Ranking Large Temporal Data

Jeffrey Jestes Jeff M. Phillips Feifei Li Mingwang Tang

August 29, 2012

<ロト <四ト <注入 <注下 <注下 <

- Temporal data is important in numerous domains:
 - financial market
 - scientific applications
 - biomedical field

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

= 990

- Temporal data is important in numerous domains:
 - financial market
 - scientific applications
 - biomedical field
- Extensive efforts have been made towards efficiently storing, processing, and querying temporal data.

伺 と く ヨ と く ヨ と

э.

- Temporal data is important in numerous domains:
 - financial market
 - scientific applications
 - biomedical field
- Extensive efforts have been made towards efficiently storing, processing, and querying temporal data.
- Ranking temporal data has only recently been studied. [LYL10]

通 と く ヨ と く ヨ と

3

[LYL10] Li et al., Top-k queries on temporal data. In VLDBJ, 2010.

Related Work

• The *instant* top-*k* query returns objects *o_is* with the *k* highest scores at query time *t*. [LYL10]

LYL10] Li	et al.,	Top-k	queries or	temporal data	. In	VLDBJ, 2010.
-----------	---------	-------	------------	---------------	------	--------------

э

< 3 > < 3 >

-

3) 3

[LYL10] Li et al., Top-k queries on temporal data. In VLDBJ, 2010.

[LYL10] Li et al., Top-k queries on temporal data. In VLDBJ, 2010.

What is a good value for t?

[LYL10] Li et al., Top-k queries on temporal data. In VLDBJ, 2010.

Use aggregation within a temporal interval instead!!!

[LYL10] Li et al., Top-k queries on temporal data. In VLDBJ, 2010.

- ∢ ≣ →

< ∃ ►

Use aggregation within a temporal interval instead!!!

• Example: Return top-10 weather stations with highest average temperature from 1 Aug to 27 Aug.

[LYL10] Li et al., Top-k queries on temporal data. In VLDBJ, 2010. d □ > (

• Temporal database consists of *m* objects *o*₁, *o*₂, ..., *o_m*

ヨッ イヨッ イヨッ

3

- Temporal database consists of *m* objects *o*₁, *o*₂, ..., *o_m*
- o_i is represented by piecewise linear function g_i with n_i segments.

ヨッ イヨッ イヨッ

- Temporal database consists of *m* objects *o*₁, *o*₂, ..., *o*_{*m*}
- o_i is represented by piecewise linear function g_i with n_i segments.
- top- $k(t_1, t_2, \sigma)$ is an aggregate top-k query for aggregate function σ
 - $g_i(t_1, t_2)$ represent all possible values of g_i in $[t_1, t_2]$
 - $\sigma(g_i(t_1, t_2)) \ (= \sigma_i(t_1, t_2))$ is the aggregate score of o_i in $[t_1, t_2]$

ヨッ イヨッ イヨッ

- Temporal database consists of *m* objects *o*₁, *o*₂, ..., *o*_{*m*}
- o_i is represented by piecewise linear function g_i with n_i segments.
- top- $k(t_1, t_2, \sigma)$ is an aggregate top-k query for aggregate function σ
 - $g_i(t_1, t_2)$ represent all possible values of g_i in $[t_1, t_2]$
 - $\sigma(g_i(t_1, t_2)) \ (= \sigma_i(t_1, t_2))$ is the aggregate score of o_i in $[t_1, t_2]$

通 と く ヨ と く ヨ と

• For $\sigma = \operatorname{sum}$, $\sigma(g_i(t_1, t_2)) = \int_{t_1}^{t_2} g_i(t) dt$

• $\mathcal{A}(k, t_1, t_2)$: ordered top-*k* objects for top- $k(t_1, t_2, \sigma)$

• Let
$$\sigma = \mathbf{sum} = \int_{t1}^{t2} g(t) dt$$

() <) <)
 () <)
 () <)
</p>

• $\mathcal{A}(k, t_1, t_2)$: ordered top-k objects for top- $k(t_1, t_2, \sigma)$

• Let
$$\sigma = \mathbf{sum} = \int_{t1}^{t2} g(t) dt$$

(신문) (문)

3

• $\mathcal{A}(k, t_1, t_2)$: ordered top-k objects for top- $k(t_1, t_2, \sigma)$

• Let
$$\sigma = \mathbf{sum} = \int_{t1}^{t2} g(t) dt$$

() <) <)
 () <)
 () <)
</p>

Outline

Introduction and Problem Formulation

2 Exact Solutions

- Baseline Solution
- Improved Solution using Prefix Sums and B-tree Forest
- Improved Solution using Prefix Sums and Interval Tree

Approximate Solutions

- Overview
- Breakpoints
- Approaches for Approximation Queries
- Combining Breakpoints with Queries

Experiments

5 Conclusions

通 と く ヨ と く ヨ と

• Compute $\sigma_i(t_1, t_2)$ for all objects by scanning each segment.

回 と く ヨ と く ヨ と

3

- Compute $\sigma_i(t_1, t_2)$ for all objects by scanning each segment.
- Simple improvement: use B-tree to avoid segments outside query interval.

回 と く ヨ と く ヨ と

3

- Query cost: $O(log_BN + \frac{\sum_{i=1}^{m} q_i}{B} + (m/B)log_Bk)$
 - q_i = number of segments overlapping $[t_1, t_2]$
- We denote this query EXACT1.

- We can avoid scanning all overlapping segments with [t₁, t₂] by using prefix sums:
 - Index segment and prefix sums for an object in a B-tree.
 - Compute $\sigma_i(t_1, t_2)$ by retrieving two segments from B-tree.

