expression evaluation. ROVEC aims at reducing evalua-
tion data type at the unit of a data block, which makes
SIMD-based evaluations operate on more values in each
instruction. We extend ROVEC to support various operators
and different data types, to offer general-purpose optimiza-
tion capacity for real-world applications. To validate the
effectiveness of ROVEC, we integrate ROVEC into a col-
umn database PolarDB-C. The evaluation results show that
ROVEC achieves up to 125% (60% on average) throughput
improvement for table scan and up to 50% (30% on average)
latency improvement for theta join.

ACKNOWLEDGMENTS

This work was done and completed at Alibaba. This work
was supported in part by China Scholarship Council under
Grant 202006190216, in part by the National Natural Science
Foundation of China under Grant 61872178, in part by
the Natural Science Foundation of Jiangsu Province under
Grant No. BK20181251, in part by the open research fund
of Key Lab of Broadband Wireless Communication and
Sensor Network Technology (Nanjing University of Posts
and Telecommunications), in part by the Key Research and
Development Project of Jiangsu Province under Grant No.
BE2015154 and BE2016120, in part by the National Natural
Science Foundation of China under Grant 61832005.

13

REFERENCES

[1] A. Gupta, D. Agarwal, D. Tan, J. Kulesza, R. Pathak, S. Stefani,
and V. Srinivasan, “Amazon redshift and the case for simpler data
warehouses,” in SIGMOD. ACM, 2015, pp. 1917–1923.

[2] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes,
J. Bock, J. Claybaugh, D. Engovatov, M. Hentschel, J. Huang et al.,
“The snowflake elastic data warehouse,” in SIGMOD. ACM, 2016,
pp. 215–226.

[3] M. Zukowski, M. van de Wiel, and P. Boncz, “Vectorwise: A
vectorized analytical dbms,” in ICDE. IEEE, 2012, pp. 1349–1350.

[4] D. Ślezak, J. Wróblewski, V. Eastwood, and P. Synak, “Brighthouse:
an analytic data warehouse for ad-hoc queries,” in VLDB. VLDB
Endowment, 2008, pp. 1337–1345.

[5] H. Jiang and A. J. Elmore, “Boosting data filtering on columnar
encoding with SIMD,” in DaMoN. ACM, 2018, pp. 6:1–6:10.

[6] T. Willhalm, I. Oukid, I. Müller, and F. Faerber, “Vectorizing
database column scans with complex predicates.” in ADMS.
VLDB Endowment, 2013, pp. 1–12.

[7] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and
J. Schaffner, “Simd-scan: Ultra fast in-memory table scan using
on-chip vector processing units,” in VLDB. VLDB Endowment,
2009, pp. 385–394.

[8] Y. Li and J. M. Patel, “Bitweaving: fast scans for main memory
data processing,” in Proceedings of the International Conference on
Management of Data. ACM, 2013, pp. 289–300.

[9] V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk, V. Ku-
landaiSamy, J. Leenstra, S. Lightstone, S. Liu, G. M. Lohman et al.,
“Db2 with blu acceleration: So much more than just a column
store.” VLDB Endowment, 2013, pp. 1080–1091.

[10] J. Sompolski, M. Zukowski, and P. Boncz, “Vectorization vs. com-
pilation in query execution,” in DaMoN. ACM, 2011, pp. 33–40.

[11] P. Damme, D. Habich, J. Hildebrandt, and W. Lehner,
“Lightweight data compression algorithms: An experimental sur-
vey (experiments and analyses).” in EDBT. Springer-Verlag, 2017,
pp. 72–83.

[12] P. Damme, A. Ungethüm, J. Hildebrandt, D. Habich, and
W. Lehner, “From a comprehensive experimental survey to a
cost-based selection strategy for lightweight integer compression
algorithms,” ACM, Transactions on Database Systems, vol. 44, no. 3,
p. 9, 2019.

[13] J. Hildebrandt, D. Habich, T. Kühn, P. Damme, and W. Lehner,
“Metamodeling lightweight data compression algorithms and its
application scenarios,” in Proceedings of the ER Forum and the ER
Demo Track co-located with the International Conference on Conceptual
Modelling. Springer, 2017, pp. 128–141.

[14] C. Lattner, “Llvm,” www.aosabook.org/en/llvm.html.
[15] I. Free Software Foundation, “Gcc,” gcc.gnu.org/.
[16] Wikipedia, “Theta join,” en.wikipedia.org/wiki/Relational\

algebra.
[17] W. Cao, Y. Liu, Z. Cheng, N. Zheng, W. Li, W. Wu, L. Ouyang,

P. Wang, Y. Wang, R. Kuan, Z. Liu, and T. Zhang, “PolarDB meets
computational storage: Efficiently support analyticalworkloads in
cloud-native relational database,” in FAST. USENIX, 2020, pp.
29–41.

