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Introduction

Temporal data is important in numerous domains:

financial market
scientific applications
biomedical field

Extensive efforts have been made towards efficiently storing,
processing, and querying temporal data.

Ranking temporal data has only recently been studied. [LYL10]

[LYL10] Li et al., Top-k queries on temporal data. In VLDBJ, 2010.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data



Introduction

Temporal data is important in numerous domains:

financial market
scientific applications
biomedical field

Extensive efforts have been made towards efficiently storing,
processing, and querying temporal data.

Ranking temporal data has only recently been studied. [LYL10]

[LYL10] Li et al., Top-k queries on temporal data. In VLDBJ, 2010.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data



Introduction

Temporal data is important in numerous domains:

financial market
scientific applications
biomedical field

Extensive efforts have been made towards efficiently storing,
processing, and querying temporal data.

Ranking temporal data has only recently been studied. [LYL10]

[LYL10] Li et al., Top-k queries on temporal data. In VLDBJ, 2010.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data



Related Work

The instant top-k query returns objects oi s with the k highest scores
at query time t. [LYL10]

Score

Time

o1

o2

o3

Example: Return top-10 weather stations with highest average
temperature from 1 Aug to 27 Aug.

[LYL10] Li et al., Top-k queries on temporal data. In VLDBJ, 2010.
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Problem Formulation

Score

Time

o1

o2

o3

Temporal database consists of m objects o1, o2, . . . , om

oi is represented by piecewise linear function gi with ni segments.

top-k(t1, t2, σ) is an aggregate top-k query for aggregate function σ

gi (t1, t2) represent all possible values of gi in [t1, t2]
σ(gi (t1, t2)) (= σi (t1, t2)) is the aggregate score of oi in [t1, t2]
For σ = sum, σ(gi (t1, t2)) =

∫ t2

t1
gi (t)dt
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Problem Formulation
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A(k , t1, t2) : ordered top-k objects for top-k(t1, t2, σ)

Let σ = sum =
∫ t2

t1
g(t)dt
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Baseline Solution

Compute σi (t1, t2) for all objects by scanning each segment.

Simple improvement: use B-tree to avoid segments outside query
interval.

Query cost: O(logBN +
∑m

i=1 qi
B + (m/B)logBk)

qi = number of segments overlapping [t1, t2]

We denote this query Exact1.
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Improved Solution using Prefix Sums and B-tree Forest

We can avoid scanning all overlapping segments with [t1, t2] by
using prefix sums:

Index segment and prefix sums for an object in a B-tree.
Compute σi (t1, t2) by retrieving two segments from B-tree.

Query cost is O(
∑m

i=1 logBni + (m/B)logBk)

This solution is denoted Exact2.
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Improved Solution using Prefix Sums and Interval Tree

Score

Timet3,1 t3,2 t3,3t3,0 t3,4

g3,2
g3,1

g3,3
g3,4

I3,2
I3,3

I3,4

I3,1

Consider an object oi with intervals Ii,1, . . . , Ii,ni
gi,j = jth segment of oi is ((ti,j−1, vi,j−1), (ti,j , vi,j))
Ii,` = [ti,0, ti,`] for ` = 1, . . . , ni

We define I−i,1, . . . , I
−
i,ni

s.t. I−i,` = [Ii,`−1, Ii,`]
The data entries for i = 1, . . . ,m and ` = 1, . . . , ni are

key: (I−i,`) and value: (gi,`, σi (Ii,`))
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Improved Solution using Prefix Sums and Interval Tree
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Total stabbing query cost is O(logBN + m/B).

Using priority queue to get top-k is O(logBN + (m/B)logBk).

We denote this query Exact3.
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Approximate Solution Overview

N segments
m objects

BreakPoints1

BreakPoints2

Query1

Query2

Our most query-efficient technique costs O(logBN + m/B).

Must compute all m aggregates σi (t1, t2).
Still too expensive for large datasets with large m.

Our approximate methods construct breakpoints
B = {b1, . . . , br}, bi ∈ [0,T ].

Queries are snapped to align to breakpoints.

