Releasing Private Data for Numerical Queries

Yuan Qiu, Wei Dong, Ke Yi, Bin Wu, Feifei Li
HKUST
Alibaba Group
Differential Privacy

- $D \in \mathcal{X}^n$: A dataset containing n tuples from universe \mathcal{X}
- A mechanism \mathcal{M} is (ε, δ)-DP if for all neighboring datasets $D \sim D'$ and subset of outputs O, we have
 \[\Pr[\mathcal{M}(D) \in O] \leq e^\varepsilon \cdot \Pr[\mathcal{M}(D') \in O] + \delta \]

- Adding noise calibrated to the global sensitivity of a query protects DP
 - Given query $f: \mathcal{X}^n \to \mathbb{R}$, the mechanism $\mathcal{M}(D) = f(D) + \text{Lap}\left(\frac{\Delta f}{\varepsilon}\right)$ is $(\varepsilon, 0)$-DP.
 - $\Delta f = \max_{D, D': D \sim D'} |f(D) - f(D')|$ is the Global Sensitivity of f
Counting/Linear Queries vs Numerical Queries

- A linear query is given by $\ell: \mathcal{X} \to [0,1]$, and $\ell(D) = \sum_{t \in D} \ell(t)$
- A numerical query is given by $w: \mathcal{X} \to \mathbb{R}$, and $w(D) = \sum_{t \in D} w(t)$
- Example
 - The number of people with income between a and b
 \[w(t) = \mathbf{1}[a \leq t[\text{income}] \leq b] \]
 - The total income of people whose income is between a and b
 \[w(t) = \mathbf{1}[a \leq t[\text{income}] \leq b] \cdot t[\text{income}] \]
 - The variance of income of people whose age is between a and b
 \[w(t) = \mathbf{1}[a \leq t[\text{age}] \leq b] \cdot t[\text{income}]^2 \]
 - The total weighted income
 \[w(t) = \text{UDF}(t[\text{age}], t[\text{income}]) \cdot t[\text{income}] \]

<table>
<thead>
<tr>
<th>Age</th>
<th>Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>2560</td>
</tr>
<tr>
<td>20</td>
<td>1500</td>
</tr>
<tr>
<td>45</td>
<td>8170</td>
</tr>
<tr>
<td>35</td>
<td>5200</td>
</tr>
<tr>
<td>45</td>
<td>3000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Private Multiplicative Weights [Hardt et al. ’12]

- Given a dataset $D \in \mathcal{X}^n$ and a set of linear queries $\mathcal{L} = \{\ell_1, \ell_2, \ldots, \ell_{|\mathcal{L}|}\}$
- The private multiplicative weights mechanism has the following guarantees
 - It runs in T iterations, with each round being $(\varepsilon_0, 0)$-DP and taking $\tilde{O}(|\mathcal{X}| \cdot |\mathcal{L}|)$ time
 - With probability $1 - \beta$, all queries $\ell \in \mathcal{L}$ can be answered on $\tilde{D} = \mathcal{M}(D)$ within error
 \[
 \alpha = O \left(\frac{n\sqrt{\log|\mathcal{X}|}}{\sqrt{T}} + \frac{\log(|\mathcal{L}|/\beta)}{\varepsilon_0} \right)
 \]
- Setting $T = \tilde{\Theta}(\varepsilon n)$ and $\varepsilon_0 = \Theta \left(\frac{\varepsilon}{\sqrt{T\log(1/\delta)}} \right)$ achieves (ε, δ)-DP with error
 \[
 \alpha = O \left(\frac{n \log(|\mathcal{L}|/\beta) \sqrt{\log|\mathcal{X}| \log(1/\delta)}}{\sqrt{\varepsilon}} \right) = \tilde{O} (\sqrt{n})
 \]
For simplicity, we consider numerical queries $w: \mathcal{X} \rightarrow \{0,1,2, \ldots, \Delta\}$
- We also assume Δ is a power of 2, e.g. 2^{64}

