Efficient Threshold Monitoring for Distributed Probabilistic Data

Mingwang Tang, Feifei Li, Jeff M. Phillips, Jeffrey Jestes

<ロト <四ト <注入 <注下 <注下 <

Outline

2 Exact Methods

Approximate Methods

•	•	•	•
t_T	70	80	70

- Extensively studied: e.g., S. Jeyashanker et al. propose an adaptive technique dealing with DTM problem (∑^g_{i=1} x_i ≤ T) for deterministic data.
- [ICDE08] S. Jeyashanker et al., Efficient Constraint Monitoring Using Adaptive Thresholds, ICDE 2008

- Extensively studied: e.g., S. Jeyashanker et al. propose an adaptive technique dealing with DTM problem (∑^g_{i=1} x_i ≤ T) for deterministic data.
- [ICDE08] S. Jeyashanker et al., Efficient Constraint Monitoring Using Adaptive Thresholds, ICDE 2008

- Extensively studied: e.g., S. Jeyashanker et al. propose an adaptive technique dealing with DTM problem (∑^g_{i=1} x_i ≤ T) for deterministic data.
- [ICDE08] S. Jeyashanker et al., Efficient Constraint Monitoring Using Adaptive Thresholds, ICDE 2008

$$H \square \sum_{i=1}^{3} x_i > 240$$

$$c_1 \bigotimes_{i=1}^{0} c_2 \bigotimes_{i=1}^{0} c_3 \otimes_{i=1}^{0} c_3 \otimes_{i=1}^{0}$$

- Extensively studied: e.g., S. Jeyashanker et al. propose an adaptive technique dealing with DTM problem (∑^g_{i=1} x_i ≤ T) for deterministic data.
- [ICDE08] S. Jeyashanker et al., Efficient Constraint Monitoring Using Adaptive Thresholds, ICDE 2008

- Extensively studied: e.g., S. Jeyashanker et al. propose an adaptive technique dealing with DTM problem (∑^g_{i=1} x_i ≤ T) for deterministic data.
- [ICDE08] S. Jeyashanker et al., Efficient Constraint Monitoring Using Adaptive Thresholds, ICDE 2008

- Extensively studied: e.g., S. Jeyashanker et al. propose an adaptive technique dealing with DTM problem (∑^g_{i=1} x_i ≤ T) for deterministic data.
- [ICDE08] S. Jeyashanker et al., Efficient Constraint Monitoring Using Adaptive Thresholds, ICDE 2008

- New challenge in the DTM problem: uncertainty naturally exist in distributed data
 - data integration produces fuzzy matches
 - noisy sensor readings

- New challenge in the DTM problem: uncertainty naturally exist in distributed data
 - data integration produces fuzzy matches
 - noisy sensor readings
- The Shipboard Automated Meteorological and Oceanographic System(SAMOS)

• Attribute-level uncertain model (with a single attribute score)

tuples	attribute score
d_1 d_2	$ \begin{aligned} X_1 &= \{(v_{1,1}, p_{1,1}), (v_{1,2}, p_{1,2})(v_{1,b_1}, p_{1,b_1})\} \\ X_2 &= \{(v_{2,1}, p_{2,1}), (v_{2,2}, p_{2,2})(v_{2,b_2}, p_{2,b_2})\} \end{aligned} $
d_t	 $X_t = \{(v_{t,1}, p_{t,1}), (v_{t,2}, p_{t,2})(v_{t,b_t}, p_{t,b_t})\}$

• Distributed probabilistic threshold monitoring (DPTM):

$$H \square \Pr[Y = \sum_{i=1}^{g} X_i > \gamma] > \delta ?$$

$$c_1 \land c_2 \land c_g \land c_g \land$$

$$t_1 X_{1,1} X_{2,1} X_{g,1}$$

$$t_2 X_{1,2} X_{2,2} X_{g,2}$$

$$\vdots \vdots \vdots \vdots \vdots$$

$$t_T X_{1,T} X_{2,T} X_{g,T}$$

• Distributed probabilistic threshold monitoring (DPTM):

• Distributed probabilistic threshold monitoring (DPTM):

• Distributed probabilistic threshold monitoring (DPTM):

- Naive Method:
 - c_i sends X_i to H at each time instance t;
 - *H* computes $\Pr[Y > \gamma]$ based on X_i 's
 - expensive in terms of both communication (O(gT)) and computation (O(n^gT)).