A query snapped to (bi , bj) uses σi (bi , bj) as an object’s score.
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Approximate Solution Notations

G is an (ε, α)-approximation algorithm if:

G returns σ̃i (t1, t2) s.t.
σi (t1, t2)/α− εM ≤ σ̃i (t1, t2) ≤ σi (t1, t2) + εM
α ≥ 1, ε > 0
M =

∑m
i=1 σi (0,T )

Must hold for all objects and temporal intevals.
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Approximate Solution Notations

t1 t2

Score

Time

o2 Ã(j)

A(j) (Ã(j)) = the jth ranked object in A(k , t1, t2) (Ã(k, t1, t2))

R is an (ε, α)-approximation algorithm of top-k(t1, t2, σ) if:

R returns Ã(k, t1, t2) and σ̃Ã(j)(t1, t2) for j ∈ [1, k], s.t.

1 σ̃Ã(j)
(t1, t2) is an (ε, α)-approximation of σÃ(j)

(t1, t2)

2 σ̃Ã(j)
(t1, t2) is an (ε, α)-approximation of σA(j)(t1, t2)

Must hold for all k and all temporal intervals.
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R is an (ε, α)-approximation algorithm of top-k(t1, t2, σ) if:
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Breakpoints

Starting from b0 and moving forward we have:

bj+1 so

{∑m
i=1 σi (bj , bj+1) = εM, in BreakPoints1(B1)

maxmi=1 σi (bj , bj+1) = εM, in BreakPoints2(B2)

Score

Time

o1

o2

o3

breakpoint
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Properties of Breakpoints

Starting from b0 and moving forward we have:
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i=1 σi (bj , bj+1) = εM, in BreakPoints1(B1)

maxmi=1 σi (bj , bj+1) = εM, in BreakPoints2(B2)

We show how to efficiently construct both types of breakpoints

A cost of O((N/B)logBN) IOs for both types.

The theoretical number of breakpoints is O(1/ε) for both types.

BreakPoints2 has much fewer breakpoints than BreakPoints1
in practice.
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Answering Queries with Breakpoints

Score

Time

o1

o2

o3

breakpoint

We show how to answer queries using B1 or B2 approximately.

∀(t1, t2), let (B(t1),B(t2)) be the approximate interval
B(t1) = minbi∈B s.t. B(t1) ≥ t1

B(t2) = minbi∈B s.t. B(t2) ≥ t2

Lemma

∀(t1, t2) and its approximate interval (B(t1),B(t2)): ∀oi ,
|σi (t1, t2)− σi (B(t1),B(t2))| ≤ εM.
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Querying Breakpoints with Nested B-trees

Time

breakpoint

Left end-point index.

Query1 indexes all
(
n
2

)
intervals of breakpoints B.

For each interval [bj , b
′
j ], A(kmax , bj , b

′
j ) is computed.

At query time we probe first-level B-tree with t1 to get B(t1).

We probe B(t1)’s associated nested B-tree to get B(t2).

The approximate answer Ã(k, t1, t2) is returned.
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The approximate answer Ã(k, t1, t2) is returned.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data



Querying Breakpoints with Nested B-trees

oi σi(B(t1),B(t2))
o`1 σ`1(B(t1),B(t2))
...

...

o`kmax
σ`kmax

(B(t1),B(t2))

Objects ordered in descending order of σi(.)

breakpoint

B(t2)

B(t1)

t1

t2

A(kmax,B(t1),B(t2))

Query1 indexes all
(
n
2

)
intervals of breakpoints B.

For each interval [bj , b
′
j ], A(kmax , bj , b

′
j ) is computed.

At query time we probe first-level B-tree with t1 to get B(t1).

We probe B(t1)’s associated nested B-tree to get B(t2).

The approximate answer Ã(k, t1, t2) is returned.
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We prove Query1 has the following properties:
Index size O((1/ε)2kmax/B).
Query cost O(k/B + logB(1/ε)).
(ε, 1)-approximation.

Query2 reduces space to O((1/ε)kmax/B).
(ε, 2log(1/ε))-approximation.
Query cost O(k log(1/ε) logB k).
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Querying Breakpoints with Dyadic Intervals

Time

breakpoint

Query2 indexes all dyadic intervals over the breakpoints B
The intervals represent the span of nodes in a balanced binary tree.

Consider a query over [t1, t2].

