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Our Goal

* Goal 1: To optimize the performance and the resource utilization
simultaneously.

* Goal 2: To boost the tuning process with different past tuning tasks
from different instance types and different workloads



Observations

The throughput and CPU usage on a real workload with 2 controlling knobs:
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Observation 1: Throughput 1s not the bottleneck 1n most cases.

Observation 2: A wide range of configurations has different CPU usages
but the same throughput.



Resource Oriented Tuning Problem

* We formalize the resource-oriented tuning problem as an optimization
problem with SLA constraints

* Consider a database with a continuous configuration space 0:

arggrlin f;‘esource (6)

S.t. fThroughput = SLAThroughput
f LatencyS SLALatency



Solving Constrained Optimization

* Tradition Bayesian Optimization uses acquisition function (.e.g, the Expected
Improvement ag;) to guide the search of the optimal.
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Solving Constrained Optimization

Minimizing Guaranteeing
Resource Usage  SILA Requirements

How to balance?

* To solve our constrained optimization problem, we extend the
acquisition function:

acg; = ag; X Prob(feasibility)

* We also use Gaussian Process to model Prob(feasibility)
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Boosting Tuning Process

 The same workloads

running on different
hardware share information Cred @

for tuning knobs. Various Instances

* Even for different Gond

workloads, the relationship
between hidden features can
lead to knowledge sharing.

Various Workloads

Numerous tuning tasks on the cloud



Boosting Tuning Process: Meta-Learning

e Human learns across tasks.

 Why? Require less trial-and-error, less data

Learnin Meta- | Learnin Meta- | Learnin Meta- |
g Learning Ing Learning Ing Learning
Learning 1 1
1sod
Performance Performance Performance 29



Knowledge Extraction

The prior knowledge 1s extracted from historical tuning tasks by ensemble.

t
Per task t; -

— 9 ! & ' fi
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How to determine the weights?

Learning from Learning from
Meta-Feature Model Predictions
e Static * Dynamic

* Good 1nitialization * Avoid over-fitting



Learning from Meta-Feature

* Meta-features: measurable properties of tasks

* ResTune learns the meta-feature by workload characterization.
A Workload characterization pipeline

2J
[ _H A
= —ae — &

Workload j TF-IDF Random Forest Model Meta-Feature




Learning from Meta-Feature

* The static weight 1s calculated by the distance between meta-features.

<".>

Meta-feature m; Meta-feature m, Meta—feilture ms Meta-feature m,,
lmy —my|
T Similarity

Meta-feature my
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Learning form Model Predictions

* We define base-learners’ similarity in terms of how accuracy base-
learner can predict the performance of the target task.

* Challenge: The performances can differ in scale significantly among
various hardware environments in the cloud.

TPS (usec)
300

TPS (txn/sec)

Instance A Instance B i



Learning form Model Predictions

* Our observation: the actual values of the predictions do not matter,
since we only need to identify the location of the optimum!

* We calculate the ranking loss of base learners against target
observations.

Target ranking:
(Ground Truth) A 5 <

# Misranking pairs

Ranking Loss for j =
_ 5
12

#Pairs

Base-learner j ranking:



Adaptive weight schema

» Static Weight Assignment: 100 BWr W, BW; BW3
* Meta-features gives a coarse-grained .
abstraction about task properties. L 75
* Suggesting knobs that are promising ~
according to similar historical tasks. < 50
@)
: : : 9 25
« Dynamic Weight Assignment: =
* Ranking of model predictions measures 0
the similarity of tasks in the optimization
problem. 0 20 40
* Avoiding over-fitting by shrinking lteration

historical base learners' weight.
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TARGET TASK
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Experimental Study

* DBMS: version 5.7 of MySQL RDS
e Hardware instances:

48 cores 8 cores 4 cores 16 cores 32 cores 64 cores
RAM 12GB 12GB 8GB 32GB 64GB 128GB

 Workloads:
 Three Benchmark workloads: SYSBENCH. TPC-C. Twitter
 Two real world workloads: Hotel. Sales

* Data Repository:

* We collect workload features and observation histories of 34 past tuning tasks on
instances A and B as our meta-data
38