- Exact Methods:
 - Computing $\Pr[\mathbf{Y} > \gamma]$ exactly is expensive

- Exact Methods:
 - Computing $\Pr[Y > \gamma]$ exactly is expensive
 - Incorporates pruning techniques.

- Exact Methods:
 - Computing $\Pr[Y > \gamma]$ exactly is expensive
 - Incorporates pruning techniques.

<ロ> (四) (四) (三) (三) (三) (三)

22 / 74

- Exact Methods:
 - Computing $\Pr[Y > \gamma]$ exactly is expensive
 - Incorporates pruning techniques.
 - Combine the adaptive threshold algorithm for deterministic data when it's applicable.

- Exact Methods:
 - Computing $\Pr[Y > \gamma]$ exactly is expensive
 - Incorporates pruning techniques.
 - Combine the adaptive threshold algorithm for deterministic data when it's applicable.
- Approximate Methods:
 - Replace the exact computation of Pr[Y > γ] using sampleing method (but with the same monitoring instance).

Outline

2 Exact Methods

Approximate Methods

• Markov's inequality: $\Pr[Y > \gamma] \le \frac{\mathbf{E}(Y)}{\gamma}$

• Markov's inequality: $\Pr[Y > \gamma] \le \frac{\mathsf{E}(Y)}{\gamma}$

 $t \quad X_1 \qquad \qquad X_2 \quad \cdots \quad X_q$

< □ > < 部 > < 差 > < 差 > 差 の Q () 27/74

• Markov's inequality: $\Pr[Y > \gamma] \le \frac{\mathbf{E}(Y)}{\gamma} < \delta$?

 $t \quad X_1 \qquad \qquad X_2 \quad \cdots \quad X_q$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q ペ
28 / 74

• Markov's inequality: $\Pr[Y > \gamma] \le \frac{\mathsf{E}(Y)}{\gamma} < \delta ? \rightarrow ture$ (no alarm)

 $t \quad X_1 \qquad \qquad X_2 \quad \cdots \quad X_q$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q ()
29 / 74

• Markov's inequality: $\Pr[Y > \gamma] \le \frac{\mathsf{E}(Y)}{\gamma} < \delta ? \rightarrow ture$ (no alarm)

 $t \quad X_1 \qquad \qquad X_2 \quad \cdots \quad X_q$

・ロ・・日・・日・・日・・日・

30 / 74

• Markov's inequality: $\Pr[Y > \gamma] \le \frac{\mathsf{E}(Y)}{\gamma} < \delta ? \rightarrow ture$ (no alarm)

・ロ ・ < (日) 、

31/74

• Markov's inequality: $\Pr[Y > \gamma] \le \frac{\mathsf{E}(Y)}{\gamma} < \delta ? \rightarrow ture$ (no alarm)

• Leverage on the adaptive thresholds algorithm for deterministic data

• Combine the Chebyshev bound and Chernoff bound pruning.

- Combine the Chebyshev bound and Chernoff bound pruning.
- Chebyshev gives one-sided bound using $\mathbf{E}(X_i)$ and $\mathbf{Var}(X_i)$

- Combine the Chebyshev bound and Chernoff bound pruning.
- Chebyshev gives one-sided bound using $\mathbf{E}(X_i)$ and $\mathbf{Var}(X_i)$

 $t \quad X_1 \qquad X_2 \quad \ldots \quad X_g$

- Combine the Chebyshev bound and Chernoff bound pruning.
- Chebyshev gives one-sided bound using $\mathbf{E}(X_i)$ and $\mathbf{Var}(X_i)$

Improved method

- Combine the Chebyshev bound and Chernoff bound pruning.
- Chebyshev gives one-sided bound using $\mathbf{E}(X_i)$ and $\mathbf{Var}(X_i)$

Improved method

- Combine the Chebyshev bound and Chernoff bound pruning.
- Chebyshev gives one-sided bound using $\mathbf{E}(X_i)$ and $\mathbf{Var}(X_i)$
- Chernoff bound using the moment generating function

