

### **ResTune Resource Oriented Tuning Boosted by Meta-Learning for Cloud Databases**

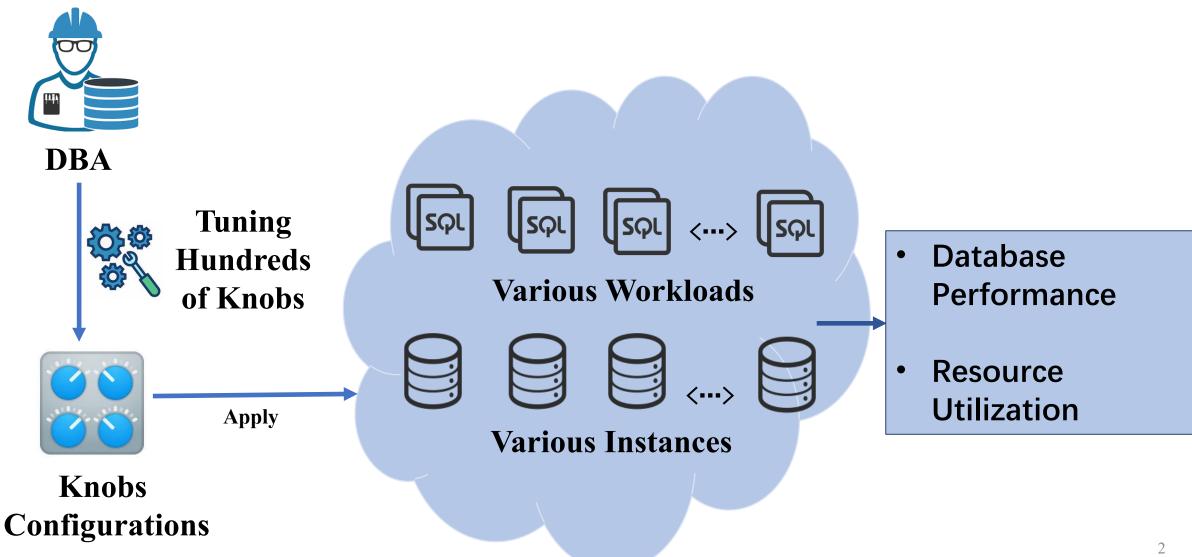
#### Xinyi Zhang\*

Hong Wu\*, Zhuo Chang, Shuowei Jin,

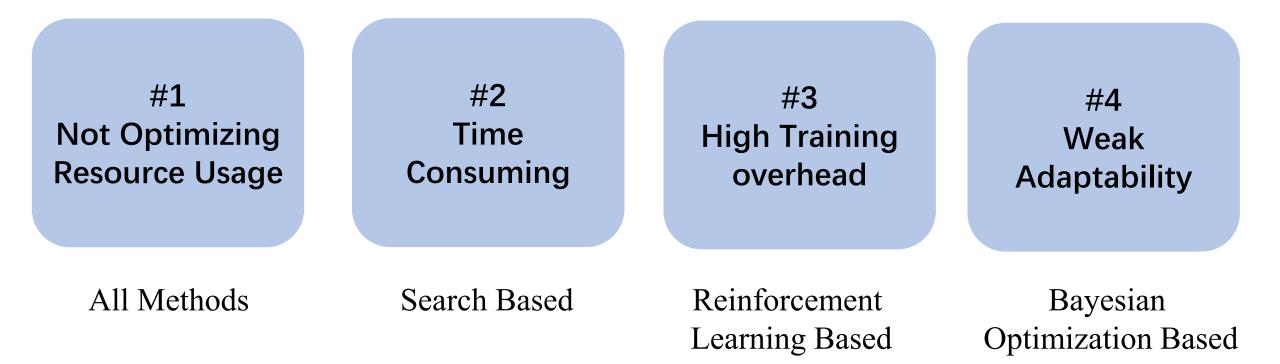
Jian Tan, Feifei Li, Tieying Zhang, Bin Cui



# DBMS Tuning in Cloud



#### Limitation of Existing Methods

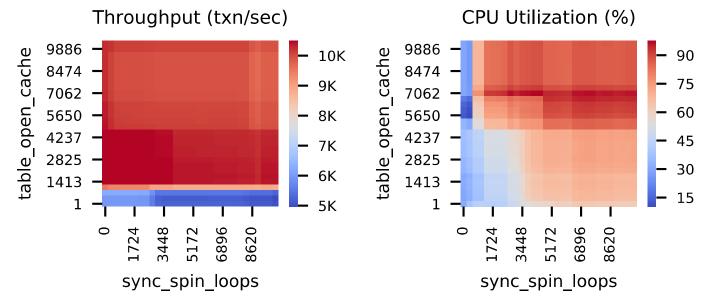


#### Our Goal

- **Goal 1:** To optimize the performance and the resource utilization simultaneously.
- **Goal 2**: To boost the tuning process with different past tuning tasks from different instance types and different workloads

#### Observations

The throughput and CPU usage on a real workload with 2 controlling knobs:



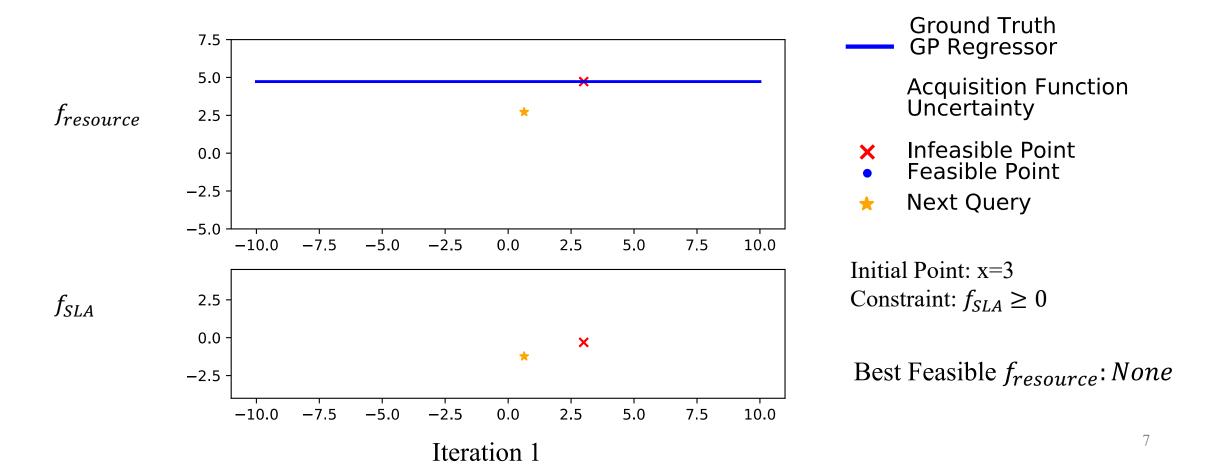
**Observation 1**: Throughput is not the bottleneck in most cases.

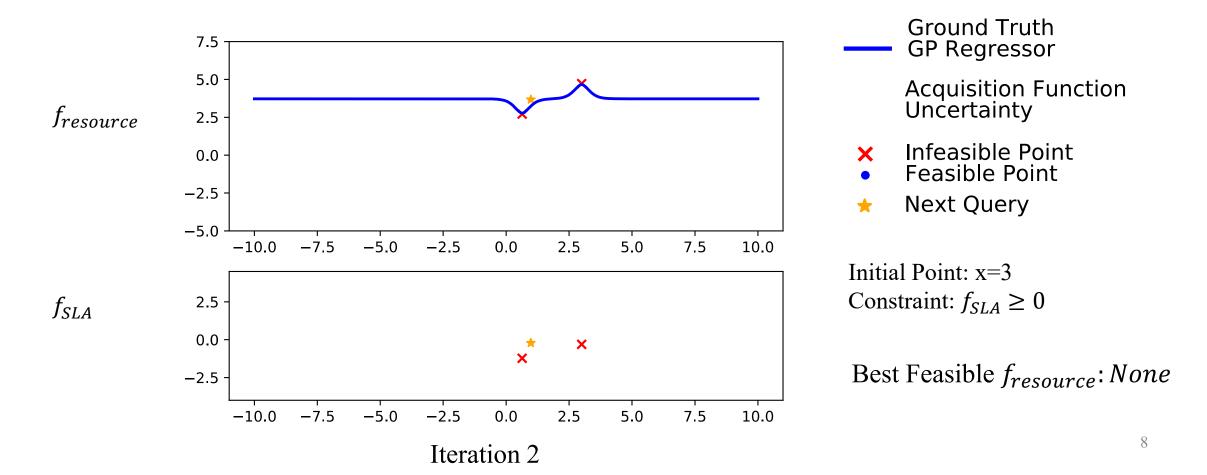
**Observation 2**: A wide range of configurations has different CPU usages but the same throughput.

