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Abstract

Due to the overwhelming flow of information in many
data stream applications, many companies may not be will-
ing to acquire the necessary resources for deploying a Data
Stream Management System (DSMS), choosing, alterna-
tively, to outsource the data stream and the desired com-
putations to a third-party. But data outsourcing and remote
computations intrinsically raise issues of trust, making out-
sourced query assurance on data streams a problem with
important practical implications. Consider a setting where
a continuous “GROUP BY, SUM” query is processed us-
ing a remote, untrusted server. A client with limited pro-
cessing capabilities observing exactly the same stream as
the server, registers the query on the server’s DSMS and re-
ceives results upon request. The client wants to verify the
integrity of the results using significantly fewer resources
than evaluating the query locally. Towards that goal, we
propose a probabilistic verification algorithm for selection
and aggregate/group-by queries, that uses constant space
irrespective of the result-set size, has low update cost per
stream element, and can have arbitrarily small probability
of failure. We generalize this algorithm to allow some toler-
ance on the number of erroneous groups detected, in order
to support semantic load shedding on the server. We also
discuss the hardness of supporting random load shedding.
Finally, we implement our techniques and perform an em-
pirical evaluation using live network traffic.

1 Introduction
A large number of commercial Data Stream Management
Systems (DSMS) have been developed recently [16, 25,
4, 19, 14, 2], mainly driven by the continuous nature of
the data being generated by a variety of real-world appli-
cations, like telephony and networking. Many companies
deploy such DSMSs for the purpose of gathering invalu-
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able statistics about their day-to-day operations. Not sur-
prisingly, due to the overwhelming data flow observed in
most data streams, some companies do not possess and are
not willing to acquire the necessary resources for deploying
a DSMS. Hence, in these cases outsourcing the data stream
and the desired computations to a third-party is the only al-
ternative. For example, an Internet Service Provider (e.g.
Verizon) outsources the task of performing essential net-
work traffic analysis to another company (e.g. AT&T) that
already posses the appropriate tools for that purpose (e.g.
Gigascope). Clearly, data outsourcing and remote compu-
tations intrinsically raise issues of trust. As a consequence,
outsourced query assurance on data streams is a problem
with important practical implications. This problem has
been studied before in the context of static outsourced data
[37]. To the best of our knowledge, this is the first work to
address query assurance on data streams.

Consider a setting where continuous queries on a data
stream are processed using a remote, untrusted server (that
can be compromised, malicious, running faulty software,
etc). A client with limited processing capabilities observing
exactly the same input as the server, registers queries on the
DSMS of the server and receives results upon request (Fig-
ure 1). Assuming that the server charges clients according



to the computation resources consumed and the volume of
traffic processed for answering the queries, the former has
an incentive to deceive the latter for increased profit. Fur-
thermore, the server might have a competing interest to pro-
vide fraudulent answers to a particular client. Hence, a pas-
sive malicious server can drop query results or provide ran-
dom answers in order to reduce the computation resources
required for answering queries, while a compromised or ac-
tive malicious server might be willing to spend additional
computational resources to provide fraudulent results (by
altering, dropping, or introducing spurious answers). In
other cases, incorrect answers might simply be a result of
faulty software, or due to load shedding strategies, which
are essential tools for dealing with bursty streaming data
[39, 5, 8, 38].

Ideally, the client should be able to verify the integrity
of the computations performed by the server using signif-
icantly fewer resources than evaluating the queries locally.
Moreover, the client should have the capability to tolerate
errors caused by load shedding algorithms or other non-
malicious operations, while at the same time being able to
identify mal-intended attacks. To the best of our knowledge,
this is the first work to address outsourced query assurance
on streams, introducing a novel problem and proposing effi-
cient solutions for a wide range of queries and failure mod-
els.

The present work concentrates on selection queries and
aggregate queries, like sum and count. We develop solu-
tions for verifying such aggregates on any type of group-
ing imposed on the input data (e.g., as a GROUP BY clause
in standard SQL). First, we provide a solution for verify-
ing the absolute correctness of queries in the presence of
any error, and second, an algorithm for supporting seman-
tic load shedding, which allows the server to drop tuples in
a selected small number of groups. In the latter case we
need to design techniques that can tolerate a small number
of inconsistent answers while guaranteeing that the rest are
correct. We also discuss the hardness of supporting random
load shedding, where small errors are allowed for a wide
range of answers.

Clearly, if a client wants to verify the query results with
absolute confidence the only solution is to compute the
answers exactly, which obviates the need of outsourcing.
Hence, we investigate high-confidence probabilistic solu-
tions and develop verification algorithms that significantly
reduce resource consumption.