¬ > < **>** > < **>** > <

- We can avoid scanning all overlapping segments with [t₁, t₂] by using prefix sums:
 - Index segment and prefix sums for an object in a B-tree.
 - Compute $\sigma_i(t_1, t_2)$ by retrieving two segments from B-tree.

ゆう イヨン イヨン

- Query cost is $O(\sum_{i=1}^{m} log_B n_i + (m/B) log_B k)$
- This solution is denoted EXACT2.

• Consider an object o_i with intervals $I_{i,1}, \ldots, I_{i,n_i}$

•
$$g_{i,j} = j$$
th segment of o_i is $((t_{i,j-1}, v_{i,j-1}), (t_{i,j}, v_{i,j}))$

•
$$I_{i,\ell} = [t_{i,0}, t_{i,\ell}]$$
 for $\ell = 1, ..., n_i$

- We define $I_{i,1}^-, \ldots, I_{i,n_i}^-$ s.t. $I_{i,\ell}^- = [I_{i,\ell-1}, I_{i,\ell}]$
- The data entries for i = 1, ..., m and $\ell = 1, ..., n_i$ are
 - key: $(I_{i,\ell}^-)$ and value: $(g_{i,\ell}, \sigma_i(I_{i,\ell}))$

()

- We define $I_{i,1}^-, \ldots, I_{i,n_i}^-$ s.t. $I_{i,\ell}^- = [I_{i,\ell-1}, I_{i,\ell}]$
- The data entries for i = 1, ..., m and $\ell = 1, ..., n_i$ are
 - key: $(I_{i,\ell}^-)$ and value: $(g_{i,\ell}, \sigma_i(I_{i,\ell}))$

A B > A B >

- We define $I_{i,1}^-, \ldots, I_{i,n_i}^-$ s.t. $I_{i,\ell}^- = [I_{i,\ell-1}, I_{i,\ell}]$
- The data entries for i = 1, ..., m and $\ell = 1, ..., n_i$ are
 - key: $(I_{i,\ell}^-)$ and value: $(g_{i,\ell}, \sigma_i(I_{i,\ell}))$

• • = • • = •

- We define $I_{i,1}^{-}, \ldots, I_{i,n_i}^{-}$ s.t. $I_{i,\ell}^{-} = [I_{i,\ell-1}, I_{i,\ell}]$
- The data entries for $i = 1, \ldots, m$ and $\ell = 1, \ldots, n_i$ are
 - key: $(I_{i,\ell}^-)$ and value: $(g_{i,\ell}, \sigma_i(I_{i,\ell}))$

()

Retrieve associated 2m data entries

- We define $I_{i,1}^{-}, \ldots, I_{i,n_i}^{-}$ s.t. $I_{i,\ell}^{-} = [I_{i,\ell-1}, I_{i,\ell}]$
- The data entries for $i=1,\ldots,m$ and $\ell=1,\ldots,n_i$ are
 - key: $(I_{i,\ell}^-)$ and value: $(g_{i,\ell}, \sigma_i(I_{i,\ell}))$

3

We have $g_{3,2}; g_{3,4}; I_{3,2}; I_{3,4}$

A = A = A

- We define $I_{i,1}^-, \ldots, I_{i,n_i}^-$ s.t. $I_{i,\ell}^- = [I_{i,\ell-1}, I_{i,\ell}]$
- The data entries for i = 1, ..., m and $\ell = 1, ..., n_i$ are
 - key: $(I_{i,\ell}^-)$ and value: $(g_{i,\ell}, \sigma_i(I_{i,\ell}))$

ヨッ イヨッ イヨッ

- We define $I_{i,1}^-, \ldots, I_{i,n_i}^-$ s.t. $I_{i,\ell}^- = [I_{i,\ell-1}, I_{i,\ell}]$
- The data entries for i = 1, ..., m and $\ell = 1, ..., n_i$ are
 - key: $(I_{i,\ell}^-)$ and value: $(g_{i,\ell}, \sigma_i(I_{i,\ell}))$

ヨッ イヨッ イヨッ

- We define $I_{i,1}^-, \ldots, I_{i,n_i}^-$ s.t. $I_{i,\ell}^- = [I_{i,\ell-1}, I_{i,\ell}]$
- The data entries for i = 1, ..., m and $\ell = 1, ..., n_i$ are
 - key: $(I_{i,\ell}^-)$ and value: $(g_{i,\ell}, \sigma_i(I_{i,\ell}))$

向下 イヨト イヨト

- We define $I_{i,1}^{-}, \ldots, I_{i,n_i}^{-}$ s.t. $I_{i,\ell}^{-} = [I_{i,\ell-1}, I_{i,\ell}]$
- The data entries for i = 1, ..., m and $\ell = 1, ..., n_i$ are
 - key: $(I_{i,\ell}^-)$ and value: $(g_{i,\ell}, \sigma_i(I_{i,\ell}))$

Retrieve associated 2m data entries

- Total stabbing query cost is $O(log_B N + m/B)$.
 - Using priority queue to get top-k is $O(log_B N + (m/B)log_B k)$.

通 と く ヨ と く ヨ と

э

• We denote this query EXACT3.

Outline

Introduction and Problem Formulation

2 Exact Solutions

- Baseline Solution
- Improved Solution using Prefix Sums and B-tree Forest
- Improved Solution using Prefix Sums and Interval Tree

3 Approximate Solutions

- Overview
- Breakpoints
- Approaches for Approximation Queries
 - Nested B-tree Approximate Query
 - Dyadic Interval Approximate Query
- Combining Breakpoints with Queries

4 Experiments

Conclusions

通 と く ヨ と く ヨ と

Approximate Solution Overview

• Our most query-efficient technique costs $O(log_B N + m/B)$.