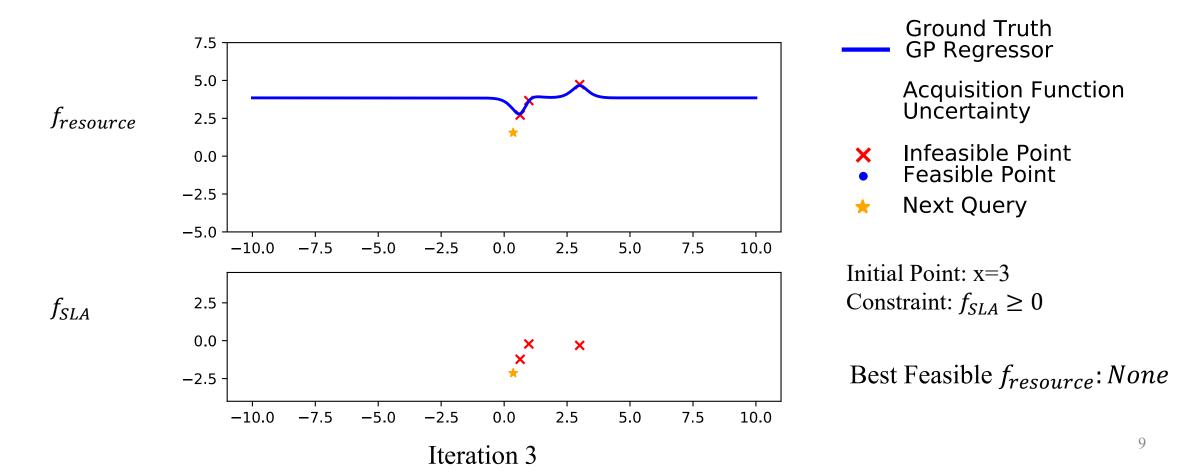
# Resource Oriented Tuning Problem

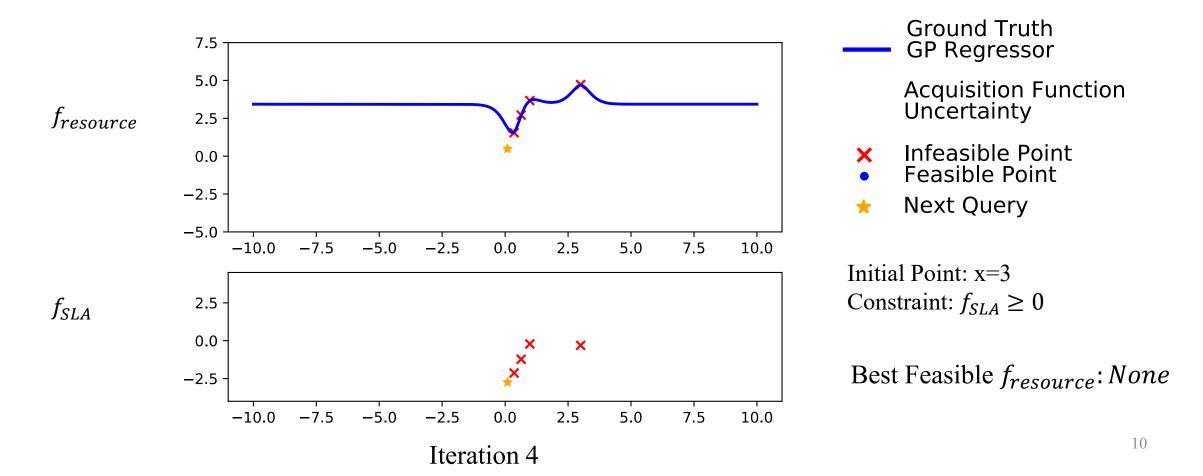
- We formalize the resource-oriented tuning problem as an optimization problem with SLA constraints
  - Consider a database with a continuous configuration space  $\Theta$ :

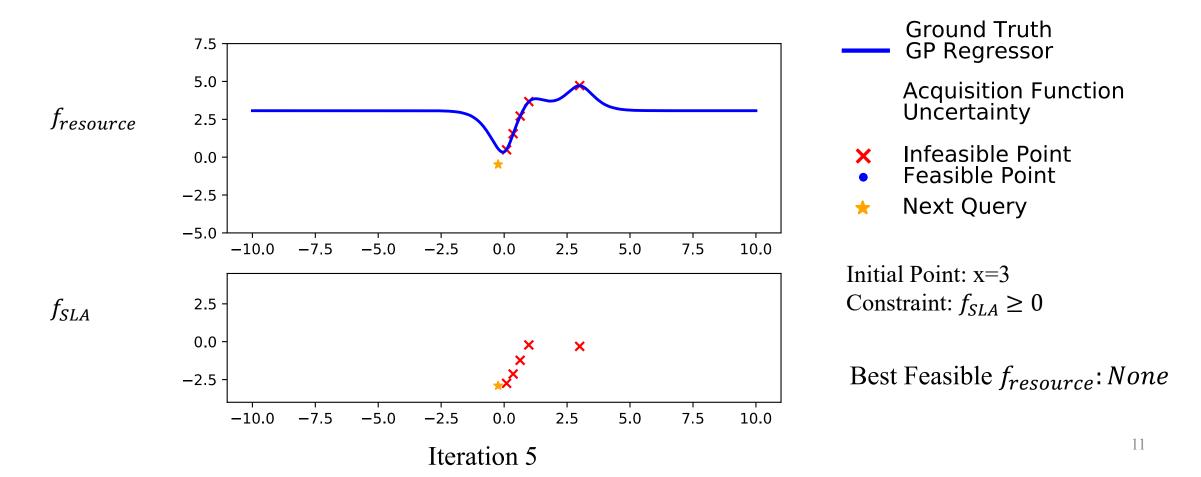
$$\begin{array}{l} \arg\min f_{resource}(\theta) \\ \theta \\ \text{s.t. } f_{Throughput} \geq SLA_{Throughput} \\ f_{Latency} \leq SLA_{Latency} \end{array}$$