Towards that goal the contributions of this work are: 1.
A probabilistic synopsis that raises an alarm with very high
confidence if there exists at least one error in the query re-
sults. This algorithm has constant space cost (three words)
and low processing cost per update (O(1) for count queries
and O(logn) or O(logµ) for sum queries, where n is the
number of possible groups and µ is the update amount per

tuple), for an arbitrarily small probability of failure δ (as
long as n/δ fits in one word); 2. A theoretical analysis of
the algorithm that proves its space optimality on the bits
level; 3. A strong result stating that the same synopsis can
be used for verifying multiple simultaneous queries using
space equal to that for a single query, for queries with the
same aggregate attribute but different selections/groupings;
4. A generalization of this algorithm for raising alarms
when the number of errors exceeds a predefined threshold,
e.g., when semantic load shedding needs to be supported;
5. A discussion of the difficulty behind supporting random
load shedding and some simple heuristics; 6. Finally, an
extensive empirical evaluation of the techniques using live
network traffic, showing that our algorithms not only pro-
vide strong theoretical guarantees, but also work extremely
well in practice and are very simple to implement.

2 Problem Formulation
The queries examined in this work have the following struc-
ture:

SELECT AGG(A_1), ..., AGG(A_N) FROM T
WHERE ... GROUP BY G_1, ..., G_M

This is a rather general form of SQL queries, as any
“SELECT, FROM, WHERE” query can be written in a
GROUP BY aggregate form by using the primary key
of the input relation T as the GROUP BY attribute G
(a GROUP BY clause that groups every tuple by itself).
For example “SELECT A,B FROM T WHERE B>10”
can be written as “SELECT SUM(A),SUM(B) FROM T
WHERE B>10 GROUP BY PK”. Note also that GROUP
BY aggregate queries have wide applications in monitoring
and statistical analysis of data streams (e.g., in networking
and telephony applications). Previous work has addressed
exactly these types of queries numerous times ([43] and re-
lated work therein). For example, a query that appears fre-
quently in network monitoring applications is the following:

SELECT SUM(packet_size) FROM IP_Trace
GROUP BY source_ip, destination_ip (*)

In the rest of the paper we will use this query as our main
motivating example and concentrate on sum and count.
Other aggregates that can be converted to these two (e.g.,
average, standard deviation, etc.) can be easily supported.
Any solution to the above problem naturally supports the
tumbling window semantics. Our proposed scheme, as we
will see shortly, has the appealing feature of being easily
extended to the sliding window semantics, which will be
discussed in Section 7.

Data Stream Model. Following the example query of the
previous section, the GROUP BY predicate partitions the
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streaming tuples into a set of n groups, computing one
sum per group. The data stream can be viewed as a se-
quence of additions (or subtractions) over a set of items in
[n] = {1, . . . , n}. Denote this data stream as S and its τ -
th tuple as sτ = (i, uτ ), an update of amount u to the ith
group. Formally, the query answer can be expressed as a dy-
namic vector of non-negative integers vτ = [vτ1 , . . . , v

τ
n] ∈

Nn, containing one component per group aggregate. Ini-
tially, v0 is the zero vector. A new tuple sτ = (i, uτ ) up-
dates the corresponding group i in vτ as vτi = vτ−1

i + uτ .
We allow uτ to be either positive or negative, but require
vτi ≥ 0 for all τ and i. When count queries are concerned,
we have uτ = 1 for all τ . We assume that the L1 norm
of vτ is always bounded by some large m, i.e., at any τ ,
‖vτ‖1 =

∑n
i=1 v

τ
i ≤ m. Our streaming model is the same

as the general Turnstile model of [31], and our algorithms
are designed to work under this model. The readers are re-
ferred to two excellent papers [31, 7] for detailed discus-
sions of data stream models.

Problem Definition. The problem of Continuous Query
Verification on data streams (CQV) is defined as follows:

Definition 1 Given a data stream S, a continuous query Q
and a user defined parameter δ ∈ (0, 1

2 ), build a synopsis X
of v such that for any τ , given any wτ and usingX (vτ ), we:
1. raise an alarm with probability at least 1− δ if wτ 6= vτ ;
2. shall not raise an alarm if wτ = vτ .

Here wτ , for example, could be the answer provided by the
server, whileX (vτ ) is the synopsis maintained by the client
for verifying vector v.