[18] W. Cao, Z. Liu, P. Wang, S. Chen, C. Zhu, S. Zheng, Y. Wang,
and G. Ma, “PolarFS: An ultra-low latency and failure resilient
distributed file system for shared storage cloud database,” VLDB,
pp. 1849–1862, 2018.

[19] J. Goldstein, R. Ramakrishnan, and U. Shaft, “Compressing rela-
tions and indexes,” in ICDE. IEEE, 1998, pp. 370–379.

[20] M. A. Jean-loup Gailly, “Gzip,” www.gzip.org.
[21] TPC-H, “Tpc,” tpc.org/tpch.
[22] Actian, “Vectorwise community edition,” https://www.actian.

com/lp/vector-community-edition/.
[23] YANDEX, “Clickhouse,” clickhouse.yandex.
[24] J. M. Patel, H. Deshmukh, J. Zhu, N. Potti, Z. Zhang,

M. Spehlmann, H. Memisoglu, and S. Saurabh, “Quickstep: A data
platform based on the scaling-up approach,” VLDB, p. 663–676,
2018.

[25] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux,
and S. Madden, “Hyrise: A main memory hybrid storage engine,”
VLDB, p. 105–116, 2010.

[26] M. Zukowski and P. A. Boncz, “Vectorwise: Beyond column
stores,” IEEE Data Engineering Bulletin, pp. 21–27, 2012.

[27] A. Okcan and M. Riedewald, “Processing theta-joins using mapre-
duce,” in SIGMOD. ACM, 2011, pp. 949–960.

[28] J. Johnson and G. Johnson, “Building knowledge around complex
objects using inforbright data warehousing technology,” Interna-
tional Journal of Database Theory and Application, pp. 31–46, 2010.

[29] F. Yu, “Skewd tpc-h dataset generator,” github.com/
YSU-Data-Lab/TPC-H-Skew.

[30] P. Boncz, T. Neumann, and O. Erling, “Tpc-h analyzed: Hidden
messages and lessons learned from an influential benchmark,” in
TPCTC. Springer, 2013, pp. 61–76.

[31] H. Lang, T. Mühlbauer, F. Funke, P. A. Boncz, T. Neumann, and
A. Kemper, “Data blocks: Hybrid OLTP and OLAP on compressed
storage using both vectorization and compilation,” in SIGMOD.
ACM, 2016, pp. 311–326.

[32] Z. Chen, J. Gehrke, and F. Korn, “Query optimization in com-
pressed database systems,” in SIGMOD. ACM, 2001, pp. 271–282.

[33] B. R. Iyer and D. Wilhite, “Data compression support in
databases,” in VLDB. VLDB Endowment, 1994, pp. 695–704.

[34] G. Ray, J. R. Haritsa, and S. Seshadri, “Database compression: A
performance enhancement tool,” in COMAD. Tata McGraw-Hill,
1995.

[35] T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte,
“The implementation and performance of compressed databases,”
ACM, Sigmod Record, pp. 55–67, 2000.

[36] D. Lemire and L. Boytsov, “Decoding billions of integers per sec-
ond through vectorization,” Wiley Online Library, Software: Practice
and Experience, pp. 1–29, 2015.

[37] Oberhumer, “Lzo,” www.oberhumer.com/opensource/lzo/.
[38] D. J. Abadi, S. Madden, and M. Ferreira, “Integrating compression

and execution in column-oriented database systems,” in SIGMOD.
ACM, 2006, pp. 671–682.

[39] B. Ghita, D. G. Tomé, and P. A. Boncz, “White-box compression:
Learning and exploiting compact table representations.” in CIDR,
2020.

Meng Li received his B.S. degree in Computer
Science from Nanjing University, Jiangsu, China,
in 2016. He is currently a Ph.D. student at Nan-
jing University. His research interests are in the
area of high-performance query processing in
databases.

Zheyu Miao received B.S. degree in electri-
cal engineering from Xi’an Jiaotong University,
Xi’an, China, in 2016. He is currently a Ph.D. stu-
dent at Zhejiang University, Hangzhou, China.
His research interests are in the area of storage
engines on decoupled storage and computation
architecture.