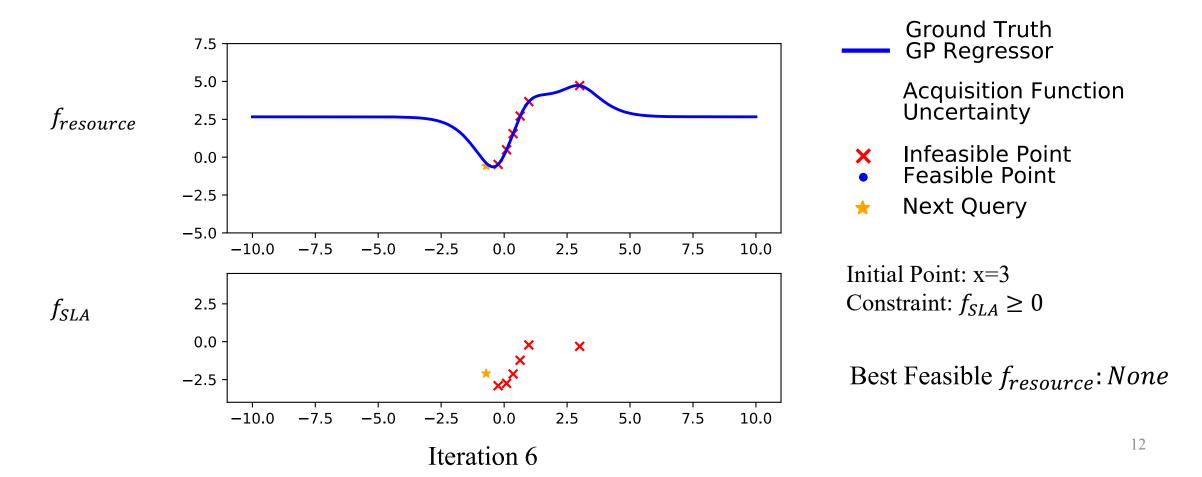


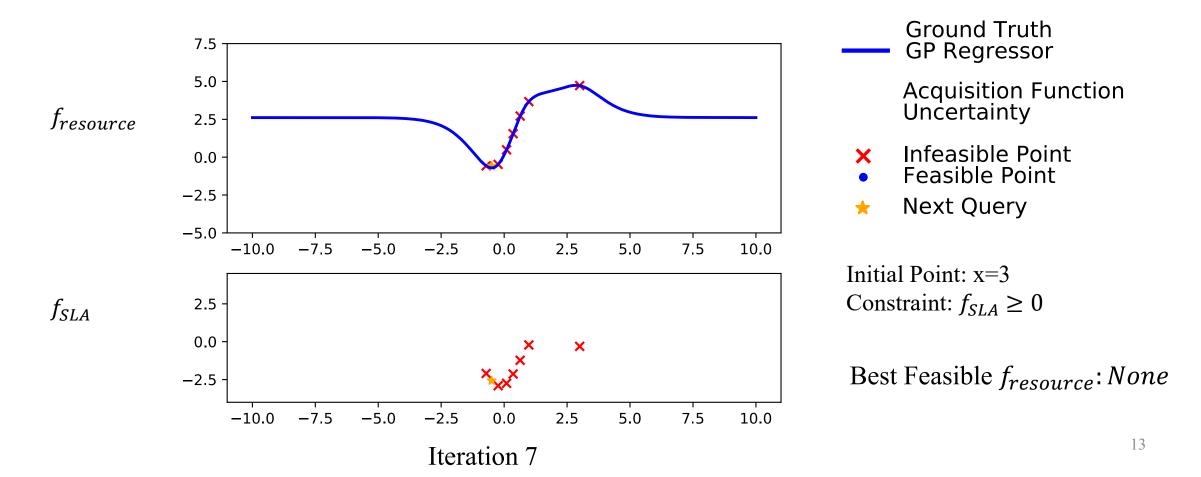


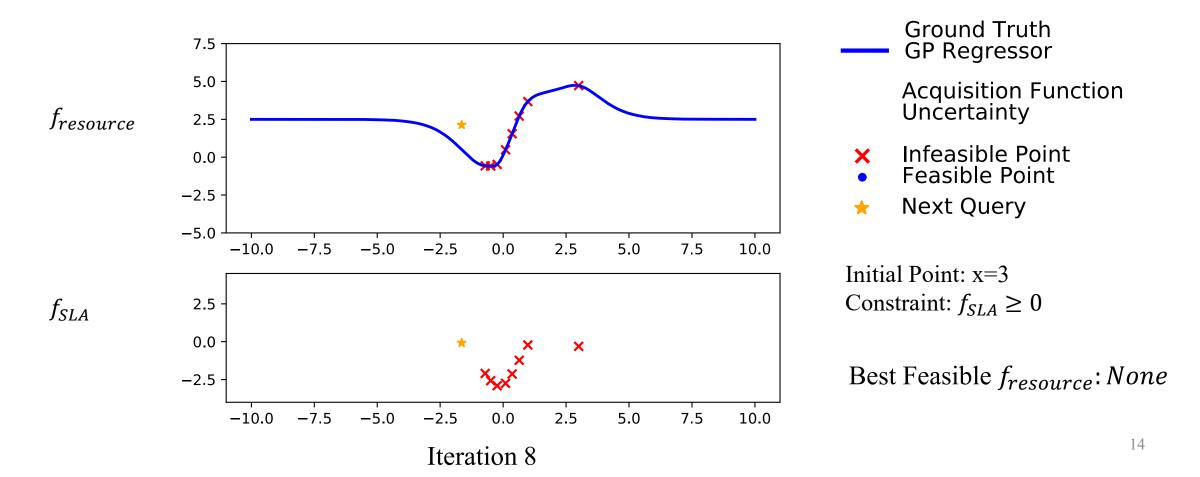




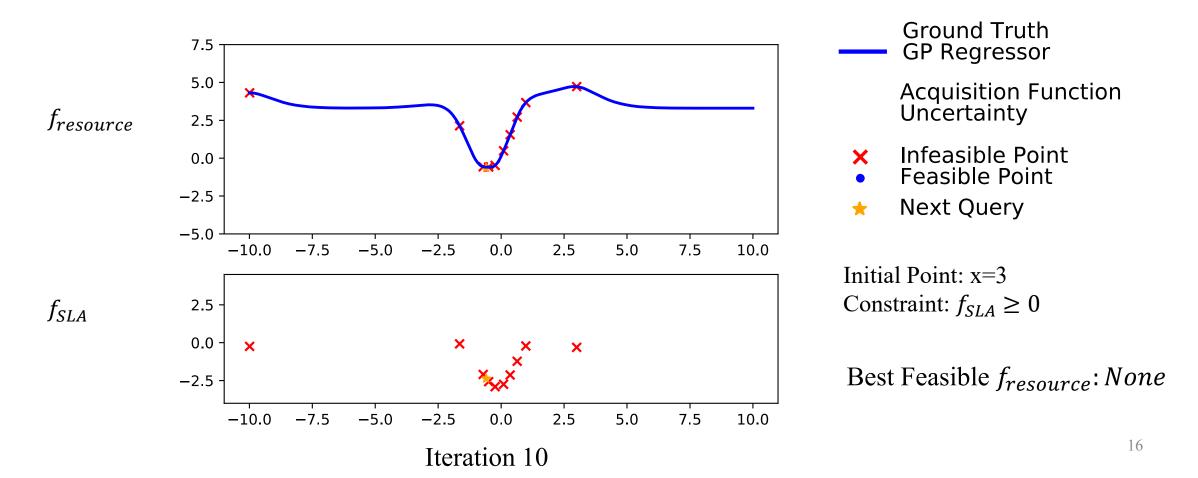










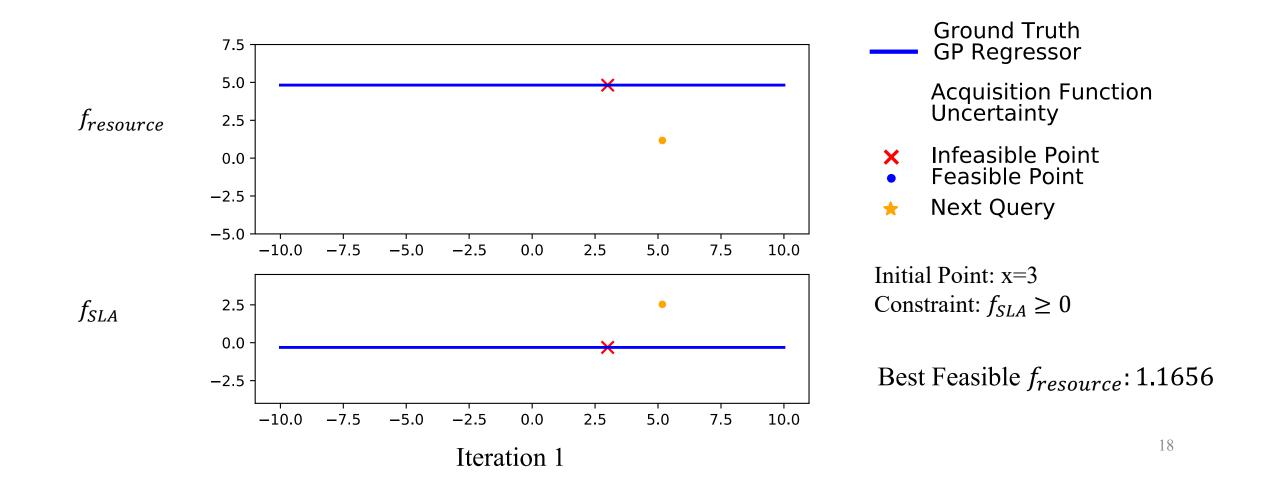




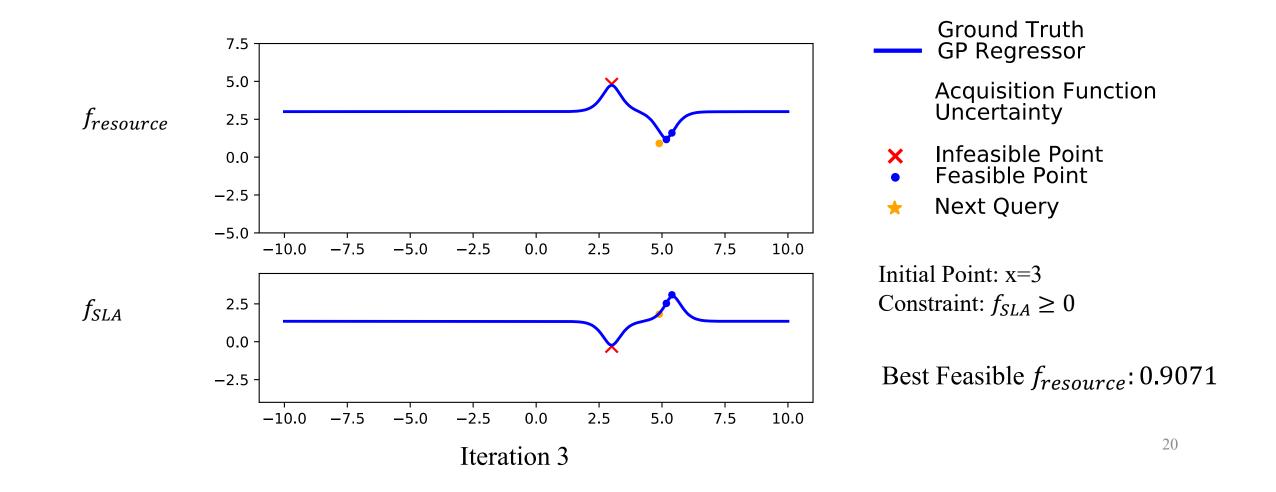