With this definition the synopsis raises an alarm with
high probability if any component (or group answer) vτi
is inconsistent. Consider a server that is using semantic
load shedding, i.e., dropping tuples from certain groups, on
bursty stream updates. In this scenario the aggregate of a
certain, small number of components will be inconsistent
without malicious intent. We would like to design a tech-
nique that allows a certain degree of tolerance in the number
of erroneous answers contained in the query results, rather
than raising alarms indistinctly. The following definition
captures the semantics of Continuous Query Verification
with Tolerance for a Limited Number of Errors (CQVγ):

Definition 2 For any w,v ∈ Zn, let E(w,v) = {i | wi 6=
vi}. Then w 6=γ v iff |E(w,v)| ≥ γ and w =γ v
iff |E(w,v)| < γ. Given a data stream S, a continuous
query Q, and user defined parameters γ ∈ {1, . . . , n} and
δ ∈ (0, 1

2 ), build a synopsis X of v such that, for any τ ,
given any wτ and using X (vτ ), we: 1. raise an alarm with
probability at least 1− δ, if wτ 6=γ vτ ; 2. shall not raise an
alarm if wτ =γ vτ .

Note that CQV is the special case of CQVγ with γ = 1.
Similarly, we would like to design techniques that can sup-

port random load shedding, i.e., which can tolerate small
absolute or relative errors on any component irrespective of
the total number of inconsistent components. The follow-
ing definition captures the semantics of Continuous Query
Verification with Tolerance for Small Errors (CQVη):

Definition 3 For any w,v ∈ Zn, let w 6≈η v iff there is
some i such that |wi−vi| > η, and w ≈η v iff |wi−vi| ≤ η
for all i ∈ [n]. Given a data stream S, a continuous query
Q, and user defined parameters η and δ ∈ (0, 1

2 ), build a
synopsis X of v such that, for any τ , given any wτ and
using X (vτ ), we: 1. raise an alarm with probability at least
1−δ, if wτ 6≈η vτ ; 2. shall not raise an alarm if wτ ≈η vτ .

Note that the definition above requires the absolute er-
rors for each vτi to be no larger than η. It is also possible
to use relative errors, i.e., raise an alarm iff there is some i
such that |wτi − vτi |/|vτi | > η. Thus CQV is also a special
case of CQVη with η = 0.

We will work under the standard RAM model. Under
this model, it is assumed that an addition, subtraction, mul-
tiplication, division, or taking mod involving two words
takes one unit of time. We also assume that n/δ andm/δ fit
in a word. In the rest of the paper, we drop the superscript
τ when there is no confusion.

Paper outline. First we discuss some simple intuitive solu-
tions and show why they do not work (Section 3). Then, we
present our solutions for the CQV (Section 4) and CQVγ

(Section 5) problems and a discussion about the hardness of
the CQVη problem (Section 6). We continue by presenting
some useful extensions (Section 7), and an empirical evalu-
ation of our techniques (Section 8). Finally we review some
related work (Section 9) before concluding the paper.

3 Possible Solutions
This section presents some intuitive solutions and discusses
why they do not solve the CQV problem. We focus on
count queries only; the discussion extends to sum queries
since count is a special case of sum. Abusing notations, we
use |v| to denote the number of non-zero entries of v. A
naı̈ve algorithm that always maintains v exactly would use
Θ(|v| logm) bits of space. One might think of the follow-
ing two simple solutions in order to reduce the high space
requirement.

Random sampling. A first attempt is random sampling.
Assuming a sampling rate r, the client randomly chooses rn
groups. Clearly, with probability r this method will raise an
alarm if w 6= v. In order to satisfy the problem statement
requirements we need to set r = 1 − δ. For CQVγ , if the
server modifies exactly γ answers, then the probability of
raising an alarm is only roughly rγ , which is obviously too
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small for practical r’s and γ’s. Thus, random sampling can
at most reduce the space cost by a tiny fraction.

Sketches. Recent years have witnessed a large number of
sketching techniques (e.g. [3, 18, 10, 21]) that are designed
to summarize high-volume streaming data with small space.
It is tempting to maintain such a sketch K(v) for the pur-
pose of verification. When the server returns some w, we
compute K(w), which is possible since w exactly tells us
what the elements have appeared in the stream and their fre-
quencies. Then we check if K(v) = K(w).

It is imaginable that such an approach would likely to
catch most unintentional errors such as malfunctions of the
server or package drops during communication. However,
the fact that they are not designed for verification leaves
them vulnerable under certain attacks. For instance, let us
consider the two AMS sketches from the seminal work of
Alon et al. [3]. Their F0 sketch uses a pairwise indepen-
dent random hash function r and computes the maximum
number of trailing zeros in the binary form of r(i) for all
tuples in the stream. This sketch is oblivious in the num-
ber of times a tuple appears, so will not detect any errors
as long as w and v have the same set of locations on the
groups with nonzero entries.