The target is to answer a set of numerical queries $Q = \{w_1, w_2, \ldots, w_{|Q|}\}$ privately

Normalization
- Given a numerical query w, define $\Delta_w := \max_{t \in \mathcal{X}} w(t)$
- It is clear that $\ell_w(t) := w(t)/\Delta_w \in [0,1]$ is a linear query
- Every normalized query ℓ_w for $w \in Q$ can be answered by \tilde{D} with error $\tilde{O}(\sqrt{n})$
- Rescaling the results, query w can be answered with error $\tilde{O}(\sqrt{n} \cdot \Delta_w)$

Problem
- Δ_w is data-independent, and can be arbitrarily large, e.g. 2^{64}
When $Q = \{w\}$ contains a single numerical query, recent work has error $\tilde{O}(\Delta_w(D))$
- $\Delta_w(D) := \max_{t \in D} w(t)$ is an instance-specific bound

Truncation
- Find a privatized truncation threshold τ such that
 - Only $\tilde{O}(1)$ tuples in D have $w(t) > \tau$
 - $\tau \leq \Delta_w(D)$
- Define a truncated query $\bar{w}(t) = \min\{w(t), \tau\}$
- Answer the truncated query with $O(\tau) = O(\Delta_w(D))$ noise
- The truncation error $|w(D) - \bar{w}(D)|$ is also $\tilde{O}(\Delta_w(D))$

Problem
- It is nontrivial to extend it to multiple queries
Comparison of Error Bounds

- **Normalization**
 - Normalize each query by Δ_w, and apply PMW to answer the linear queries

- **Composition**
 - Run truncation in [Huang et al., ’21] for each $w \in Q$ with tighter privacy budgets

- **Global Truncation:**
 - Spend a constant fraction of budget to find threshold $\Delta(D) := \max_{w \in Q} \max_{t \in D} \Delta(D)$

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Error bound for $w \in Q$</th>
<th>Many Queries?</th>
<th>Query-Specific?</th>
<th>Instance-Specific?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalization</td>
<td>$\tilde{O}(\sqrt{n} \cdot \Delta_w)$</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Composition</td>
<td>$\tilde{O}\left(\sqrt{</td>
<td>Q</td>
<td>} \cdot \Delta_w(D)\right)$</td>
<td>✔</td>
</tr>
<tr>
<td>Global truncation</td>
<td>$\tilde{O}\left(\sqrt{n} \cdot \Delta(D)\right)$</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>New method</td>
<td>$\tilde{O}\left(\sqrt{n} \cdot \Delta_w(D)\right)$</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Constructing Synopses for Query Answering
Comparison of Error Bounds: Example

- Assume the dataset consists of integers, $\mathcal{X} = [0, 2^{32}]$
- Consider a set of range-aggregate queries with all different ranges $[a, b]$
 \[w(t) = 1[a \leq t \leq b] \cdot t \]
- As there are many queries $|Q| = \Theta(|\mathcal{X}|^2) \gg n$, composition has a large error
- Normalization
 - $\Delta_w = \max_{t \in \mathcal{X}} w(t) = b$
- Global Truncation
 - $\Delta(D) = \max_{w \in Q} \max_{t \in D} w(t) = \max\{t \in D\}$
- New method
 - $\Delta_w(D) = \max_{t \in D} w(t) = \max\{t \in D : t \leq b\}$

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Error bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>$\tilde{O}\left(\sqrt{</td>
</tr>
<tr>
<td>Normalization</td>
<td>$\tilde{O}\left(\sqrt{n} \cdot \Delta_w\right)$</td>
</tr>
<tr>
<td>Global truncation</td>
<td>$\tilde{O}\left(\sqrt{n} \cdot \Delta(D)\right)$</td>
</tr>
<tr>
<td>New method</td>
<td>$\tilde{O}\left(\sqrt{n} \cdot \Delta_w(D)\right)$</td>
</tr>
</tbody>
</table>
Query- and Instance-Specific Truncation