• To solve our constrained optimization problem, we extend the acquisition function:

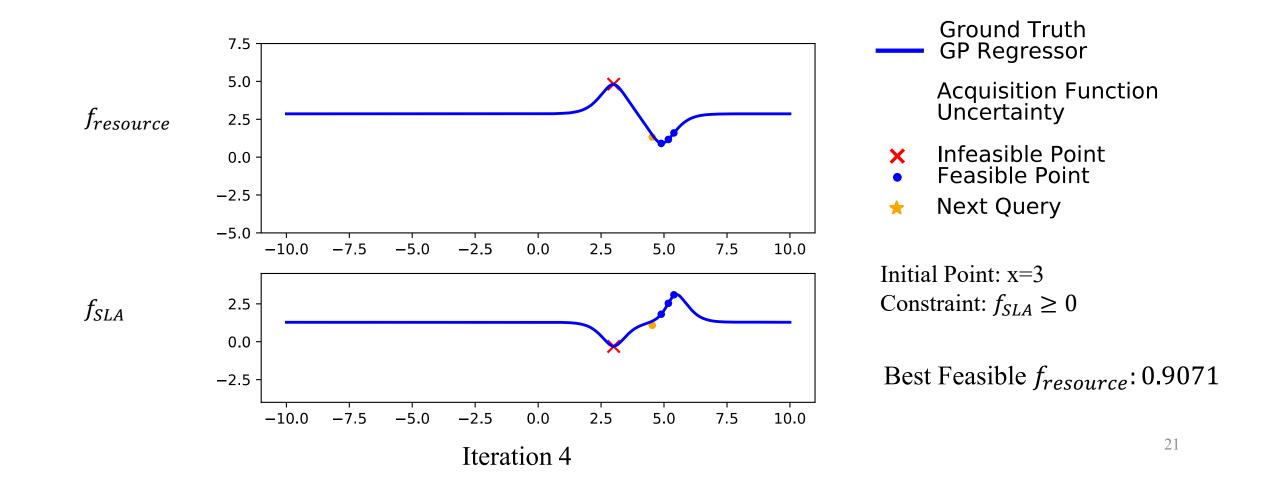
$$\alpha_{CEI} = \alpha_{EI} \times Prob(feasibility)$$

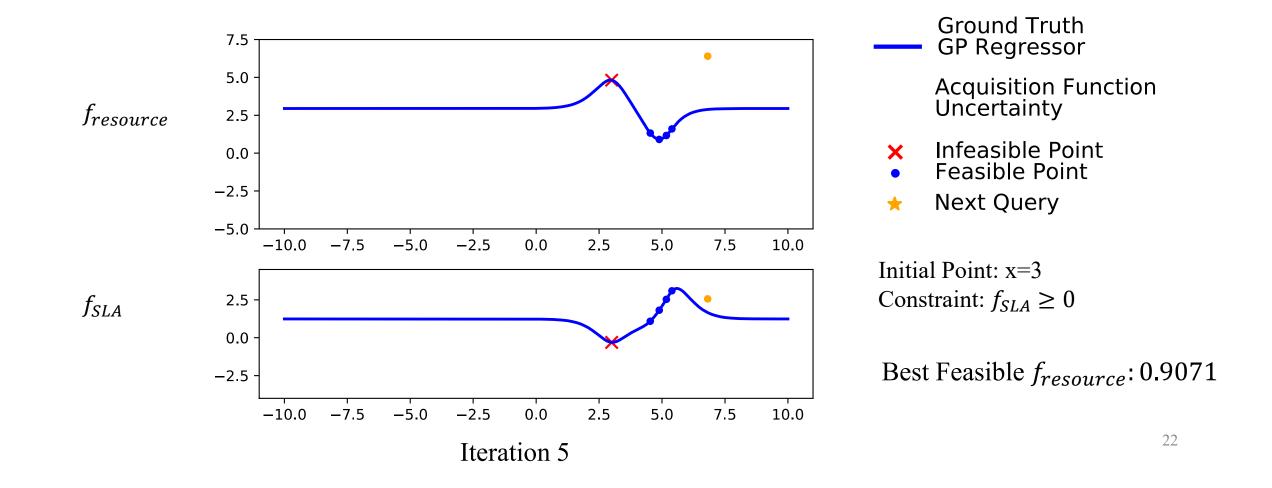
• We also use Gaussian Process to model *Prob(feasibility)* 