Their F2 sketch computes the sum
∑n
i=1 h(i)vi, where

h : {1, . . . , n} → {−1, 1} is chosen randomly from a fam-
ily of 4-wise independent hash functions, and then repeat
the process for a certain number of times independently.
Below we will argue that for certain w 6= v, the chance
that

∑n
i=1 h(i)vi =

∑n
i=1 h(i)wi is high, thus the sketch

will miss w unless many repetitions are used. This AMS
sketch uses the BCH4 scheme (c.f. [34]) to construct a 4-
wise independent random hash function f : [n] → {0, 1},
and then set h(i) = 2f(i)−1. Since

∑n
i=1 h(i)(vi−wi) =

2
∑n
i=1 f(i)(vi − wi) −

∑n
i=1(vi − wi), it is sufficient to

construct a w 6= v where
∑n
i=1(vi − wi) = 0, such that∑n

i=1 f(i)(vi − wi) = 0 are likely to happen.
Without loss of generality we assume n = 2r − 1. Let

S0 and S1 be two random r-bit integers. The BCH4 scheme
computes f(i) as f(i) = (S0�i)⊕(S1�i3), where⊕ is the
vector dot product over the last r bits evaluated on Z2, i.e.,
assuming the last r bits of x (resp. y) is x1, . . . , xr (resp.
y1, . . . , yr), then x⊕y = (

∑r
i=1 xiyi) mod 2. We construct

w as follows. For all odd i, and i = 2r−1, wi = vi; for even
i 6= 2r−1, vi − wi = −1 if i < 2r−1, and vi − wi = 1 if
i > 2r−1. It is clear that

∑n
i=1(vi−wi) = 0. We will show

that if S0 < 2r−1, then
∑n

i=1 f(i)(vi − wi) = 0. Consider
any odd i < 2r−1, and j = i+ 2r−1. We have

f(j) = (S0 � j)⊕ (S1 � j3)

= (S0 � (i+ 2r−1))⊕ (S1 � (i+ 2r−1)3)

= (S0 � i)⊕ (S1 � (i+ 2r−1)3),

where the last equality is due to the fact that the first bit of

S0 is zero. On the other hand, for even i, since

(i+ 2r−1)3 = i3 + 3 · i2 · 2r−1 + 3 · i · 22r−2 + 23r−3

≡ i3 ( mod 2r),

we have f(i) = f(j). Thus, the pair f(i)(vi − wi) and
f(j)(vj − wj) cancel out, and we have

∑n
i=1 f(i)(vi −

wi) = 0. So when S0 < 2r−1, which happens with
probability 1/2, the sketch cannot catch this erroneous w.
This implies that at least Ω(log 1

δ ) independent copies of
sketches is needed to drive down the overall failure proba-
bility to the δ, giving a space complexity of Ω(log 1

δ log n)
and update time Ω(log 1

δ ), with potentially large hidden
constants. As the typical δ values are very small in appli-
cations that require query assurance, these bounds are not
satisfying. More importantly, 1/2 is merely lower bound on
its failure probability as we do not know the exact proba-
bility it fails when S0 ≥ 2r−1. For some specific values of
n = 2r − 1, we enumerated all values of S0 and S1 to com-
pute the exact failure probabilities, shown in the following
table.

r 3 4 5 6 7 8 9 10
fail prob .75 .86 .84 .90 .94 .92 .93 .94

From the table we can see that the actual failure proba-
bility can be much larger than the lower bound of 1/2, and
it is not clear if it is bounded away from 1, so it is not safe at
all to just use O(log 1

δ ) copies. To summarize, although we
have not theoretically ruled out the possibility that the AMS
sketch may work, we can find cases where it is very likely
to fail. Even if it could work (by proving an upper bound on
the failure probability), it has to use at least Ω(log 1

δ log n)
bits of space with a large hidden constant.

Finally, the AMS sketches have many variants developed
in recent years, but to our knowledge, none of them has the
guarantee of assurance required by the CQV problem. In
the next section, we present our solution, which does not
only solve the CQV problem, but also uses much less space
than all the known sketches.

4 PIRS: Polynomial Identity Ran-
dom Synopsis

This section presents two synopses, called Polynomial Iden-
tity Random Synopses (PIRS) and denote byX (v), for solv-
ing the CQV problem (Definition 1). The synopses, as the
name suggests, are based on testing the identity of polyno-
mials by evaluating them at a randomly chosen point. The
technique of verifying polynomial identities can be traced
back to the seventies [22]. It has found applications in e.g.
verifying matrix multiplications and pattern matching [30].

PIRS-1. Let p be some prime such that max{m/δ, n} <
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p ≤ 2 max{m/δ, n}. According to Bertrand’s Postu-
late [32] such a p always exists. We will work in the field
Zp, i.e., all additions and multiplications are done modulo
p. For the first PIRS, denoted PIRS-1, we choose α from
Zp uniformly at random and compute

X (v) = (α− 1)v1 · (α− 2)v2 · · · · · (α− n)vn .