- Must compute all *m* aggregates $\sigma_i(t_1, t_2)$.
- Still too expensive for large datasets with large m.

通 と く ヨ と く ヨ と
Approximate Solution Overview

• Our most query-efficient technique costs $O(log_B N + m/B)$.

- Must compute all *m* aggregates σ_i(t₁, t₂).
- Still too expensive for large datasets with large m.
- Our approximate methods construct breakpoints

$$\mathcal{B} = \{b_1,\ldots,b_r\}, b_i \in [0,T].$$

ヨッ イヨッ イヨッ

Approximate Solution Overview

- Our most query-efficient technique costs $O(log_B N + m/B)$.
 - Must compute all m aggregates $\sigma_i(t_1, t_2)$.
 - Still too expensive for large datasets with large *m*.
- Our approximate methods construct breakpoints $\mathcal{B} = \{b_1, \dots, b_r\}, b_i \in [0, T].$
- Queries are snapped to align to breakpoints.
 - A query snapped to (b_i, b_j) uses $\sigma_i(b_i, b_j)$ as an object's score.

通 と く ヨ と く ヨ と

- G is an (ε, α) -approximation algorithm if:
 - *G* returns $\widetilde{\sigma}_i(t_1, t_2)$ s.t. $\sigma_i(t_1, t_2)/\alpha - \varepsilon M \le \widetilde{\sigma}_i(t_1, t_2) \le \sigma_i(t_1, t_2) + \varepsilon M$
 - $\alpha \geq 1, \varepsilon > 0$

•
$$M = \sum_{i=1}^m \sigma_i(0, T)$$

Must hold for all objects and temporal intevals.

Approximate Solution Notations

A(j) (Ã(j)) = the jth ranked object in A(k, t₁, t₂) (Ã(k, t₁, t₂))
R is an (ε, α)-approximation algorithm of top-k(t₁, t₂, σ) if:

• *R* returns $\widetilde{\mathcal{A}}(k, t_1, t_2)$ and $\widetilde{\sigma}_{\widetilde{\mathcal{A}}(j)}(t_1, t_2)$ for $j \in [1, k]$, s.t.

Approximate Solution Notations

- A(j) (Ã(j)) = the jth ranked object in A(k, t₁, t₂) (Ã(k, t₁, t₂))
 R is an (ε, α)-approximation algorithm of top-k(t₁, t₂, σ) if:
 - *R* returns $\widetilde{\mathcal{A}}(k, t_1, t_2)$ and $\widetilde{\sigma}_{\widetilde{\mathcal{A}}(j)}(t_1, t_2)$ for $j \in [1, k]$, s.t.

(1) $\widetilde{\sigma}_{\widetilde{\mathcal{A}}(j)}(t_1, t_2)$ is an (ε, α) -approximation of $\sigma_{\widetilde{\mathcal{A}}(j)}(t_1, t_2)$

• • = • • = •

Approximate Solution Notations

- $\mathcal{A}(j)$ $(\widetilde{\mathcal{A}}(j))$ = the *j*th ranked object in $\mathcal{A}(k, t_1, t_2)$ $(\widetilde{\mathcal{A}}(k, t_1, t_2))$
- *R* is an (ε, α) -approximation algorithm of top- $k(t_1, t_2, \sigma)$ if:
 - *R* returns $\widetilde{\mathcal{A}}(k, t_1, t_2)$ and $\widetilde{\sigma}_{\widetilde{\mathcal{A}}(j)}(t_1, t_2)$ for $j \in [1, k]$, s.t.

1
$$\widetilde{\sigma}_{\widetilde{\mathcal{A}}(j)}(t_1, t_2)$$
 is an (ε, α) -approximation of $\sigma_{\widetilde{\mathcal{A}}(j)}(t_1, t_2)$
2 $\widetilde{\sigma}_{\widetilde{\mathcal{A}}(j)}(t_1, t_2)$ is an (ε, α) -approximation of $\sigma_{\mathcal{A}(j)}(t_1, t_2)$

• Must hold for all k and all temporal intervals.

$$b_{j+1} \text{ so} \begin{cases} \sum_{i=1}^{m} \sigma_i(b_j, b_{j+1}) = \varepsilon M, & \text{ in } \text{BREAKPOINTS1}(\mathcal{B}_1) \\ \max_{i=1}^{m} \sigma_i(b_j, b_{j+1}) = \varepsilon M, & \text{ in } \text{BREAKPOINTS2}(\mathcal{B}_2) \end{cases}$$

回 と く ヨ と く ヨ と

$$b_{j+1} \text{ so} \begin{cases} \sum_{i=1}^{m} \sigma_i(b_j, b_{j+1}) = \varepsilon M, & \text{in BREAKPOINTS1}(\mathcal{B}_1) \\ \max_{i=1}^{m} \sigma_i(b_j, b_{j+1}) = \varepsilon M, & \text{in BREAKPOINTS2}(\mathcal{B}_2) \end{cases}$$

 $\sigma_1(b_j, b_{j+1}) + \sigma_2(b_j, b_{j+1}) + \sigma_3(b_j, b_{j+1}) = \varepsilon M$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

$$b_{j+1} \text{ so} \begin{cases} \sum_{i=1}^{m} \sigma_i(b_j, b_{j+1}) = \varepsilon M, & \text{ in } \text{BREAKPOINTS1}(\mathcal{B}_1) \\ \max_{i=1}^{m} \sigma_i(b_j, b_{j+1}) = \varepsilon M, & \text{ in } \text{BREAKPOINTS2}(\mathcal{B}_2) \end{cases}$$