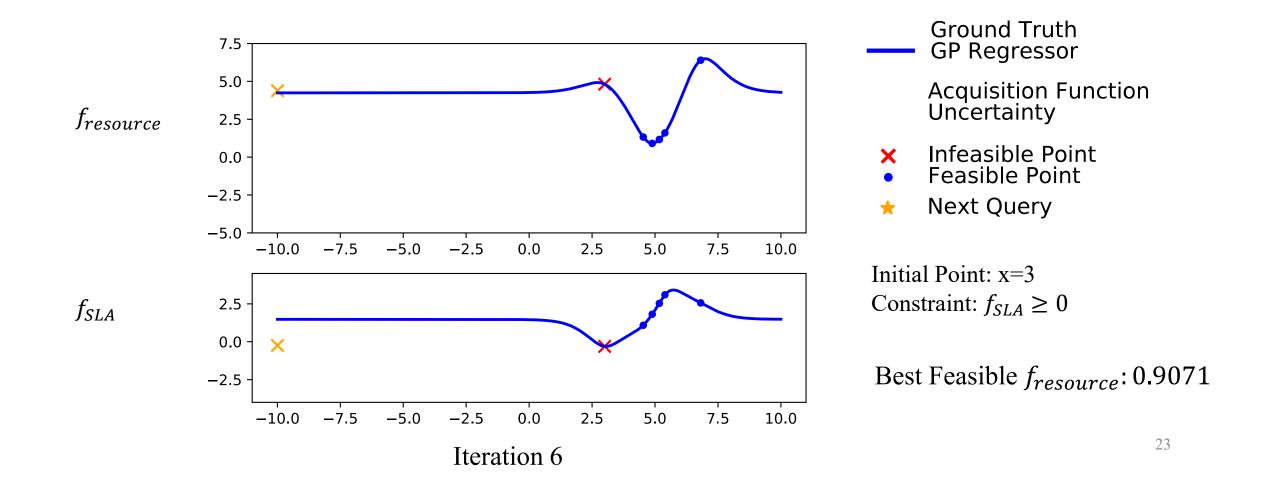


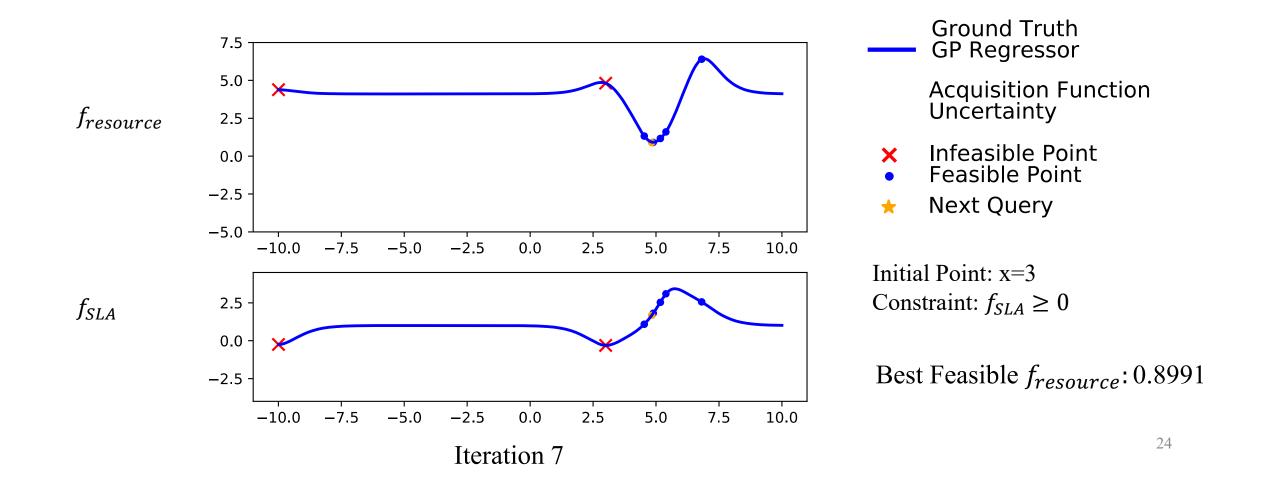


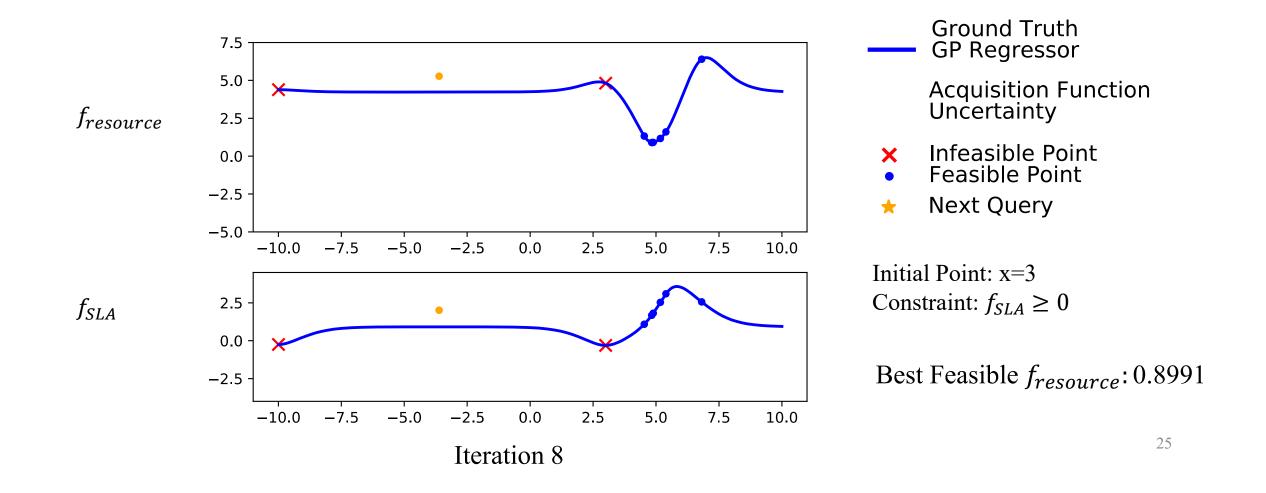


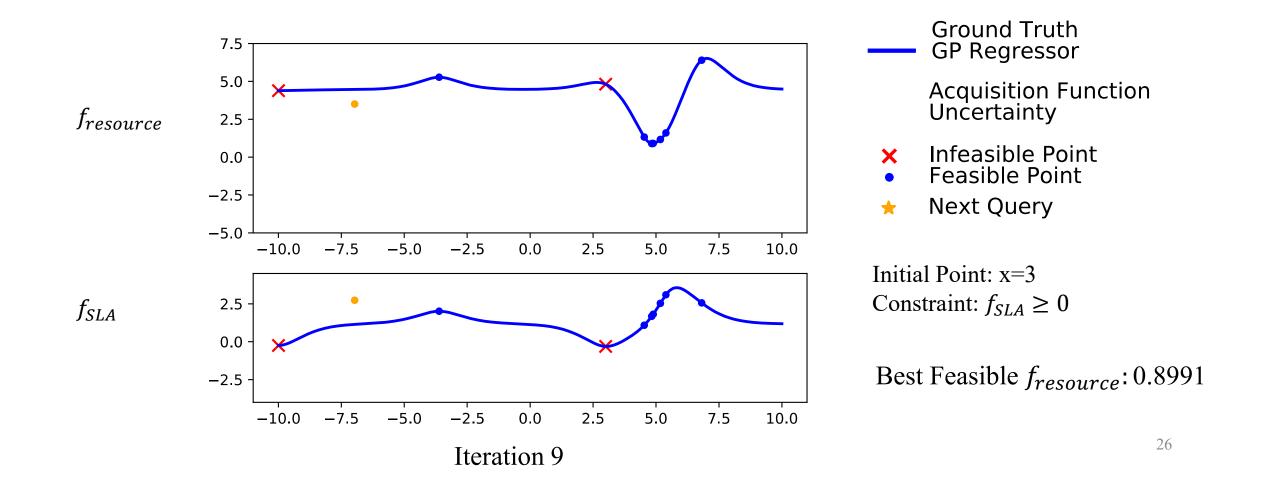


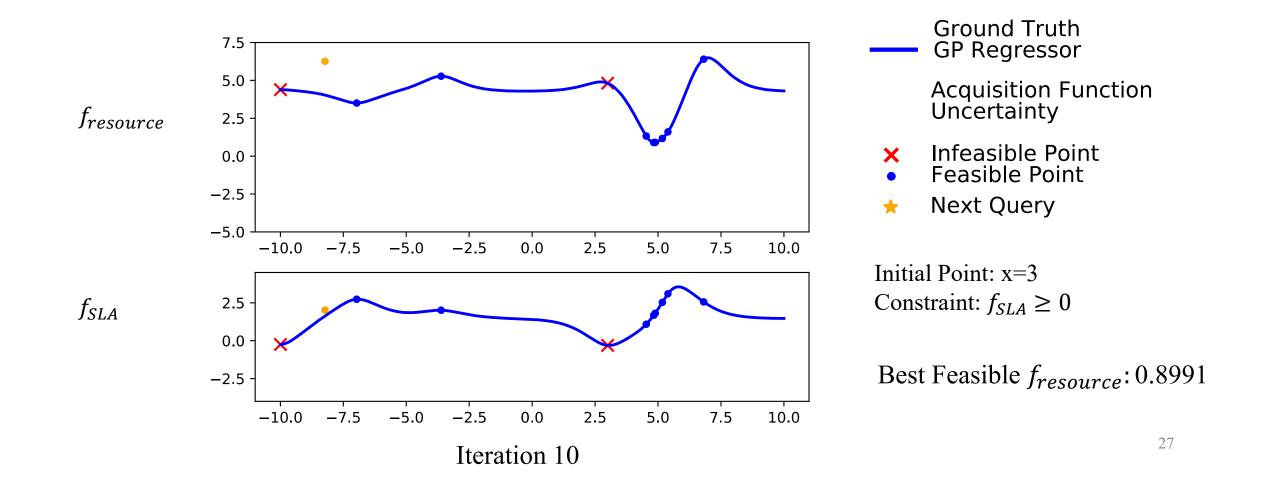






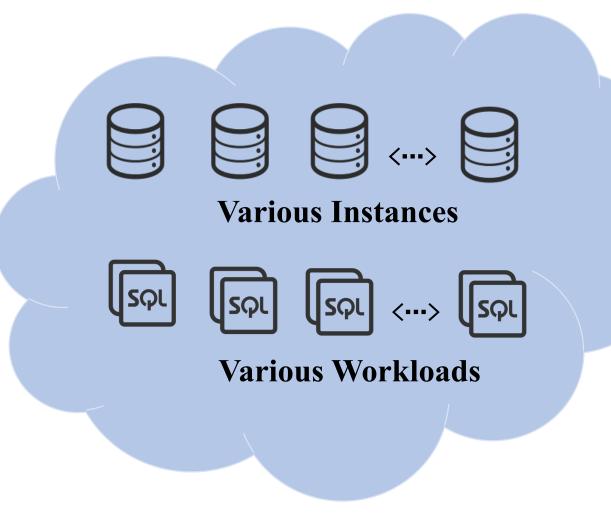






# **Boosting Tuning Process**

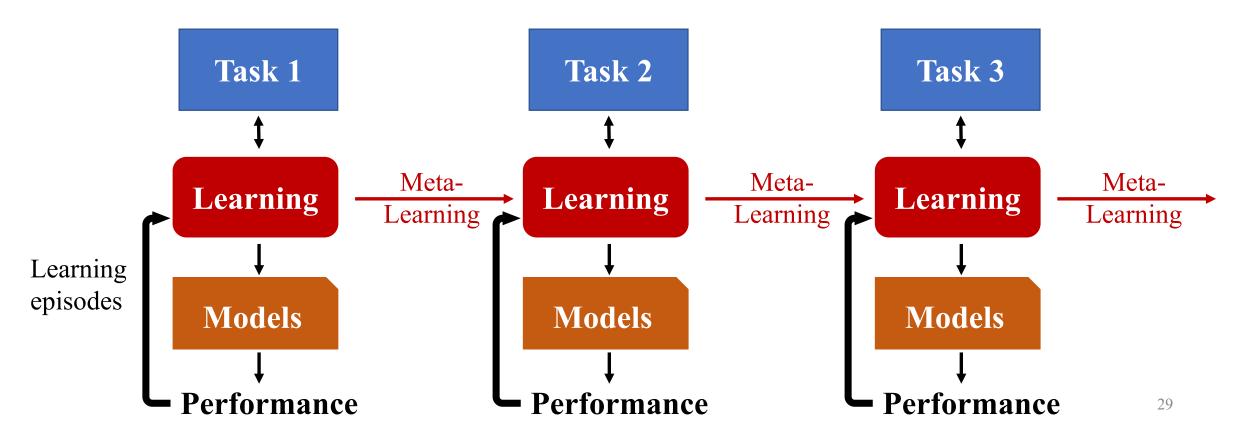
- The same workloads running on different hardware share information for tuning knobs.