Experimental Study

* Baselines:
* Default: The default knobs provided by experienced DBA;

iTuned: We change its objective to minimizing the resource utilization;

OtterTune-w-Con: We replace OtterTune’s acquisition function to our designed CEI
to guide search in feasible region;

CDBTune-w-Con: We modify its reward function to encourage the agent to
minimize resource usage and satisfy the SLA;

ResTune-w/0-ML: ResTune without Meta-Learning;

ResTune: Our approach that uses the meta-learner to boost the tuning.

iTuned [VLDB 2009]; OtterTune [SIGMOD 2017] ; CDBTune [SIGMOD 2019]:



CPU (%)

Efficiency Comparison

- == Default —— ResTune —+— ResTune-w/o-ML —— QOtterTune-w-Con CDBTune-w-Con —— jTuned
100 100 100 —eepres————— 100 ’ 100
90 p— ‘ IR | ittt == :\575-| I, _ 375 I 3 75
L‘T ;50- ;50- ;50- ;50-._L-m
e - L. 8’)25-L'~E.\: O 25 - O 25 4% 5 &25_\ .
70 =4 T T 0 —H T T 0 —H T T 0 —H T T 0 —H T T
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
Iteration Iteration Iteration Iteration Iteration
(a) SYSBENCH (b) Twitter (c) TPC-C (d) Hotel (e) Sales
Performances of various workload on Instance A
Takeaway:

* ResTune can reduce the default CPU usage by 50.1% on average and guarantee the SLA.
* ResTune-w/o-ML performs much better than 1Tuned and CDBTune-w-Con.

* With meta-learning design, ResTune achieves 18.6X speedup than OtterTune-w-Con in
SYSBENCH and 7.38X speedup on average.
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Evaluation on Adaptability

* Hardware Adaption
e BtoA
« AtoB
 AB to C, D, E and F respectively

* Workload Adaption
* holding out the target workload’s data from the data repository
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Evaluation on Adaptability

Instance C D E F
Improvement Restune 5.02% | 8.13% |17.16% | 20.38%
Restune-w/o-ML | 3.34% | 7.58% [16.76% | 19.96%
SYSBENCH Restune 37 64 100 35
Iteration |Restune-w/o-ML| 57 80 115 53
Speed Up 35% 20% 14% 34%
Improvement Restune 4.96% |19.22% | 33.26% | 47.60%
Restune-w/o-ML | 2.78% | 18.28% | 33.09% | 42.62%
TPC-C Restune 12 25 45 18
Iteration Restune-w/o-ML | 99 47 79 25
Speed Up 87.87% |46.80% |43.03% | 28%
Hardware Adaptation on More Instances
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Tuning other types of Resources

* Other types of resources
* [/O (BPS and IOPS)

I/O (MB/s)

* Memory
——=- Detault —— ResTune — OtterTune-w-Con o ResTune-w/o-ML CDBTune-Con —— jTuned
1500 qom=m=——=—==—= u _ o —~30 - —
"L 800 Jemm e = e = = c T c m m22 -
i = 260K 330k fh=m====== Qo5 |~ S
1000 S600 o © > >20 -
= Q40K Q gZO - g
500 - 2400 -1 20K - 920K - -—L\o—o—o—o—o—o— %)15 _Q gls 7]
T T T T T T 2 T T T 2 T T T T T T 16 = T T
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
Iteration Iteration Iteration Iteration Iteration Iteration
(a) SYSBENCH (b) TPC-C (c) SYSBNEHC (d) TPC-C (e) SYSBENCH (f) TPC-C

Performance Tuning Other Types of Resources

* Takeaway:

* ResTune reduces 87% of /O, and 39% of memory on average.



Thanks for Listening!

My E-mail: zhang xinyi@pku.edu.cn



Execution Time Breakdown

Meta-Data = (535~1.983s
Processing
Model Update 0.3125~2.298s 0.649s 0.151s 0.586s 11.347s
Knob 5.115s 1.907s 0.912s 0.005s 4,457
Recommendation
Target Workload
Replay 182.237s(95.1%) 182.237s(98.6%) 182.186(99.4%) 182.336s(99.7%) 182.3375(92.0%)

Total Time 191.630s 184.793s 183.245s 182.927s 198.141s
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