 $\sigma_1(b_j, b_{j+1}) + \underline{\sigma_2(b_j, b_{j+1})} + \sigma_3(b_j, b_{j+1}) = \varepsilon M$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

$$b_{j+1} \text{ so} \begin{cases} \sum_{i=1}^{m} \sigma_i(b_j, b_{j+1}) = \varepsilon M, & \text{in BREAKPOINTS1}(\mathcal{B}_1) \\ \max_{i=1}^{m} \sigma_i(b_j, b_{j+1}) = \varepsilon M, & \text{in BREAKPOINTS2}(\mathcal{B}_2) \end{cases}$$

 $\underline{\sigma_1(b_j, b_{j+1})} + \underline{\sigma_2(b_j, b_{j+1})} + \sigma_3(b_j, b_{j+1}) = \varepsilon M$

▲□ → ▲ 三 → ▲ 三 → 二 三

$$b_{j+1} \text{ so} \begin{cases} \sum_{i=1}^{m} \sigma_i(b_j, b_{j+1}) = \varepsilon M, & \text{in BREAKPOINTS1}(\mathcal{B}_1) \\ \max_{i=1}^{m} \sigma_i(b_j, b_{j+1}) = \varepsilon M, & \text{in BREAKPOINTS2}(\mathcal{B}_2) \end{cases}$$

$$\underline{\sigma_1(b_j, b_{j+1})} + \underline{\sigma_2(b_j, b_{j+1})} + \underline{\sigma_3(b_j, b_{j+1})} = \varepsilon M$$

回 と く ヨ と く ヨ と

$$b_{j+1} \text{ so} \begin{cases} \sum_{i=1}^{m} \sigma_i(b_j, b_{j+1}) = \varepsilon M, & \text{ in BREAKPOINTS1}(\mathcal{B}_1) \\ \max_{i=1}^{m} \sigma_i(b_j, b_{j+1}) = \varepsilon M, & \text{ in BREAKPOINTS2}(\mathcal{B}_2) \end{cases}$$

 $max\{\sigma_1(b_j, b_{j+1}), \sigma_2(b_j, b_{j+1}), \sigma_3(b_j, b_{j+1}\} = \varepsilon M$

□ > < E > < E >

$$b_{j+1} \text{ so} \begin{cases} \sum_{i=1}^{m} \sigma_i(b_j, b_{j+1}) = \varepsilon M, & \text{in BREAKPOINTS1}(\mathcal{B}_1) \\ \max_{i=1}^{m} \sigma_i(b_j, b_{j+1}) = \varepsilon M, & \text{in BREAKPOINTS2}(\mathcal{B}_2) \end{cases}$$

 $max\{\sigma_1(b_j, b_{j+1}), \underline{\sigma_2(b_j, b_{j+1})}, \sigma_3(b_j, b_{j+1}\} = \varepsilon M$

向下 イヨト イヨト

$$b_{j+1} \text{ so} \begin{cases} \sum_{i=1}^{m} \sigma_i(b_j, b_{j+1}) = \varepsilon M, & \text{ in } \text{BREAKPOINTS1}(\mathcal{B}_1) \\ \max_{i=1}^{m} \sigma_i(b_j, b_{j+1}) = \varepsilon M, & \text{ in } \text{BREAKPOINTS2}(\mathcal{B}_2) \end{cases}$$

- We show how to efficiently construct both types of breakpoints A sort of $O((N/P)\log_2 N)$ los for both types
 - A cost of $O((N/B)log_B N)$ IOs for both types.

回 と く ヨ と く ヨ と

$$b_{j+1} \text{ so} \begin{cases} \sum_{i=1}^{m} \sigma_i(b_j, b_{j+1}) = \varepsilon M, & \text{ in } \text{BREAKPOINTS1}(\mathcal{B}_1) \\ \max_{i=1}^{m} \sigma_i(b_j, b_{j+1}) = \varepsilon M, & \text{ in } \text{BREAKPOINTS2}(\mathcal{B}_2) \end{cases}$$

- We show how to efficiently construct both types of breakpoints
 - A cost of $O((N/B)log_B N)$ IOs for both types.
- The theoretical number of breakpoints is $O(1/\varepsilon)$ for both types.
 - BREAKPOINTS2 has much fewer breakpoints than BREAKPOINTS1 in practice.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\boldsymbol{\mathsf{x}}$ breakpoint

• We show how to answer queries using \mathcal{B}_1 or \mathcal{B}_2 approximately.

< 3 > < 3 >

• $\forall (t_1, t_2)$, let $(\mathcal{B}(t_1), \mathcal{B}(t_2))$ be the *approximate interval*

•
$$\mathcal{B}(t_1) = \min_{b_i \in \mathcal{B}} \text{ s.t. } \mathcal{B}(t_1) \geq t_1$$

• $\mathcal{B}(t_2) = min_{b_i \in \mathcal{B}}$ s.t. $\mathcal{B}(t_2) \geq t_2$

 $\boldsymbol{\mathsf{x}}$ breakpoint

• We show how to answer queries using \mathcal{B}_1 or \mathcal{B}_2 approximately.

< 3 > < 3 >

• $\forall (t_1, t_2)$, let $(\mathcal{B}(t_1), \mathcal{B}(t_2))$ be the *approximate interval*

•
$$\mathcal{B}(t_1) = \min_{b_i \in \mathcal{B}} \text{ s.t. } \mathcal{B}(t_1) \geq t_1$$

• $\mathcal{B}(t_2) = min_{b_i \in \mathcal{B}}$ s.t. $\mathcal{B}(t_2) \geq t_2$

• We show how to answer queries using \mathcal{B}_1 or \mathcal{B}_2 approximately.