Having computed X (v) and given any input w, PIRS is
able to check if w = v with high probability and without
explicitly storing v: We first check if

∑n
i=1 wi > m, if so

we reject w immediately; otherwise we compute X (w) as:

X (w) = (α− 1)w1 · (α− 2)w2 · · · · · (α− n)wn .

If X (w) = X (v), then we declare that w = v; otherwise
we raise an alarm. It is easy to see that we never raise a false
alarm. Therefore we only need to show that we miss a true
alarm with probability at most δ.

Theorem 1 Given any w 6= v, PIRS raises an alarm with
probability at least 1− δ.

Proof : Consider the polynomials fv(x) = (x − 1)v1(x −
2)v2 · · · (x−n)vn and fw(x) = (x−1)w1(x−2)w2 · · · (x−
n)wn . Since a polynomial with 1 as its leading coefficient,
i.e., the coefficient of the term with the largest degree, is
completely determined by its zeroes (with multiplicities),
we have fv(x) ≡ fw(x) iff v = w. If v 6= w, since
both fv(x) and fw(x) have degree at most m, fv(x) =
fw(x) happens at no more than m values of x, due to the
fundamental theorem of algebra. Since we have p ≥ m/δ
choices for α, the probability that X (v) = X (w) happens
is at most δ.

Note that once we have chosen α, X (v) can be incre-
mentally maintained easily. For count queries, each tuple
increments one of the vi’s by one, so the update cost is
constant (one addition and one multiplication). For sum
queries, a tuple s = (i, u) increases vi by u, so we need
to compute (α− i)u, which can be done in O(log u) (expo-
nentiation by squaring) time. To perform a verification with
w, we need to compute (x− i)wi for each nonzero entry wi
of w, which takes O(logwi) time, so the time needed for a
verification is O(

∑
logwi) = O(|w| log m

|w| ). Since both
X (v) and α are smaller than p, the space complexity of the
synopsis is O(log m

δ + log n) bits.

Theorem 2 PIRS-1 occupies O(log m
δ + log n) bits of

space, spends O(1) (resp. O(log u)) time to process a tu-
ple for count (resp. sum) queries, and O(|w| log m

|w| ) time
to perform a verification.

Some special care is needed when u is negative (or han-
dling deletions for count queries), as the field Zp is not

equipped with division. We need first to compute (α−i)−1,
the multiplicative inverse of (α−i) in modulo p, inO(log p)
time (using Euclid’s gcd algorithm [26]), and then compute
(α− i)−1|u|.

PIRS-2. When n � m we can actually do slightly bet-
ter with PIRS-2. Now we choose the prime p between
max{m,n/δ} and 2 max{m,n/δ}. For α chosen uni-
formly at random from Zp, we compute

X (v) = v1α+ v2α
2 + · · ·+ vnα

n.

By considering the polynomial fv(x) = v1x+v2x
2 + · · ·+

vnx
n, we can use the same proof to show that Theorem 1

still holds. Nevertheless, PIRS-2 has an O(logn) update
cost for both count and sum queries, since we need to com-
pute uαi for a tuple (i, u) in the stream. Without repeating
the details, we conclude with the following.

Theorem 3 PIRS-2 occupies O(logm + log n
δ ) bits of

space, spends O(logn) time to process a tuple, and
O(|w| logn) time to perform a verification.

Since the space complexities of PIRS-1 and PIRS-2 are
comparable, while PIRS-1 has a better update time, we rec-
ommend using PIRS-1 unless n is small compared tom and
typical u.

Another nice property of PIRS is that the verification can
also be performed in one pass of w using a constant number
of words of memory. This is especially useful when |w| is
large. The client will be able to receive w in a streaming
fashion, verifies it online, and either forward it to a ded-
icated server for further processing, or a network storage
device for offline use.

Space optimality. Below We give a lower bound showing
that PIRS is space-optimal on the bits level for almost all
values of m and n.

Theorem 4 Any synopsis solving the CQV problem with er-
ror probability at most δ has to keep Ω(log min{m,n}

δ ) bits.

Proof : We will take an information-theoretic approach. As-
sume that v and w are both taken from a universe U , and
let M be the set of all possible memory states the synop-
sis might keep. Any synopsis X can be seen as a function
f : U → M; and if X is randomized, it can be seen as
a function randomly chosen from a family of such func-
tions F = {f1, f2, . . .}, where fi is chosen with prob-
ability p(fi). Without loss of generality, we assume that
p(f1) ≥ p(f2) ≥ · · ·. Note that X needs at least log |M|
bits to record the output of the function and log |F| bits to
describe the function chosen randomly from F .