The sketch of our algorithm is as follows

1. Given numerical queries Q, generate a set of counting queries $C(Q)$
2. Run the PMW mechanism to privately answer all the queries in $C(Q)$
3. From these query answers, extract the truncation threshold $\bar{\Delta}_w(D)$ for every $w \in Q$
4. Truncate and normalize each query w by $\bar{\Delta}_w(D)$ to obtain a set of linear queries $L(Q)$
5. Run the PMW mechanism to privately answer all the queries in $L(Q)$
6. Scale the results back by $\bar{\Delta}_w(D)$ to get a privatized $w(D)$
Truncation Thresholds

- We want to find $\bar{\Delta}_w(D)$ for query w with the following guarantees

 1. $|\{t \in D : w(t) > \bar{\Delta}_w(D)\}| \leq 2\alpha$
 - $\alpha = \tilde{O}(\sqrt{n})$ is the error in answering linear queries
 - Only $O(\alpha)$ values are truncated, each brings error $w(t) \leq \max_{t \in D} w(t) = \Delta_w(D)$

 2. $\bar{\Delta}_w(D) \leq 2\Delta_w(D)$
 - After normalizing by $\bar{\Delta}_w(D)$, we answer the linear queries with error α
 - When scaling the linear query back, the error is scaled by $\bar{\Delta}_w(D) = O(\Delta_w(D))$

- If we can (privately) find $\bar{\Delta}_w(D)$ with these guarantees, it follows that any $w \in Q$ is answered with error $O(\alpha \cdot \Delta_w(D)) = \tilde{O}\left(\sqrt{n} \cdot \Delta_w(D)\right)$
Finding Truncation Thresholds

- We can perform a doubling search to find the truncation thresholds
- Candidates: $\tau \in \{0, 1, 2, 4, 8, ..., \Delta\}$
- For each candidate τ, we ask the query
 - $c_{w,\tau}(t) = 1[w(t) > \tau]$
 - i.e., How many $t \in D$ have $w(t) > \tau$?
- The query can be answered with error α, so if the count is $c_{w,\tau}(D) \leq \alpha$, we can return $\overline{\Delta}_w(D) = \tau$ so that it satisfies condition 1
 - $|\{t \in D: w(t) > \overline{\Delta}_w(D)\}| \leq 2\alpha$
- It is can also be shown that condition 2 is satisfied
 - $\overline{\Delta}_w(D) \leq 2\Delta_w(D)$
Combining the Two PMW Instances

- The two PMW instances are run on the same D with different queries $C(Q), L(Q)$
- We can combine them by feeding the union of all queries
- The counting queries $C(Q) = \left\{ c_{w,\tau} | w \in Q, \tau \in \{0,1,2,4,8, \ldots, \frac{\Delta}{2}\} \right\}$
 - Where $c_{w,\tau}(t) = 1[w(t) > \tau]$
- The linear queries $L(Q) = \left\{ \ell_{w,\tau} | w \in Q, \tau \in \{1,2,4,8, \ldots, \Delta\} \right\}$
 - Where $\ell_{w,\tau}(t) = \frac{\min\{w(t),\tau\}}{\tau} = \min\left\{ \frac{w(t)}{\tau}, 1 \right\}$
- There are only $O(|Q| \log \Delta)$ queries to be answered by PMW

$$\alpha = O(\sqrt{n \log(|Q| \log \Delta) / \beta} \sqrt{\log X \over \log (1/\delta)}) = \tilde{O}(\sqrt{n})$$
Decomposable Queries