A B > A B >

• $\forall (t_1, t_2)$, let $(\mathcal{B}(t_1), \mathcal{B}(t_2))$ be the *approximate interval*

•
$$\mathcal{B}(t_1) = \min_{b_i \in \mathcal{B}} \text{ s.t. } \mathcal{B}(t_1) \geq t_1$$

• $\mathcal{B}(t_2) = min_{b_i \in \mathcal{B}}$ s.t. $\mathcal{B}(t_2) \geq t_2$

• We show how to answer queries using \mathcal{B}_1 or \mathcal{B}_2 approximately.

• $\forall (t_1, t_2)$, let $(\mathcal{B}(t_1), \mathcal{B}(t_2))$ be the *approximate interval*

•
$$\mathcal{B}(t_1) = \min_{b_i \in \mathcal{B}} \text{ s.t. } \mathcal{B}(t_1) \geq t_1$$

• $\mathcal{B}(t_2) = \textit{min}_{b_i \in \mathcal{B}} \text{ s.t. } \mathcal{B}(t_2) \geq t_2$

Lemma

 $\forall (t_1, t_2) \text{ and its approximate interval } (\mathcal{B}(t_1), \mathcal{B}(t_2)): \forall o_i, |\sigma_i(t_1, t_2) - \sigma_i(\mathcal{B}(t_1), \mathcal{B}(t_2))| \leq \varepsilon M.$

• We show how to answer queries using \mathcal{B}_1 or \mathcal{B}_2 approximately.

• $\forall (t_1, t_2)$, let $(\mathcal{B}(t_1), \mathcal{B}(t_2))$ be the *approximate interval*

•
$$\mathcal{B}(t_1) = \min_{b_i \in \mathcal{B}} \text{ s.t. } \mathcal{B}(t_1) \geq t_1$$

• $\mathcal{B}(t_2) = \textit{min}_{b_i \in \mathcal{B}} \text{ s.t. } \mathcal{B}(t_2) \geq t_2$

Lemma

 $\forall (t_1, t_2) \text{ and its approximate interval } (\mathcal{B}(t_1), \mathcal{B}(t_2)): \forall o_i, |\sigma_i(t_1, t_2) - \sigma_i(\mathcal{B}(t_1), \mathcal{B}(t_2))| \leq \varepsilon M.$

Outline

Introduction and Problem Formulation

2 Exact Solutions

- Baseline Solution
- Improved Solution using Prefix Sums and B-tree Forest
- Improved Solution using Prefix Sums and Interval Tree

3 Approximate Solutions

- Overview
- Breakpoints
- Approaches for Approximation Queries
 - Nested B-tree Approximate Query
 - Dyadic Interval Approximate Query
- Combining Breakpoints with Queries

4 Experiments

5 Conclusions

通 と く ヨ と く ヨ と

э

 \times breakpoint

- QUERY1 indexes all $\binom{n}{2}$ intervals of breakpoints \mathcal{B} .
 - For each interval $[b_j, b'_j]$, $\mathcal{A}(k_{max}, b_j, b'_j)$ is computed.

• • = • • = •

 \times breakpoint

- QUERY1 indexes all $\binom{n}{2}$ intervals of breakpoints \mathcal{B} .
 - For each interval $[b_j, b'_j]$, $\mathcal{A}(k_{max}, b_j, b'_j)$ is computed.

通 と く ヨ と く ヨ と

э

 \times breakpoint

- QUERY1 indexes all $\binom{n}{2}$ intervals of breakpoints \mathcal{B} .
 - For each interval $[b_j, b'_j]$, $\mathcal{A}(k_{max}, b_j, b'_j)$ is computed.

通 と く ヨ と く ヨ と

-

 \times breakpoint

- QUERY1 indexes all $\binom{n}{2}$ intervals of breakpoints \mathcal{B} .
 - For each interval $[b_j, b'_j]$, $\mathcal{A}(k_{max}, b_j, b'_j)$ is computed.

ヨッ イヨッ イヨッ

 \times breakpoint

- QUERY1 indexes all $\binom{n}{2}$ intervals of breakpoints \mathcal{B} .
 - For each interval $[b_j, b'_j]$, $\mathcal{A}(k_{max}, b_j, b'_j)$ is computed.

ヨッ イヨッ イヨッ

- QUERY1 indexes all $\binom{n}{2}$ intervals of breakpoints \mathcal{B} .
 - For each interval $[b_j, b'_j]$, $\mathcal{A}(k_{max}, b_j, b'_j)$ is computed.
- At query time we probe first-level B-tree with t_1 to get $\mathcal{B}(t_1)$.

A B > A B >

- QUERY1 indexes all $\binom{n}{2}$ intervals of breakpoints \mathcal{B} .
 - For each interval $[b_j, b'_j]$, $\mathcal{A}(k_{max}, b_j, b'_j)$ is computed.
- At query time we probe first-level B-tree with t_1 to get $\mathcal{B}(t_1)$.

· < E > < E >

- QUERY1 indexes all $\binom{n}{2}$ intervals of breakpoints \mathcal{B} .
 - For each interval $[b_j, b'_j]$, $\mathcal{A}(k_{max}, b_j, b'_j)$ is computed.
- At query time we probe first-level B-tree with t_1 to get $\mathcal{B}(t_1)$.

