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Introduction

Distributed threshold monitoring(DTM) problem:

t1 70 80 75
t2 70 90 90

tT 70 80 70

c1 c2 c3

∑3
i=1 xi > 240H

Extensively studied: e.g., S. Jeyashanker et al. propose an adaptive
technique dealing with DTM problem (

∑g
i=1 xi ≤ T ) for

deterministic data.

[ICDE08] S. Jeyashanker et al., Efficient Constraint Monitoring Using Adaptive Thresholds,

ICDE 2008
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Introduction

New challenge in the DTM problem: uncertainty naturally exist in
distributed data

data integration produces fuzzy matches

noisy sensor readings

The Shipboard Automated Meteorological and Oceanographic
System(SAMOS)

(a)

Data

Applications

Ships

Towers
satellite,

radio frequency Applications

(b)
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Introduction

Attribute-level uncertain model (with a single attribute score)

tuples attribute score

d1

d2

.

dt

X1 = {(v1,1, p1,1), (v1,2, p1,2)...(v1,b1
, p1,b1

)}

X2 = {(v2,1, p2,1), (v2,2, p2,2)...(v2,b2
, p2,b2

)}

Xt = {(vt,1, pt,1), (vt,2, pt,2)...(vt,bt
, pt,bt

)}

...
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Introduction

Distributed probabilistic threshold monitoring (DPTM):

t1 X1,1 X2,1 Xg,1

t2 X1,2 X2,2 Xg,2

tT X1,T X2,T Xg,T

c1 c2 cg

Pr[Y = ∑g
i=1Xi > γ] > δ ?H

Naive Method:

ci sends Xi to H at each time instance t;
H computes Pr[Y > γ] based on Xi ’s
expensive in terms of both communication (O(gT )) and
computation (O(ngT )).

16 / 74



Introduction

Distributed probabilistic threshold monitoring (DPTM):

t1 X1,1 X2,1 Xg,1

t2 X1,2 X2,2 Xg,2

tT X1,T X2,T Xg,T

c1 c2 cg

Pr[Y = ∑g
i=1Xi > γ] > δ ?H

Naive Method:

ci sends Xi to H at each time instance t;
H computes Pr[Y > γ] based on Xi ’s
expensive in terms of both communication (O(gT )) and
computation (O(ngT )).

17 / 74



Introduction

Distributed probabilistic threshold monitoring (DPTM):

t1 X1,1 X2,1 Xg,1

t2 X1,2 X2,2 Xg,2

tT X1,T X2,T Xg,T

c1 c2 cg

Pr[Y = ∑g
i=1Xi > γ] > δ ?H

Naive Method:

ci sends Xi to H at each time instance t;
H computes Pr[Y > γ] based on Xi ’s
expensive in terms of both communication (O(gT )) and
computation (O(ngT )).

18 / 74



Introduction

Distributed probabilistic threshold monitoring (DPTM):

t1 X1,1 X2,1 Xg,1

t2 X1,2 X2,2 Xg,2

tT X1,T X2,T Xg,T

c1 c2 cg

Pr[Y = ∑g
i=1Xi > γ] > δ ?H

Naive Method:

ci sends Xi to H at each time instance t;
H computes Pr[Y > γ] based on Xi ’s
expensive in terms of both communication (O(gT )) and
computation (O(ngT )).

19 / 74



Our Approach

Exact Methods:

Computing Pr[Y > γ] exactly is expensive

Incorporates pruning techniques.

Combine the adaptive threshold algorithm for deterministic data
when it’s applicable.
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Our Approach

Exact Methods:

Computing Pr[Y > γ] exactly is expensive

Incorporates pruning techniques.

Combine the adaptive threshold algorithm for deterministic data
when it’s applicable.

Approximate Methods:

Replace the exact computation of Pr[Y > γ] using sampleing
method (but with the same monitoring instance).
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Baseline method (Madaptive)

Markov’s inequality: Pr[Y > γ] ≤ E(Y )
γ

< δ ? → ture ( no alarm)

Leverage on the adaptive thresholds algorithm for deterministic data
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Improved method

Combine the Chebyshev bound and Chernoff bound pruning.