- Recall that each iteration of PMW takes $\tilde{O}(|\mathcal{X}| \cdot |Q|)$ time
- For numerical queries, $|\mathcal{X}|$ is usually large
 - e.g., age $\in [1,128]$ and income $\in [1,2^{32}]$, then $|\mathcal{X}| = 2^{40}$
- Decomposable queries
 - We say a set of queries Q is decomposable if
 - There exists an equivalence relation R over \mathcal{X}
 - There exists a function $g: \mathcal{X} \to \{0,1,2,\ldots,\Delta\}$
 - Every $w \in Q$ can be written as $w(t) = f_w([t]_R) \cdot g(t)$
 for some $f_w: \mathcal{X}/R \to [0,1]$
 - $[t]_R$ is the equivalence class induced by R containing t
 - g is common to the entire Q, while f_w is different for each w

<table>
<thead>
<tr>
<th>Age</th>
<th>Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>2560</td>
</tr>
<tr>
<td>20</td>
<td>1500</td>
</tr>
<tr>
<td>45</td>
<td>8170</td>
</tr>
<tr>
<td>35</td>
<td>5200</td>
</tr>
<tr>
<td>45</td>
<td>3000</td>
</tr>
</tbody>
</table>

...
There is a trivial decomposition for any set of queries Q

- $R = \{(t, t) : t \in \mathcal{X}\}$
- $\mathcal{X}/R = \mathcal{X}$
- $g(t) \equiv \Delta$
- $f_w(t) = w(t)/\Delta$

We are interested in decompositions where $|\mathcal{X}/R|$ is small

- If Q consists of queries of form
 \[w(t) = 1[a \leq t[\text{age}] \leq b] \cdot t[\text{income}] \]
- R puts all tuples of the same age into an equivalence class
- $\mathcal{X}/R = \text{dom(age)}$
- $g(t) = t[\text{income}]$
- $f_w(t) = 1[a \leq t[\text{age}] \leq b]$
Reducing Universe Size for Decomposable Queries

- Decomposable query: \(w(t) = f_w([t]_R) \cdot g(t) \)
- We consider a new universe
 - \(\tilde{\mathcal{X}} = \mathcal{X}/R \times \{1,2,4,8,\ldots,\Delta\} \)
 - Decompose \(g(t) \) for every \(t \) using binary decomposition
 - Note that \(g(t) \) is common to \(Q \)
- e.g. Decomposing tuple (age=35, income=2560)
 - We generate 2 tuples (35, 2048) and (35, 512) over \(\tilde{\mathcal{X}} \)
 - For any \(w \), we have
 - \(w((35,2560)) = f_w(35) \cdot 2560 = f_w(35) \cdot 2048 + f_w(35) \cdot 512 \)
 - We just need to run the query on the new \(\tilde{D} \) over \(\tilde{\mathcal{X}} \)
- A separate privacy analysis is needed

<table>
<thead>
<tr>
<th>Age</th>
<th>Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>2560</td>
</tr>
<tr>
<td>20</td>
<td>1500</td>
</tr>
<tr>
<td>45</td>
<td>8170</td>
</tr>
<tr>
<td>35</td>
<td>5200</td>
</tr>
<tr>
<td>45</td>
<td>3000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Improving for Queries with Structural Properties

- For special counting queries, e.g. range/half-space counting, the accuracy is better.
- This also applies to our mechanism.
 - \(\{f_w\} \) can have structural properties.
 - e.g. If \(Q \) consists of queries of form
 \[
 w(t) = 1[a \leq t[\text{age}] \leq b] \cdot t[\text{income}]
 \]
 then \(f_w \) are all range queries.
 - As range counting has error \(\tilde{O}(1) \) under DP, we can achieve error \(\tilde{O}(\Delta_w(D)) \).
Conclusion

- We initiate the study of private data release for numerical queries
- Our mechanism achieves instance- and query-specific error $\tilde{O}\left(\sqrt{n} \cdot \Delta_w(D)\right)$
- The error bound also leads to excellent practical performance
- For decomposable queries, the running time and accuracy can be further improved

References