ヨッ イヨッ イヨッ

- QUERY1 indexes all $\binom{n}{2}$ intervals of breakpoints \mathcal{B} .
 - For each interval $[b_j, b'_j]$, $\mathcal{A}(k_{max}, b_j, b'_j)$ is computed.
- At query time we probe first-level B-tree with t_1 to get $\mathcal{B}(t_1)$.

ヨッ イヨッ イヨッ

- QUERY1 indexes all $\binom{n}{2}$ intervals of breakpoints \mathcal{B} .
 - For each interval $[b_j, b'_j]$, $\mathcal{A}(k_{max}, b_j, b'_j)$ is computed.
- At query time we probe first-level B-tree with t_1 to get $\mathcal{B}(t_1)$.

ヨッ イヨッ イヨッ

- QUERY1 indexes all $\binom{n}{2}$ intervals of breakpoints \mathcal{B} .
 - For each interval $[b_j, b'_j]$, $\mathcal{A}(k_{max}, b_j, b'_j)$ is computed.
- At query time we probe first-level B-tree with t_1 to get $\mathcal{B}(t_1)$.

< ∃ >

- QUERY1 indexes all $\binom{n}{2}$ intervals of breakpoints \mathcal{B} .
 - For each interval $[b_j, b_j']$, $\mathcal{A}(k_{max}, b_j, b_j')$ is computed.
- At query time we probe first-level B-tree with t_1 to get $\mathcal{B}(t_1)$.
- We probe $\mathcal{B}(t_1)$'s associated nested B-tree to get $\mathcal{B}(t_2)$.
- The approximate answer $\widetilde{\mathcal{A}}(k, t_1, t_2)$ is returned.

	o_i	$\sigma_i(\mathcal{B}(t_1), \mathcal{B}(t_2))$
•	O_{ℓ_1}	$\sigma_{\ell_1}(\mathcal{B}(t_1),\mathcal{B}(t_2))$
	:	:
	$O_{\ell_{kmax}}$	$\sigma_{\ell_{k_{max}}}(\mathcal{B}(t_1),\mathcal{B}(t_2))$

Objects ordered in descending order of $\sigma_i(.)$

< ∃ >

- We prove QUERY1 has the following properties:
 - Index size $O((1/\varepsilon)^2 k_{max}/B)$.
 - Query cost $O(k/B + \log_B(1/\varepsilon))$.
 - (ε , 1)-approximation.

	o_i	$\sigma_i(\mathcal{B}(t_1), \mathcal{B}(t_2))$
•	O_{ℓ_1}	$\sigma_{\ell_1}(\mathcal{B}(t_1),\mathcal{B}(t_2))$
	:	:
	$O_{\ell_{kmax}}$	$\sigma_{\ell_{k_{max}}}(\mathcal{B}(t_1),\mathcal{B}(t_2))$

Objects ordered in descending order of $\sigma_i(.)$

- We prove QUERY1 has the following properties:
 - Index size $O((1/\varepsilon)^2 k_{max}/B)$.
 - Query cost $O(k/B + \log_B(1/\varepsilon))$.
 - (ε, 1)-approximation.
- QUERY2 reduces space to $O((1/\varepsilon)k_{max}/B)$.
 - (ε , 2log(1/ ε))-approximation.
 - Query cost $O(k \log(1/\varepsilon) \log_B k)$.

Querying Breakpoints with Dyadic Intervals

• QUERY2 indexes all dyadic intervals over the breakpoints ${\cal B}$

• The intervals represent the span of nodes in a balanced binary tree.

• • = • • = •

• QUERY2 indexes all dyadic intervals over the breakpoints ${\cal B}$

• The intervals represent the span of nodes in a balanced binary tree.

< ∃ >

• QUERY2 indexes all dyadic intervals over the breakpoints ${\cal B}$

• The intervals represent the span of nodes in a balanced binary tree.

A B > A B >

• QUERY2 indexes all dyadic intervals over the breakpoints ${\cal B}$

• The intervals represent the span of nodes in a balanced binary tree.

→ Ξ →

QUERY2 indexes all dyadic intervals over the breakpoints B
The intervals represent the span of nodes in a balanced binary tree.
Consider a query over [t₁, t₂].

QUERY2 indexes all dyadic intervals over the breakpoints B
The intervals represent the span of nodes in a balanced binary tree.
Consider a query over [t₁, t₂].

QUERY2 indexes all dyadic intervals over the breakpoints B
The intervals represent the span of nodes in a balanced binary tree.
Consider a query over [t₁, t₂].

QUERY2 indexes all dyadic intervals over the breakpoints B
The intervals represent the span of nodes in a balanced binary tree.
Consider a query over [t₁, t₂].

QUERY2 indexes all dyadic intervals over the breakpoints B
The intervals represent the span of nodes in a balanced binary tree.
Consider a query over [t₁, t₂].

QUERY2 indexes all dyadic intervals over the breakpoints B
The intervals represent the span of nodes in a balanced binary tree.
Consider a query over [t₁, t₂].

QUERY2 indexes all dyadic intervals over the breakpoints B
The intervals represent the span of nodes in a balanced binary tree.
Consider a query over [t₁, t₂].

- QUERY2 indexes all dyadic intervals over the breakpoints ${\cal B}$
 - The intervals represent the span of nodes in a balanced binary tree.
- Consider a query over [t₁, t₂].
- At each dyadic interval $[b_i, b_j]$ we store $\mathcal{A}(k_{max}, b_i, b_j)$.
 - There are at most $2log(1/\varepsilon)$ intervals and $2klog(1/\varepsilon)$ candidates.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- QUERY2 indexes all dyadic intervals over the breakpoints ${\cal B}$
 - The intervals represent the span of nodes in a balanced binary tree.
- Consider a query over [t₁, t₂].
- At each dyadic interval $[b_i, b_j]$ we store $\mathcal{A}(k_{max}, b_i, b_j)$.
 - There are at most 2log(1/ε) intervals and 2klog(1/ε) candidates.