For any w 6= v ∈ U , let Fw,v = {f ∈ F | f(w) =
f(v)}. For a randomized synopsis X to solve CQV with
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error probability at most δ, the following must hold for all
w 6= v ∈ U : ∑

f∈Fw,v

p(f) ≤ δ. (1)

Let us focus on the first k = dδ · |F|e + 1 functions
f1, . . . , fk. It is easy to see that

∑k
i=1 p(fi) > δ. Since

there are a total of |M|k possible combinations for the out-
puts of these k functions, by the pigeon-hole principle, we
must have

|U| ≤ |M|k (2)

so that no two w 6= v ∈ U have fi(w) = fi(v) for all
i = 1, . . . , k; otherwise we would find w,v that violate (1).

Taking log on both sides of (2), we have

log |U| ≤ (dδ · |F|e+ 1) log |M|.

Since v has n entries whose sum is at most m, by sim-
ple combinatorics, we have |U| ≥

(
m+n
n

)
, or log |U| ≥

min{m,n}. We thus obtain the following tradeoff:

|F| · log |M| = Ω(min{m,n}/δ).

If log |F| ≤ (1 − ε) log(min{m,n}/δ) (i.e., |F | ≤
(min{m,n}/δ)1−ε) for any constant ε ∈ (0, 1), then
X has to use super-polylogarithmic space log |M| =
Ω((min{m,n}/δ)ε); else X has to keep log |F| ≥
log (min{m,n}/δ) random bits.

Therefore, when m ≤ n, PIRS-1 is optimal as long as
log n = O(log m

δ ); when m > n, PIRS-2 is optimal as
long as logm = O(log n

δ ). Our bounds are not tight when
log m

δ = o(log n) or log n
δ = o(logm).

Practical issues. The theoretical analysis above focuses on
the bit-level space complexity. When implemented, how-
ever, both PIRS-1 and PIRS-2 use three words (p, α, and
χ(v)), and thus do not seem to have any difference. Never-
theless, there are some technical issues to be considered in
practice.

First, we shall choose p to be the maximum prime that
fits in a word, so as to minimize δ. Note that δ = m/p for
PIRS-1 and δ = n/p for PIRS-2. For instance if we use
64-bit words and m < 232, then δ is at most 2−32 for PIRS-
1, which practically means no error at all. Second, since
we need to extract the group id i from each incoming tuple
directly, without the use of a dictionary (which would blow
up the memory cost), the size of the group space, n, needs
to be large for certain queries. For example, the query (*) of
Section 2 has a group space of n = 264 (the combination of
two IP addresses), although the actual number of nonzero
entries |v| may be nowhere near n. In this case, since m is
typically much smaller, PIRS-1 would be the better choice.

Information Disclosure on Multiple Attacks. Theorem

1 bounds the success rate for detecting a single attack at-
tempted by the server. After an error has been detected, the
client can choose to disclose this information to the server.
If the error is not reported, then Theorem 1 will continue
to hold. However, errors can occur due to faulty software
or bad communication links, and may not be intentional.
In this case we would like to give a warning to the server.
Since a compromised, smart server can extract knowledge
from this warning (e.g., it knows at least that the same attack
will always fail), the guarantee of Theorem 1 is not applica-
ble any more. In order to restore the 1− δ success rate after
a reported attack, the synopsis has to be recomputed from
scratch, which is impossible in a streaming setting. Hence,
it is important to rigorously quantify the loss of guarantee
after a series of warnings have been sent out without reset-
ting the synopsis.

Let ek = 1 if the k-th attack goes undetected and ek = 0
otherwise. Let pk be the probability that the server suc-
ceeds in its k-th attack after k − 1 failed attempts, i.e.,
pk = Pr[ek = 1 | e1 = 0, . . . , ek−1 = 0]. From Theorem
1 we know that p1 ≤ δ. In what follows we upper bound
pk with respect to the most powerful server, denoted as Al-
ice, to demonstrate the strength of PIRS. We assume that
Alice: 1. Knows how PIRS works except its random seed;
2. Maximally explores the knowledge that could be gained
from one failed attack; and 3. Possesses infinite computa-
tional power.