•
$$M(\beta) = \mathsf{E}(e^{\beta Y}), \ M_i(\beta) = \mathsf{E}(e^{\beta X_i})$$
 for any $\beta \in \mathbb{R}$

•
$$M(\beta) = \prod_{i=1}^{g} M_i(\beta)$$

Improved method

- Combine the Chebyshev bound and Chernoff bound pruning.
- Chebyshev gives one-sided bound using $\mathbf{E}(X_i)$ and $\mathbf{Var}(X_i)$
- Chernoff bound using the moment generating function

•
$$M(\beta) = \mathsf{E}(e^{\beta Y}), \ M_i(\beta) = \mathsf{E}(e^{\beta X_i})$$
 for any $\beta \in \mathbb{R}$

•
$$M(\beta) = \prod_{i=1}^{g} M_i(\beta)$$

• $\beta_1 > 0$, Chernoff gives an upper bound $\beta_2 < 0$, Chernoff gives a lower bound

- $\sum_{i=1}^{g} \ln M_i(\beta_1) \leq \ln \delta + \beta_1 \gamma$, (monitoring instance J_1).
- $\sum_{i=1}^{g} \ln M_i(\beta_2) \leq \ln(1-\delta) + \beta_2 \gamma$, (monitoring instance J_2).

- $\sum_{i=1}^{g} \ln M_i(\beta_1) \leq \ln \delta + \beta_1 \gamma$, (monitoring instance J_1).
- $\sum_{i=1}^{g} \ln M_i(\beta_2) \leq \ln(1-\delta) + \beta_2 \gamma$, (monitoring instance J_2).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● の

- Practical considerations
 - Use the adaptive thresholds algorithm
 - Get a tight upper bound (lower bound)

- $\sum_{i=1}^{g} \ln M_i(\beta_1) \le \ln \delta + \beta_1 \gamma$, (monitoring instance J_1).
- $\sum_{i=1}^{g} \ln M_i(\beta_2) \leq \ln(1-\delta) + \beta_2 \gamma$, (monitoring instance J_2).
- Practical considerations
 - Use the adaptive thresholds algorithm
 - Get a tight upper bound (lower bound)
- Approaches
 - Fix the values of β_1 and β_2 in each period of k time instance.

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ • • ○ ٩

42 / 74

• Reset the optimal values of β_1 and β_2 periodically.

- $\sum_{i=1}^{g} \ln M_i(\beta_1) \le \ln \delta + \beta_1 \gamma$, (monitoring instance J_1).
- $\sum_{i=1}^{g} \ln M_i(\beta_2) \leq \ln(1-\delta) + \beta_2 \gamma$, (monitoring instance J_2).
- Practical considerations
 - Use the adaptive thresholds algorithm
 - Get a tight upper bound (lower bound)
 - Running J_1 and J_2 together is communication expensive.
- Approaches
 - Fix the values of β_1 and β_2 in each period of k time instance.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● の

43 / 74

• Reset the optimal values of β_1 and β_2 periodically.

- $\sum_{i=1}^{g} \ln M_i(\beta_1) \le \ln \delta + \beta_1 \gamma$, (monitoring instance J_1).
- $\sum_{i=1}^{g} \ln M_i(\beta_2) \leq \ln(1-\delta) + \beta_2 \gamma$, (monitoring instance J_2).
- Practical considerations
 - Use the adaptive thresholds algorithm
 - Get a tight upper bound (lower bound)
 - Running J_1 and J_2 together is communication expensive.
- Approaches
 - Fix the values of β_1 and β_2 in each period of k time instance.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● の

44 / 74

- Reset the optimal values of β_1 and β_2 periodically.
- · Periodically decides which monitoring instance to run

Outline

2 Exact Methods

3 Approximate Methods

Our Approach

• Exact Methods:

- Computing Pr[Y > γ] exactly is expensive in terms of both communication (O(gT)) and computation (O(n^g T)).
- Incorporates pruning techniques.
- Combine the adaptive threshold algorithm for deterministic data when it's applicable.
- Approximate Methods:

Our Approach

• Exact Methods:

- Computing Pr[Y > γ] exactly is expensive in terms of both communication (O(gT)) and computation (O(n^g T)).
- Incorporates pruning techniques.
- Combine the adaptive threshold algorithm for deterministic data when it's applicable.
- Approximate Methods:
 - We use ϵ -Sampling methods to estimate the condition when monitoring instances fail to make a decision

Our Approach

• Exact Methods:

- Computing Pr[Y > γ] exactly is expensive in terms of both communication (O(gT)) and computation (O(n^g T)).
- Incorporates pruning techniques.
- Combine the adaptive threshold algorithm for deterministic data when it's applicable.
- Approximate Methods:
 - We use ϵ -Sampling methods to estimate the condition when monitoring instances fail to make a decision
 - Replace the exact computation using sampling based method (but with the same monitoring instance): we get MadapativeS, ImprovedS, IadaptiveS

- H asks for a random sample x_i from each client according to the distribution of X_i
- $\Pr[\tilde{Y} = \sum_{i=1}^{g} x_i > \gamma]$ is an unbiased estimate of $\Pr[Y > \gamma]$
- Repeating this sampling $\kappa = O(\frac{1}{\varepsilon^2} \ln \frac{1}{\phi})$ times.
- $\Pr[|\Pr[\tilde{Y} > \gamma] \Pr[Y > \gamma]| \le \varepsilon] \ge 1 \phi \text{ using } O(\frac{g}{\varepsilon^2} \ln \frac{1}{\phi}) \text{ bytes.}$

• Using $\kappa = O(\frac{g}{\varepsilon})$ evenly spaced sample points from each X_i .

• Using $\kappa = O(\frac{g}{\varepsilon})$ evenly spaced sample points from each X_i .

•
$$\int_{x=x_j}^{x_{j+1}} \Pr[Xi=x] dx = \frac{\varepsilon}{g}$$

- Using $\kappa = O(\frac{g}{\varepsilon})$ evenly spaced sample points from each X_i .
- $\int_{x=x_j}^{x_{j+1}} \Pr[Xi=x] dx = \frac{\varepsilon}{g}$
- The evaluation space $\Pr[ilde{Y} > \gamma]$ is in $\mathcal{O}(\kappa^g)$

$$\begin{array}{rcl} c_1 : & S_1\{x_{1,1}, x_{1,2}, \dots, x_{1,\kappa}\} \\ c_2 : & S_2\{x_{2,1}, x_{2,2}, \dots, x_{2,\kappa}\} \\ & & & \bullet \\ & & & \bullet \\ & & & \bullet \\ c_g : & S_g\{x_{g,1}, x_{g,2}, \dots, x_{g,\kappa}\} \end{array}$$

- Using $\kappa = O(\frac{g}{\varepsilon})$ evenly spaced sample points from each X_i .
- $\int_{x=x_j}^{x_{j+1}} \Pr[Xi=x] dx = \frac{\varepsilon}{g}$
- The evaluation space $\Pr[ilde{Y} > \gamma]$ is in $\mathcal{O}(\kappa^g)$

$$c_{1}: S_{1}\{x_{1,1}, x_{1,2}, \dots, x_{1,\kappa}\}$$

$$c_{2}: S_{2}\{x_{2,1}, x_{2,2}, \dots, x_{2,\kappa}\}$$

$$\vdots$$

$$c_{g}: S_{g}\{x_{g,1}, x_{g,2}, \dots, x_{g,\kappa}\}$$

- Using $\kappa = O(\frac{g}{\varepsilon})$ evenly spaced sample points from each X_i .
- $\int_{x=x_j}^{x_{j+1}} \Pr[Xi=x] dx = \frac{\varepsilon}{g}$
- The evaluation space $\Pr[ilde{Y} > \gamma]$ is in $\mathcal{O}(\kappa^g)$
- In practice, $O(\kappa^m)(\text{e.g.}, m = 2)$ random selected evaluations.