▲御 → ▲ 注 → ▲ 注 → …

ヨッ イヨッ イヨッ

- We prove QUERY2 has the following properties:
 - Index size O((1/ε)k_{max}/B).
 - Query cost $O(k \log(1/\varepsilon) \log_B k)$.
 - $(\varepsilon, 2 \log(1/\varepsilon))$ -approximation.

Combining Breakpoints with Queries

We consider the following algorithms:

- Appx1-B: (Query1, BreakPoints1)
- Appx2-B: (Query2, BreakPoints1)
- Appx1: (Query1, BreakPoints2)
- APPX2: (QUERY2, BREAKPOINTS2)
- APPX2+: (QUERY2, BREAKPOINTS2) and Discovers candidates' exact aggregate score using B-tree from EXACT2 (B-tree forest).

通 と く ヨ と く ヨ と

Combining Breakpoints with Queries

We consider the following algorithms:

- Appx1-B: (Query1, BreakPoints1)
- Appx2-B: (Query2, BreakPoints1)
- Appx1: (Query1, BreakPoints2)
- Appx2: (Query2, BreakPoints2)
- APPX2+: (QUERY2, BREAKPOINTS2) and Discovers candidates' exact aggregate score using B-tree from EXACT2 (B-tree forest).

伺 ト イヨト イヨト

- Our algorithms are designed to efficiently handle I/Os.
 - $\bullet\,$ All algorithms are implemented in C++ using TPIE.

- $\bullet\,$ Our algorithms are designed to efficiently handle I/Os.
 - $\bullet\,$ All algorithms are implemented in C++ using TPIE.
- All experiments performed on Linux machine with:
 - Intel Core i7-2600 3.4GHz CPU
 - 8GB of memory
 - 1TB hard drive

高 と く ヨ と く ヨ と

- Our algorithms are designed to efficiently handle I/Os.
 - $\bullet\,$ All algorithms are implemented in C++ using TPIE.
- All experiments performed on Linux machine with:
 - Intel Core i7-2600 3.4GHz CPU
 - 8GB of memory
 - 1TB hard drive
- We use two real large datasets:
 - Temp is a temperature dataset from the MesoWest Project.
 - contains measurements from Jan 1997 to Oct 2011.
 - there are m = 145,628 objects with average $n_{avg} = 17,833$.

伺き くまき くまき

- Meme is obtained from the Memetracker Project.
 - tracks the frequency of popular quotes over time.
 - there are m = 1.5 million objects with $n_{avg} = 67$.

Parameter	Symbol	Default value
dataset		Temp
number of objects	m	50,000
average object line segments	n _{avg}	1,000
max top-k value	k _{max}	200
top-k value	k	50
number of breakpoints	$r = (1/\varepsilon)$	500
query interval size	$(t_2 - t_1)$	20% T
TPIE disk block size		4KB

▲□ → ▲ □ → ▲ □ → …

Experiment: Index size.

Experiment: Build time.

Experiment: Query I/Os.

Experiment: Query time.

Experiment: Precision/Recall.

Experiment: Ratio.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

• We studied ranking large temporal data using aggregate scores over a query interval.

回 と く ヨ と く ヨ と

ъ.

- We studied ranking large temporal data using aggregate scores over a query interval.
- Our most efficient exact technique EXACT3 is more efficient than baseline solutions.

伺 と く ヨ と く ヨ と

э.

• Approximations offer even more improvements.

- We studied ranking large temporal data using aggregate scores over a query interval.
- Our most efficient exact technique EXACT3 is more efficient than baseline solutions.

伺 と く ヨ と く ヨ と

- Approximations offer even more improvements.
- Future work includes ranking with holistic aggregations and extending to distributed settings.

Thank You

$\ensuremath{\mathbb{Q}}$ and $\ensuremath{\mathbb{A}}$

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

A B M A B M

э

- Initialize sum $s_3 = 0$ for object o_3
- Solution For each segment ℓ of g_3 defined by $(t_{3,j}, v_{3,j}), (t_{3,j+1}, v_{3,j+1})$

< ∃ ►

Solution For each segment ℓ of g_3 defined by $(t_{3,j}, v_{3,j}), (t_{3,j+1}, v_{3,j+1})$

< 3 > < 3 >

• Define $I = [t_1, t_2] \cap [t_{3,j}, t_{3,j+1}]$

Solution For each segment ℓ of g_3 defined by $(t_{3,j}, v_{3,j}), (t_{3,j+1}, v_{3,j+1})$

• Define
$$\mathcal{I} = [t_1, t_2] \cap [t_{3,j}, t_{3,j+1}]$$

• Update
$$s_3 = s_3 + \sigma_3(\mathcal{I})$$

< 3 > < 3 >

Solution For each segment ℓ of g_3 defined by $(t_{3,j}, v_{3,j}), (t_{3,j+1}, v_{3,j+1})$

A B + A B +

-

- Define $I = [t_1, t_2] \cap [t_{3,j}, t_{3,j+1}]$
- Update $s_3 = s_3 + \sigma_3(\mathcal{I})$

Solution For each segment ℓ of g_3 defined by $(t_{3,j}, v_{3,j}), (t_{3,j+1}, v_{3,j+1})$

• • = • • = •

-

- Define $I = [t_1, t_2] \cap [t_{3,j}, t_{3,j+1}]$
- Update $s_3 = s_3 + \sigma_3(\mathcal{I})$

• Compute s_i for all objects $i \in [1, m]$.