Next, we precisely quantify the best Alice could do to
improve pk over multiple attacks. Denote by R the space
of seeds used by PIRS. For any w,v denote the set of wit-
nesses W(w,v) = {r ∈ R | PIRS raises an alarm on r}
and the set of non-witnesses W(w,v) = R − W(w,v).
Note that |W(w,v)| ≤ δ|R| if w 6= v, andW(w,v) = R
if w = v. Suppose the seed PIRS uses is r. If Alice returns
a correct answer w = v, she cannot infer anything about r.
If she returns some w 6= v and gets a warning, it is possible
that Alice can determine r /∈ W(w,v). However, even if
we assume that Alice has enough computational power to
compute both the sets of witnesses and non-witnesses, it is
impossible for her to infer which witness PIRS is using as
r. After k − 1 failed attacks using w1, . . . ,wk−1, the set
of seeds that Alice has ruled out is

⋃k−1
i=1 W(wi,vi), whose

cardinality is at most (k − 1)δ|R|. Thus, we have:

Lemma 1 pk ≤ δ
1−(k−1)δ .

Proof :

pk =
|set of non-witnesses|
|set of remaining seeds|

=
|W(wk,vk)|

|R −⋃k−1
i=1 W(wi,vi)|

≤ δ

1− (k − 1)δ
.
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Theorem 5 Assuming that Alice has made a total of k at-
tacks to PIRS for any k, the probability that none of them
succeeds is at least 1− kδ.

Proof : This probability is

Pr[e1 = 0 ∧ · · · ∧ ek = 0]

=
k∏

i=1

(1− Pr[ei = 1 | e1 = 0, . . . , ei−1 = 0])

≥
k∏

i=1

(
1− δ

1− (i− 1)δ

)
=

k∏

i=1

1− iδ
1− (i− 1)δ

=
1− δ

1
· 1− 2δ

1− δ · · · · ·
1− kδ

1− (k − 1)δ
= 1− kδ.

Theorem 5 shows that PIRS is very resistant towards co-
ordinated multiple attacks even against an adversary with
unlimited computational power. For a typical value of
δ = 2−32, PIRS could tolerate millions of attacks before
the probability of success becomes noticeably less than 1.
Most importantly, the drop in the detection rate to 1−kδ oc-
curs only if the client chooses to disclose the attacks to the
server. Of course, such disclosure is not required in most
applications.

5 Tolerance for Few Errors
This section presents a synopsis for solving the CQVγ prob-
lem (Definition 2). Let γ be the number of components
in v that are allowed to be inconsistent. First, we present
a construction that gives an exact solution that satisfies
the requirements of CQVγ , and requires O(γ2 log 1

δ log n)
bits of space, which is practicable only for small γ’s.
Then, we provide an approximate solution which uses only
O(γ log 1

δ (logm + log n)) bits. Both solutions use PIRS
as a black box, and therefore can choose either PIRS-1 or
PIRS-2. We state all the results using PIRS-1 for count
queries. The corresponding results for sum queries and
PIRS-2 can be obtained similarly.

5.1 PIRSγ: An Exact Solution
By using PIRS as a building block we can construct a syn-
opsis that satisfies the requirements of CQVγ . This synop-
sis, referred to as PIRSγ , consists of multiple layers, where
each layer contains k = c1γ

2 buckets (c1 ≥ 1 is a constant
to be determined shortly). Each component of v is assigned
to one bucket per layer, and each bucket is represented us-
ing only its PIRS synopsis (see Figure 2). PIRSγ raises an
alarm if at least γ buckets in any layer raise an alarm. The
intuition is that if there are less than γ errors, no layer will

raise an alarm, and if there are more than γ errors, at least
one of the layers will raise an alarm with high probability
(when the γ inconsistent components do not collide on any
bucket for this layer). By choosing the probability of failure
of the individual PIRS synopsis carefully, we can guarantee
that PIRSγ achieves the requirements of Definition 2.

{v4, v6}{v1, v3}

{v3} {v2, v5}

{v2, v5}

{v1, v4, v6}

X22

X13X11 X12

X21 X23

Figure 2. The PIRSγ synopsis.

Algorithm 1: PIRSγ -INITIALIZE(Prime p, Threshold
γ)

c = 4.819, k = dcγ2e1

Generate β`,j uniformly at random from Zp, for2

1 ≤ ` ≤ log 1/δ, 1 ≤ j ≤ k
for ` = 1, . . . , dlog 1/δe do3

Layer L` = [X1(v) := 0, · · · ,Xk(v) := 0]4

// Xj(v) is a PIRS synopsis with
δ′ = 1/cγ

Algorithm 2: PIRSγ -UPDATE(Tuple s = (i, u))

for ` = 1, . . . , dlog 1/δe do1

b`,i = (β`,γi
γ−1 + . . .+ β`,2i+ β`,1)mod k + 12

Update L`.Xb`,i(v) using s3

Algorithm 3: PIRSγ -VERIFY(Vector w)