- Even for different workloads, the relationship between hidden features can lead to knowledge sharing.



Numerous tuning tasks on the cloud  $_{28}$ 

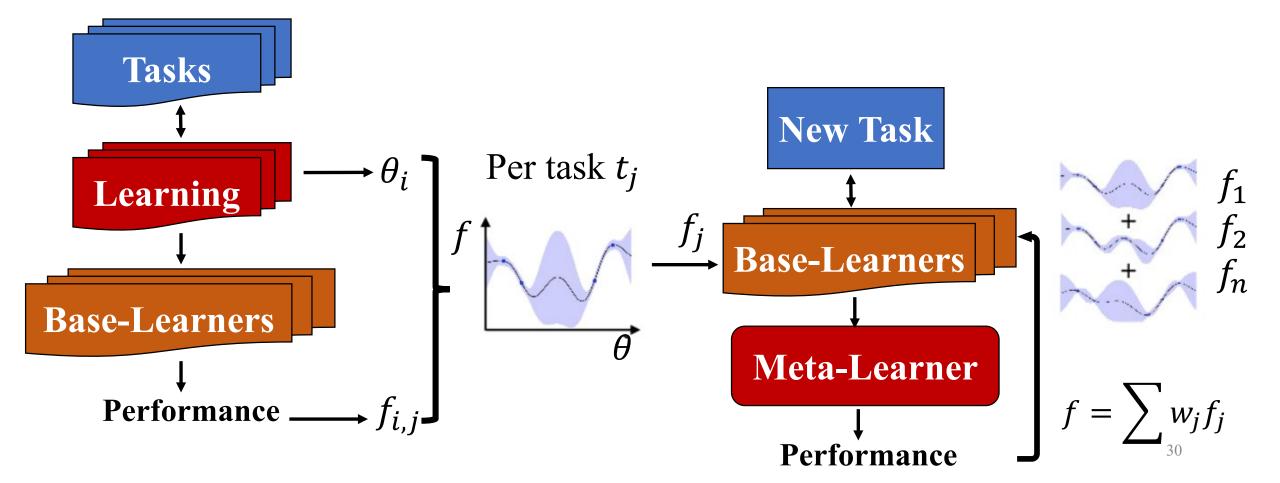
# Boosting Tuning Process: Meta-Learning

- Human learns across tasks.
- Why? Require less trial-and-error, less data



#### Knowledge Extraction

The prior knowledge is extracted from historical tuning tasks by ensemble.