$$c_{1}: S_{1}\{x_{1,1}, x_{1,2}, \dots, x_{1,\kappa}\}$$

$$c_{2}: S_{2}\{x_{2,1}, x_{2,2}, \dots, x_{2,\kappa}\}$$

$$\vdots$$

$$c_{g}: S_{g}\{x_{g,1}, x_{g,2}, \dots, x_{g,\kappa}\}$$

- Using κ = O(^g/_ε) evenly spaced sample points from each X_i.
- $\int_{x=x_j}^{x_{j+1}} \Pr[Xi=x] dx = \frac{\varepsilon}{g}$
- The evaluation space $\Pr[ilde{Y} > \gamma]$ is in $O(\kappa^g)$
- In practice, $O(\kappa^m)$ (e.g., m = 2) random selected evaluations.

$$c_{1}: S_{1}\{\underbrace{x_{1,1}}, x_{1,2}, \dots, x_{1,\kappa}\} \\ c_{2}: S_{2}\{x_{2,1}, \underbrace{x_{2,2}}, \dots, x_{2,\kappa}\} \\ \vdots \\ c_{g}: S_{g}\{\underbrace{x_{g,1}}, x_{g,2}, \dots, x_{g,\kappa}\}$$

• DD ε S gives $|\Pr[\tilde{Y} > \gamma] - \Pr[Y > \gamma]| \le \varepsilon$ with probability 1 in $O(g^2/\varepsilon)$ bytes.

•
$$\int_{x=x_{i,j}}^{x_{i,j+1}} \Pr[X_i = x] dx = \alpha$$

•
$$\int_{x=x_{i,j}}^{x_{i,j+1}} \Pr[X_i = x] dx = \alpha$$

• Computes x_{α} where the integral of *pdf* first reaches α

•
$$\int_{x=x_{i,j}}^{x_{i,j+1}} \Pr[X_i = x] dx = \alpha$$

- Computes x_{α} where the integral of *pdf* first reaches α
- Chooses the smallest sample point at random (within x_{α}).

•
$$\int_{x=x_{i,j}}^{x_{i,j+1}} \Pr[X_i = x] dx = \alpha$$

- Computes x_{α} where the integral of *pdf* first reaches α
- Chooses the smallest sample point at random (within x_{α}).

•
$$\int_{x=x_{i,j}}^{x_{i,j+1}} \Pr[X_i = x] dx = \alpha$$

- Computes x_{α} where the integral of *pdf* first reaches α
- Chooses the smallest sample point at random (within x_{α}).

• $\Pr[|\Pr[\tilde{Y} > \gamma] - \Pr[Y > \gamma]| \le \varepsilon] > 1 - \phi$ in $O(\frac{g}{\varepsilon}\sqrt{2g \ln \frac{2}{\phi}})$ bytes.

Outline

2 Exact Methods

Approximate Methods

- A Linux machine with an Intel Xeon CPU at 2.13GHz and 6GB of memory. GMP library are used in calculating $M_i(\beta)$.
- Server-to-client using broadcast and client-to-server using unicast.
- Data sets:
 - Real datasets (11.8 million records in the Wecoma research vessels) from the SAMOS project.
 - Each record contain four measurements: wind direction (WD), wind speed (WS), sound speed (SS), and temperature (TEM), which leads to four single probabilistic attribute datasets.
 - Group the records every τ consecutive seconds and represent it using a pdf.

• The default experimental parameters:

Symbol	Definition	Default Value
au	grouping interval	300
Т	number of time instances	3932
g	number of clients	10
δ	probability threshold	0.7
γ	score threshold	30% alarms (230.g for WD)
κ	sample size per client	30

• γ : score threshold

Communication

Precision

• κ : number of samples

66 / 74

-2

イロト イヨト イヨト イヨト

Recall

• κ : number of samples

<ロト < 団 > < 臣 > < 臣 > 三 の Q (~ 67 / 74

√) Q (↓
68 / 74

・ロト ・回ト ・ヨト ・ヨト

Performance of all methods

・ロト ・回ト ・ヨト ・ヨト

Performance of all methods

Outline

2 Exact Methods

Approximate Methods

4 Experiments

• Future work:

- Other aggregation constraints (e.g.,max) beside sum constraint.
- Extend our study to the hierarchical model that is often used in a sensor network.
- Handle the case when data from different sites are correlated.

Thank You

$\ensuremath{\mathbb{Q}}$ and $\ensuremath{\mathbb{A}}$