• Insert s_i 's into priority queue of size k to get $\mathcal{A}(k, t_1, t_2)$.

()

э

• Compute s_i for all objects $i \in [1, m]$.

• Insert s_i 's into priority queue of size k to get $\mathcal{A}(k, t_1, t_2)$.

ヨッ イヨッ イヨッ

• Naive cost: O(N + mlogk)

Improved Baseline Solution using B-tree

• For each line segment $\ell = \{(t_{i,j}, v_{i,j}), (t_{i,j+1}, v_{i,j+1})\}$

- Index left end-point $t_{i,j}$ in B-tree.
- The value associated with $t_{i,j}$ is ℓ .

< 3 > < 3 >

Improved Baseline Solution using B-tree

• For each line segment $\ell = \{(t_{i,j}, v_{i,j}), (t_{i,j+1}, v_{i,j+1})\}$

- Index left end-point $t_{i,j}$ in B-tree.
- The value associated with $t_{i,j}$ is ℓ .
- Query cost: $O(log_BN + \frac{\sum_{i=1}^m q_i}{B} + (m/B)log_Bk)$
 - q_i = number of ℓ overlapping $[t_1, t_2]$
- We denote this query EXACT1.

< 3 > < 3 >

•
$$g_i = \cup g_{i,j}$$

• $g_{i,j}$ is defined by $((t_{i,j-1}, v_{i,j-1}), (t_{i,j}, v_{i,j}))$ for $j \in \{1, \dots, n_i\}$

•
$$g_i = \cup g_{i,j}$$

• $g_{i,j}$ is defined by $((t_{i,j-1}, v_{i,j-1}), (t_{i,j}, v_{i,j}))$ for $j \in \{1, \ldots, n_i\}$

()

• Let $I_{i,\ell} = [t_{i,0}, t_{i,\ell}]$ for $\ell = 1, \ldots, n_i$ and compute $\sigma_i(I_{i,\ell})$

•
$$g_i = \cup g_{i,j}$$

• $g_{i,j}$ is defined by $((t_{i,j-1}, v_{i,j-1}), (t_{i,j}, v_{i,j}))$ for $j \in \{1, \dots, n_i\}$

< ∃> < ∃>

• Let $I_{i,\ell} = [t_{i,0}, t_{i,\ell}]$ for $\ell = 1, \ldots, n_i$ and compute $\sigma_i(I_{i,\ell})$

- $g_i = \cup g_{i,j}$
- $g_{i,j}$ is defined by $((t_{i,j-1}, v_{i,j-1}), (t_{i,j}, v_{i,j}))$ for $j \in \{1, \ldots, n_i\}$

ヨッ イヨッ イヨッ

-

• Let $I_{i,\ell} = [t_{i,0}, t_{i,\ell}]$ for $\ell = 1, \ldots, n_i$ and compute $\sigma_i(I_{i,\ell})$

• Let $t_{i,L} = successor(t_{i,1})$ and $t_{i,R} = successor(t_{i,2})$

()

э

- Let $t_{i,L} = successor(t_{i,1})$ and $t_{i,R} = successor(t_{i,2})$
- $\sigma_i(t_1, t_2) = \sigma_i(I_{i,R}) \sigma_i(I_{i,L}) \sigma_i(t_2, t_{i,R}) + \sigma_i(t_1, t_{i,L})$

()

• Let $t_{i,L} = successor(t_{i,1})$ and $t_{i,R} = successor(t_{i,2})$

• $\sigma_i(t_1, t_2) = \sigma_i(I_{i,R}) - \sigma_i(I_{i,L}) - \sigma_i(t_2, t_{i,R}) + \sigma_i(t_1, t_{i,L})$

A B > A B >

- Let $t_{i,L} = successor(t_{i,1})$ and $t_{i,R} = successor(t_{i,2})$
- $\sigma_i(t_1, t_2) = \sigma_i(I_{i,R}) \sigma_i(I_{i,L}) \sigma_i(t_2, t_{i,R}) + \sigma_i(t_1, t_{i,L})$

A B > A B >

- Let $t_{i,L} = successor(t_{i,1})$ and $t_{i,R} = successor(t_{i,2})$
- $\sigma_i(t_1, t_2) = \sigma_i(I_{i,R}) \sigma_i(I_{i,L}) \sigma_i(t_2, t_{i,R}) + \sigma_i(t_1, t_{i,L})$

A B > A B >

- Let $t_{i,L} = successor(t_{i,1})$ and $t_{i,R} = successor(t_{i,2})$
- $\sigma_i(t_1, t_2) = \sigma_i(I_{i,R}) \sigma_i(I_{i,L}) \sigma_i(t_2, t_{i,R}) + \sigma_i(t_1, t_{i,L})$
- Use a B-tree forest to index $(t_{3,\ell}, (g_{i,\ell}, \sigma_i(I_{i,\ell})))$
 - Each oi indexed in a separate B-tree
 - Query cost is $O(\sum_{i=1}^{m} log_B n_i + (m/B) log_B k)$
- We denote this query EXACT2.

A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

• Our B-tree forest solution requires *m* B-trees.

- Query time improves from baseline.
- Opening/Closing *m* B-trees expensive for large *m*.

< ∃ >

- Our B-tree forest solution requires *m* B-trees.
 - Query time improves from baseline.
 - Opening/Closing *m* B-trees expensive for large *m*.
- We show how to solve a query using a single interval tree.

4 E b