#### How to determine the weights?





Learning from Model Predictions

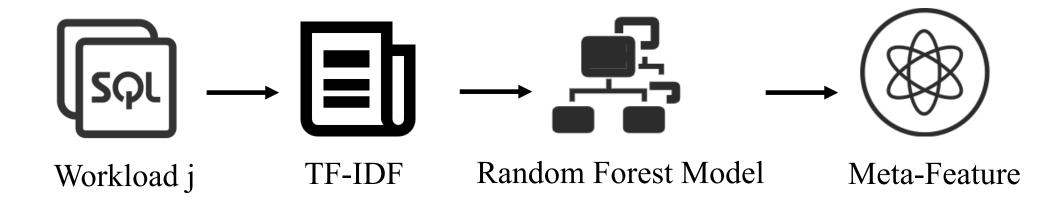
- Static
- Good initialization

- Dynamic
- Avoid over-fitting

### Learning from Meta-Feature

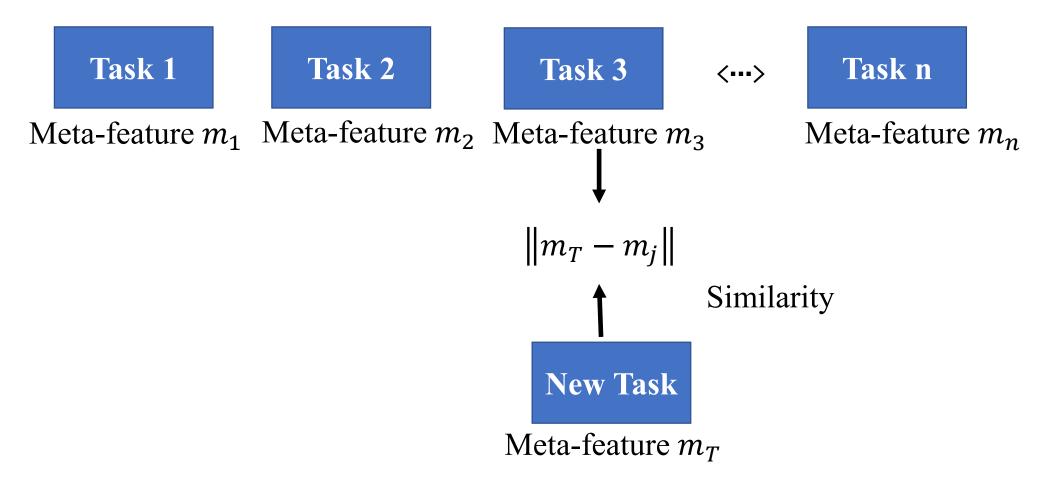
- Meta-features: measurable properties of tasks
- ResTune learns the meta-feature by workload characterization.

#### A Workload characterization pipeline



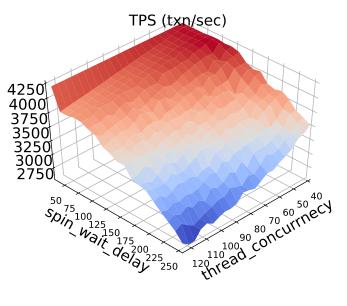
#### Learning from Meta-Feature

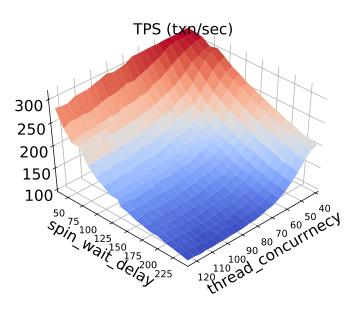
• The static weight is calculated by the distance between meta-features.



#### Learning form Model Predictions

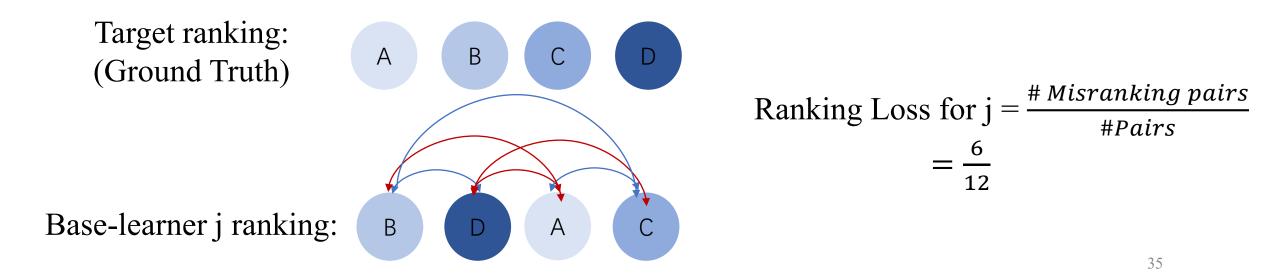
- We define base-learners' similarity in terms of how accuracy baselearner can predict the performance of the target task.
- Challenge: The performances can differ in scale significantly among various hardware environments in the cloud.





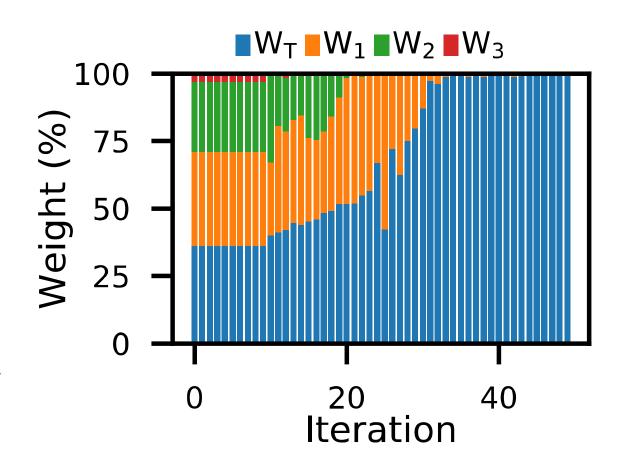
#### Learning form Model Predictions

- Our observation: the actual values of the predictions do not matter, since we only need to identify the location of the optimum!
- We calculate the ranking loss of base learners against target observations.

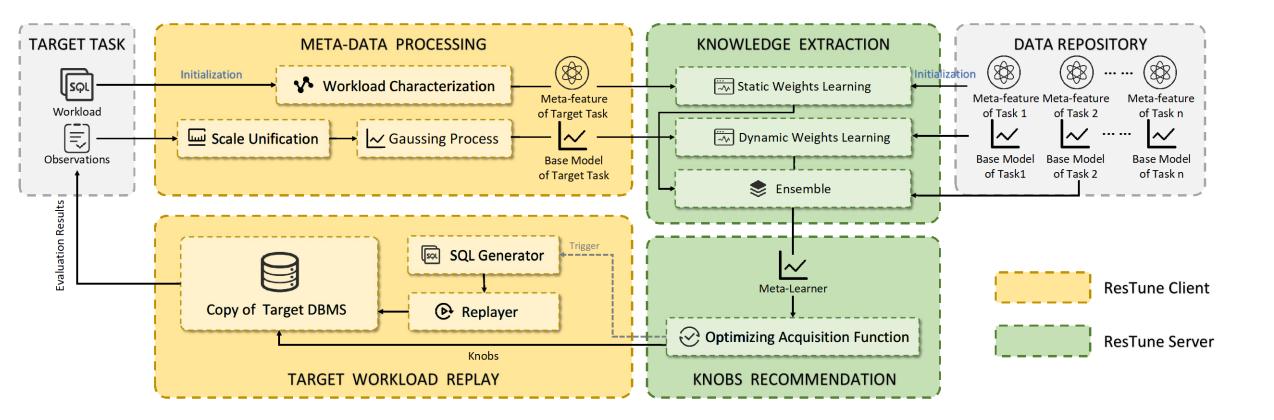


# Adaptive weight schema

- Static Weight Assignment:
  - Meta-features gives a coarse-grained abstraction about task properties.
  - Suggesting knobs that are promising according to similar historical tasks.
- Dynamic Weight Assignment:
  - Ranking of model predictions measures the similarity of tasks in the optimization problem.
  - Avoiding over-fitting by shrinking historical base learners' weight.



#### System Architecture of ResTune



# Experimental Study

- DBMS: version 5.7 of MySQL RDS
- Hardware instances:

|     | А        | В       | С       | D        | E        | F        |
|-----|----------|---------|---------|----------|----------|----------|
| CPU | 48 cores | 8 cores | 4 cores | 16 cores | 32 cores | 64 cores |
| RAM | 12GB     | 12GB    | 8GB     | 32GB     | 64GB     | 128GB    |

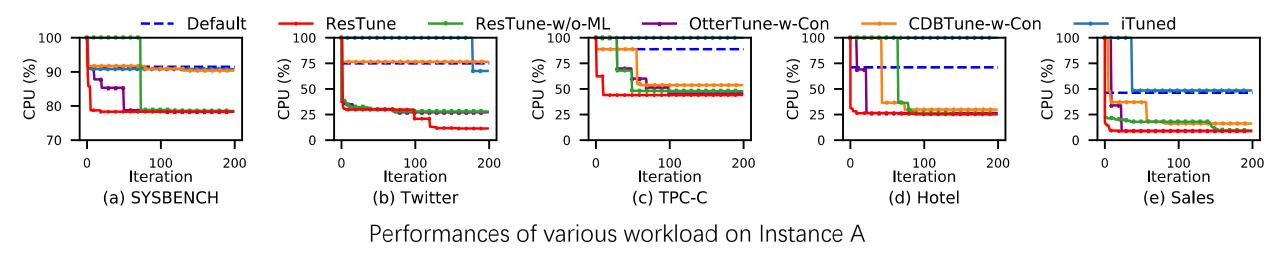
- Workloads:
  - Three Benchmark workloads: SYSBENCH、TPC-C、Twitter
  - Two real world workloads: Hotel、 Sales
- Data Repository:
  - We collect workload features and observation histories of 34 past tuning tasks on instances A and B as our meta-data