Di Wu received his B.S in Microelectronics from
Xidian University, in 2009, and M.S degree in
electrical engineering from Seoul National Uni-
versity, Seoul Korea in 2011. He has published
three papers on customized SoC instruction de-
sign topics between 2009 and 2011, and one
paper received ISOCC 2010 best paper award.
After graduation in 2011, he focused on develop-
ing the query processing modules and has been
a core member of SAP HANA, AliCloud PolarDB,
and AWS Aurora.

14

Feifei Li received the BS degree in computer
engineering from Nanyang Technological Uni-
versity, in 2002, and the PhD degree in computer
science from Boston University, in 2007. He is
currently a Vice President of Alibaba Group,
ACM Distinguished Scientist, President of the
Database Products Business Unit of Alibaba
Cloud Intelligence, and Director of the Database
and Storage Lab of DAMO academy.

Sheng Wang obtained Ph.D. in Computer Sci-
ence from National University of Singapore. Cur-
rently, he is a Research Scientist in the Database
and Storage Lab at Alibaba DAMO Academy. His
research interests generally lie in building reli-
able, secure, intelligent, performant, and globally
distributed database systems and services.

Wei Cao received the BEng and MEng degrees
from Peking University, in 2006 and 2009, re-
spectively. He is currently a senior technical ex-
pert and the technique leader of Aliyun RDS with
Alibaba Group, Hangzhou, China. His research
interests include databases, distributed systems,
and cloud computing.

Zhi Qiao received the MS degree in Telecom-
munication from XiDian University in 2013.
Currently, he is a senior engineer at the
Database Department of Alibaba Cloud, China.
His research interests include SQL pre-compiler,
columnar vectorization execution, and Hybrid
Transaction and Analytical Process(HTAP) in the
database management systems.

Yukun Liang received BS degree from Zhejiang
University in 2019. Currently, he is a PolarDB
kernel developer of Alibaba. He is broadly inter-
ested in executor and expression evaluation in
columnar databases.

Yubin Ruan received his B.S. degree in soft-
ware engineering from South China University
of Technology, Guangzhou in 2018. His interest
lies in the database management systems. After
graduation in 2018, he has been focusing on de-
veloping query processing modules in AliCloud
PolarDB.

Jimmy Yang is currently a team lead for PolarDB
Storage Engine in Alibaba Cloud. Before joining
Alibaba, he was an InnoDB Architect in Oracle.
He also worked in Sybase’s Enterprise Server
team as the index team manager.

Haipeng Dai received the B.S. degree in the De-
partment of Electronic Engineering from Shang-
hai Jiao Tong University, Shanghai, China, in
2010, and the Ph.D. degree in the Department
of Computer Science and Technology in Nanjing
University, Nanjing, China, in 2014. His research
interests are mainly in the areas of wireless
charging, mobile computing, and data mining.
He is an associate professor in the Department
of Computer Science and Technology at Nan-
jing University. His research papers have been

published in many prestigious conferences and journals such as ACM
MobiSys, ACM MobiHoc, ACM VLDB, IEEE ICDE, ACM SIGMETRICS,
ACM UbiComp, IEEE INFOCOM, IEEE ICDCS, IEEE ICNP, IEEE
SECON, IEEE IPSN, IEEE JSAC, IEEE/ACM TON, IEEE TMC, IEEE
TPDS, and IEEE TOSN. He is an IEEE and ACM member. He serves/ed
as Poster Chair of the IEEE ICNP’14, Track Chair of the ICCCN’19,
TPC member of the ACM MobiHoc’20-21, IEEE INFOCOM’20-21, IEEE
ICDCS’20-21, IEEE ICNP’14, IEEE IWQoS’19-21, IEEE IPDPS’20 and
IEEE MASS’18-19. He received Best Paper Award from IEEE ICNP’15,
Best Paper Award Runner-up from IEEE SECON’18, and Best Paper
Award Candidate from IEEE INFOCOM’17.

Guihai Chen received a B.S. degree in com-
puter software from Nanjing University in 1984,
an M.E. degree in computer applications from
Southeast University in 1987, and a Ph.D. de-
gree in computer science from the University of
Hong Kong in 1997. He is a professor and deputy
chair of the Department of Computer Science,
Nanjing University, China. He had been invited
as a visiting professor by many foreign univer-
sities, including Kyushu Institute of Technology,
Japan in 1998, University of Queensland, Aus-

tralia in 2000, and Wayne State University, USA from Sept. 2001 to
Aug. 2003. He has a wide range of research interests focusing on
sensor networks, peer-to-peer computing, high-performance computer
architecture, and combinatorics.