Chebyshev gives one-sided bound using E(Xi ) and Var(Xi )
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Improved method

Combine the Chebyshev bound and Chernoff bound pruning.

Chebyshev gives one-sided bound using E(Xi ) and Var(Xi )

Chernoff bound using the moment generating function

M(β) = E(eβY ), Mi (β) = E(eβXi ) for any β ∈ R
M(β) =

Qg
i=1 Mi (β)

β1 > 0, Chernoff gives an upper bound
β2 < 0, Chernoff gives a lower bound
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Improved Adaptive Method (Iadaptive)

∑g
i=1 lnMi (β1) ≤ ln δ + β1γ, (monitoring instance J1).∑g
i=1 lnMi (β2) ≤ ln(1− δ) + β2γ, (monitoring instance J2).

Practical considerations

Use the adaptive thresholds algorithm
Get a tight upper bound (lower bound)

Running J1 and J2 together is communication expensive.

Approaches

Fix the values of β1 and β2 in each period of k time instance.
Reset the optimal values of β1 and β2 periodically.

Periodically decides which monitoring instance to run
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Our Approach

Exact Methods:

Computing Pr[Y > γ] exactly is expensive in terms of both
communication (O(gT )) and computation (O(ngT )).

Incorporates pruning techniques.

Combine the adaptive threshold algorithm for deterministic data
when it’s applicable.

Approximate Methods:

We use ε-Sampling methods to estimate the condition when
monitoring instances fail to make a decision

Replace the exact computation using sampling based method (but
with the same monitoring instance): we get MadapativeS,
ImprovedS, IadaptiveS
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Random Distributed ε-Sample (rdεs)

H asks for a random sample xi from each client according to the
distribution of Xi

Pr[Ỹ =
∑g

i=1 xi > γ] is an unbiased estimate of Pr[Y > γ]

Repeating this sampling κ = O( 1
ε2 ln 1

φ ) times.

Pr[|Pr[Ỹ > γ]− Pr[Y > γ]| ≤ ε] ≥ 1− φ using O( g
ε2 ln 1

φ ) bytes.
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Deterministic Distributed ε-Sample (ddεs)

Using κ = O( g
ε ) evenly spaced sample points from each Xi .

∫ xj+1

x=xj
Pr[Xi = x ]dx = ε

g

The evaluation space Pr[Ỹ > γ] is in O(κg )

In practice, O(κm)(e.g., m = 2) random selected evaluations.

ddεs gives |Pr[Ỹ > γ]− Pr[Y > γ]| ≤ ε with probability 1 in
O(g2/ε) bytes.
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A randomized improvement of ddεs (αddεs)

∫ xi,j+1

x=xi,j
Pr [Xi = x ]dx = α

Computes xα where the integral of pdf first reaches α

Chooses the smallest sample point at random (within xα).

Xi

pdf

α

xjxj+1

Pr[|Pr[Ỹ > γ]− Pr[Y > γ]| ≤ ε] > 1− φ in O( g
ε

√
2g ln 2

φ ) bytes.
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Experiment setup

A Linux machine with an Intel Xeon CPU at 2.13GHz and 6GB of
memory. GMP library are used in calculating Mi (β).

Server-to-client using broadcast and client-to-server using unicast.

Data sets:

Real datasets (11.8 million records in the Wecoma research vessels)
from the SAMOS project.
Each record contain four measurements: wind direction (WD), wind
speed (WS), sound speed (SS), and temperature (TEM), which
leads to four single probabilistic attribute datasets.
Group the records every τ consecutive seconds and represent it using
a pdf.
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Experiment setup

The default experimental parameters:
Symbol Definition Default Value

τ grouping interval 300
T number of time instances 3932
g number of clients 10
δ probability threshold 0.7
γ score threshold 30% alarms (230.g for WD)
κ sample size per client 30
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Response time:

γ: score threshold
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Communication

γ: score threshold
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Precision

κ: number of samples
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Recall

κ: number of samples
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Performance of all methods
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Performance of all methods
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Performance of all methods
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Performance of all methods
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Conclusion

Future work:

Other aggregation constraints (e.g.,max) beside sum constraint.

Extend our study to the hierarchical model that is often used in a
sensor network.

Handle the case when data from different sites are correlated.
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The end

Thank You

Q and A
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