# Experimental Study

- Baselines:
  - **Default**: The default knobs provided by experienced DBA;
  - **iTuned**: We change its objective to minimizing the resource utilization;
  - **OtterTune-w-Con**: We replace OtterTune's acquisition function to our designed CEI to guide search in feasible region;
  - **CDBTune-w-Con**: We modify its reward function to encourage the agent to minimize resource usage and satisfy the SLA;
  - **ResTune-w/o-ML**: ResTune without Meta-Learning;
  - **ResTune**: Our approach that uses the meta-learner to boost the tuning.

iTuned [VLDB 2009]; OtterTune [SIGMOD 2017]; CDBTune [SIGMOD 2019]:

# Efficiency Comparison

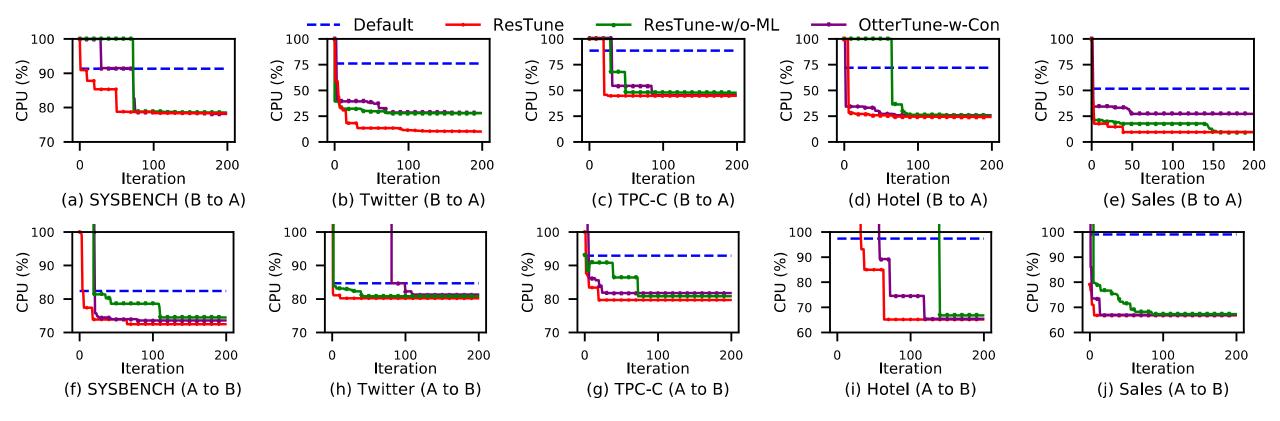


#### Takeaway:

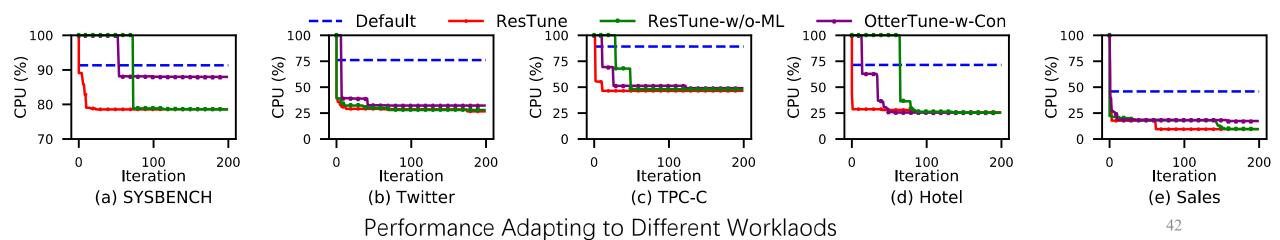
- ResTune can reduce the default CPU usage by 50.1% on average and guarantee the SLA.
- ResTune-w/o-ML performs much better than iTuned and CDBTune-w-Con.
- With meta-learning design, ResTune achieves 18.6X speedup than OtterTune-w-Con in SYSBENCH and 7.38X speedup on average.

# Evaluation on Adaptability

- Hardware Adaption
  - B to A
  - A to B
  - AB to C, D, E and F respectively
- Workload Adaption
  - holding out the target workload's data from the data repository



Performance Adapting to Different Hardware Environments



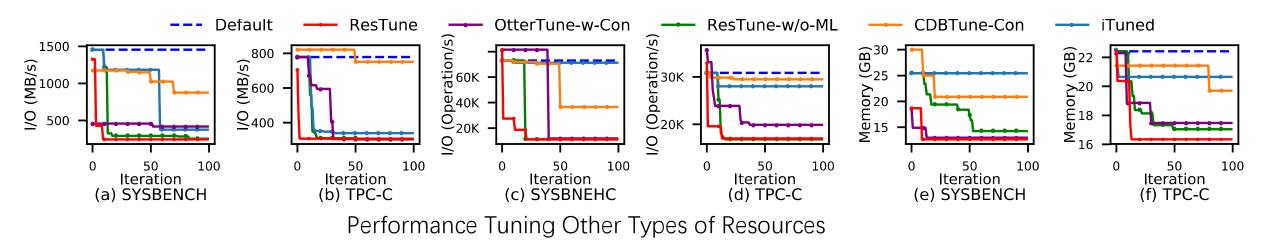
# Evaluation on Adaptability

| Instance |             |                | С      | D      | Е      | F      |
|----------|-------------|----------------|--------|--------|--------|--------|
| SYSBENCH | Improvement | Restune        | 5.02%  | 8.13%  | 17.16% | 20.38% |
|          | mprovement  | Restune-w/o-ML | 3.34%  | 7.58%  | 16.76% | 19.96% |
|          |             | Restune        | 37     | 64     | 100    | 35     |
|          | Iteration   | Restune-w/o-ML | 57     | 80     | 115    | 53     |
|          |             | Speed Up       | 35%    | 20%    | 14%    | 34%    |
| TPC-C    | Improvement | Restune        | 4.96%  | 19.22% | 33.26% | 47.60% |
|          | mprovement  | Restune-w/o-ML | 2.78%  | 18.28% | 33.09% | 42.62% |
|          |             | Restune        | 12     | 25     | 45     | 18     |
|          | Iteration   | Restune-w/o-ML | 99     | 47     | 79     | 25     |
|          |             | Speed Up       | 87.87% | 46.80% | 43.03% | 28%    |

Hardware Adaptation on More Instances

# Tuning other types of Resources

- Other types of resources
  - I/O (BPS and IOPS)
  - Memory



- Takeaway:
  - ResTune reduces 87% of I/O, and 39% of memory on average.



# **Thanks for Listening!**

My E-mail: zhang\_xinyi@pku.edu.cn

#### Execution Time Breakdown

| Phase                     | ResTune         | <b>ResTune-w/o-ML</b> | iTuned         | CDBTune-w-Con   | OtterTune-w-Con |
|---------------------------|-----------------|-----------------------|----------------|-----------------|-----------------|
| Meta-Data<br>Processing   | 0.653s~1.983s   | /                     | /              | /               | /               |
| Model Update              | 0.312s~2.298s   | 0.649s                | 0.151s         | 0.586s          | 11.347s         |
| Knob<br>Recommendation    | 5.115s          | 1.907s                | 0.912s         | 0.005s          | 4.457s          |
| Target Workload<br>Replay | 182.237s(95.1%) | 182.237s(98.6%)       | 182.186(99.4%) | 182.336s(99.7%) | 182.337s(92.0%) |
| Total Time                | 191.630s        | 184.793s              | 183.245s       | 182.927s        | 198.141s        |