At each dyadic interval [bi , bj ] we store A(kmax , bi , bj).

There are at most 2log(1/ε) intervals and 2klog(1/ε) candidates.
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Querying Breakpoints with Dyadic Intervals
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Querying Breakpoints with Dyadic Intervals

oi running sum σ′
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Combining Breakpoints with Queries

N segments
m objects

BreakPoints1

BreakPoints2

Query1

Query2

We consider the following algorithms:

Appx1-B: (Query1, BreakPoints1)

Appx2-B: (Query2, BreakPoints1)

Appx1: (Query1, BreakPoints2)

Appx2: (Query2, BreakPoints2)

Appx2+: (Query2, BreakPoints2) and Discovers candidates’
exact aggregate score using B-tree from Exact2 (B-tree forest).
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Experiments: Setup

Our algorithms are designed to efficiently handle I/Os.

All algorithms are implemented in C++ using TPIE.

All experiments performed on Linux machine with:

Intel Core i7-2600 3.4GHz CPU
8GB of memory
1TB hard drive

We use two real large datasets:
Temp is a temperature dataset from the MesoWest Project.

contains measurements from Jan 1997 to Oct 2011.
there are m = 145, 628 objects with average navg = 17, 833.

Meme is obtained from the Memetracker Project.

tracks the frequency of popular quotes over time.
there are m = 1.5 million objects with navg = 67.
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Experiments: Default Values

Parameter Symbol Default value
dataset Temp

number of objects m 50,000
average object line segments navg 1,000

max top-k value kmax 200
top-k value k 50

number of breakpoints r = (1/ε) 500
query interval size (t2 − t1) 20% T

TPIE disk block size 4KB
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Experiment: Index size.
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Experiment: Build time.
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Experiment: Query I/Os.
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Experiment: Query time.
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Experiment: Precision/Recall.
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Experiment: Ratio.
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Conclusions

We studied ranking large temporal data using aggregate scores over
a query interval.

Our most efficient exact technique Exact3 is more efficient than
baseline solutions.

Approximations offer even more improvements.

Future work includes ranking with holistic aggregations and
extending to distributed settings.
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The End

Thank You

Q and A
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Baseline Solution

t1 t2

Score

Time

o3

Computing σ(g3(t1, t2))

1 Initialize sum s3 = 0 for object o3

2 For each segment ` of g3 defined by (t3,j , v3,j), (t3,j+1, v3,j+1)

Define I = [t1, t2] ∩ [t3,j , t3,j+1]
Update s3 = s3 + σ3(I)
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Baseline Solution

t1 t2

Score

Time

o3

Computing A(k, t1, t2)

Compute si for all objects i ∈ [1,m].

Insert si ’s into priority queue of size k to get A(k, t1, t2).

Naive cost: O(N + mlogk)
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Improved Baseline Solution using B-tree

t1 t2

Score

Time

o3

For each line segment ` = {(ti,j , vi,j), (ti,j+1, vi,j+1)}
Index left end-point ti,j in B-tree.
The value associated with ti,j is `.

Query cost: O(logBN +
∑m

i=1 qi
B + (m/B)logBk)

qi = number of ` overlapping [t1, t2]

We denote this query Exact1.
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Improved Solution using Prefix Sums and B-tree Forest
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t3,1 t3,2

g3,2

gi = ∪gi,j
gi,j is defined by ((ti,j−1, vi,j−1), (ti,j , vi,j)) for j ∈ {1, . . . , ni}

Let Ii,` = [ti,0, ti,`] for ` = 1, . . . , ni and compute σi (Ii,`)
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Improved Solution using Prefix Sums and B-tree Forest
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Let ti,L = successor(ti,1) and ti,R = successor(ti,2)

σi (t1, t2) = σi (Ii,R)− σi (Ii,L)− σi (t2, ti,R) + σi (t1, ti,L)

Use a B-tree forest to index (t3,`, (gi,`, σi (Ii,`))

Each oi indexed in a separate B-tree
Query cost is O(

∑m
i=1 logBni + (m/B)logBk)

We denote this query Exact2.
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Our B-tree forest solution requires m B-trees.

Query time improves from baseline.
Opening/Closing m B-trees expensive for large m.

We show how to solve a query using a single interval tree.
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