for ` = 1, . . . , dlog 1/δe do1

Layer M` = [X1(w) := 0, · · · ,Xk(w) := 0]2

// Xj(w) is a PIRS synopsis with
δ′ = 1/cγ

for i = 1, . . . , n do3

Generate b`,i as line 2, Algorithm 24

Update M`.Xb`,i(w) by s = (i, wi)5

if |{j | Li.Xj(v) 6= Mi.Xj(w), 1 ≤ j ≤ k}| ≥ γ6

then Raise an alarm

Concentrating on one layer only, let b1, . . . , bn be n γ-
wise independent random numbers, uniformly distributed
over {1, . . . , k}. PIRSγ assigns vi to the bi-th bucket, and
for each bucket computes the PIRS synopsis of the assigned
subset of vi’s with probability of failure δ′ = 1/(c2γ)
(c2 ≥ 1 is a constant to be determined shortly). Ac-
cording to Theorem 2 each of these k synopses occupies
O(log m

δ′ + log n) = O(logm + log n) bits. Given some
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w =γ v, since there are less than γ errors, the algorithm
will not raise an alarm. We can choose constants c1 and c2
such that if w 6=γ v, then the algorithm will raise an alarm
with probability at least 1/2 for this layer. In this case there
are two cases when the algorithm will fail to raise an alarm:
1. There are less than γ buckets that contain erroneous com-
ponents of w; 2. There are at least γ buckets containing er-
roneous components but at least one of them fails due to the
failure probability of PIRS. We show that by setting con-
stants c1, c2 = 4.819 either case occurs with probability at
most 1/4. Consider the first case. Since the vi’s are as-
signed to the buckets in a γ-wise independent fashion, by
considering just γ of them, the probability that less than γ
buckets get at least one of the erroneous vi’s is at most

1− k

k
· k − 1

k
· · · · · k − γ + 1

k
(3)

≤ 1−
(
k − γ
k

)γ
= 1−

(
1− γ

k

) k
γ ·
γ2

k ≤ 1− 2−
2
c1 ≤ 1

4
,

where the last inequality holds as long as c1 ≥ 2/ log 4
3 =

4.819.
Next, consider the second case. The probability that

some of the γ buckets that are supposed to raise an alarm
fail is:

1− (1− δ′)γ = 1−
(

1− 1

c2γ

)c2γ/c2
≤ 1− 2−

2
c2 <

1

4
,

(4)
which holds as long as c2 ≥ 4.819.

Therefore, using one layer PIRSγ will raise an alarm
with probability at least 1/2 on some w 6=γ v, and will
not raise an alarm if w =γ v. By using log 1

δ layers and
reporting an alarm if at least one of these layers raises an
alarm, the probability is boosted to 1− δ.

Theorem 6 For any w 6=γ v, PIRSγ raises an alarm with
probability at least 1− δ. For any w =γ v, PIRSγ will not
raise an alarm.

In addition to the k log 1
δ PIRS synopses, we also need

to generate the γ-wise independent random numbers. Using
standard techniques we can generate them on-the-fly using
O(γ log n) truly random bits. Specifically, the technique of
[41] for constructing k-universal hash families can be used.
Let p be some prime between n and 2n, and α0, . . . , αγ−1

be γ random numbers chosen uniformly and independently
from Zp. Then we set

bi = ((αγ−1i
γ−1+αγ−2i

γ−2+· · ·+α0) mod p) mod k+1,

for i = 1, . . . , n. For an incoming tuple s = (i, u), we
compute bi using the αj’s in O(γ) time, and then perform
the update to the corresponding PIRS. To perform a verifi-
cation, we can compute in parallel for all the layers while

making one pass over w. The detailed initialization, update
and verification algorithms for PIRSγ appear in Algorithms
1, 2, and 3. The next theorem bounds both the space and
time complexity of PIRSγ .

Theorem 7 PIRSγ requires O(γ2 log 1
δ (logm + log n))

bits, spendsO(γ log 1
δ ) time to process a tuple in the stream,

and O(|w|(γ + log m
|w| ) log 1

δ ) time to perform a verifica-
tion.

With careful analysis a smaller constant in the big-Oh
above can be achieved in practice. For a given γ, we choose
the minimum k such that (3) is at most 1/2, and choose 1/δ′

very large (close to the maximum allowed integer) so that
(4) is almost zero. For instance if γ = 2 and 3, then 2 log 1

δ
and 6 log 1

δ words suffice, respectively. For arbitrary γ, the
storage requirement is 2γ2 log 1

δ words in the worst case.

Remark. Note that computing the γ-wise independent ran-
dom numbers bi is the bottleneck for the time bounds. We
can trade space for faster update times by using other γ-
wise independent random number generation schemes. For
instance by using an extra O(nε) words per layer, the tech-
nique of [36] can generate a bi in O(1) time provided that
γ ≤ nε

3/2, for ε > 0. The update and verification times
become O(log 1

δ ) and O(n log 1
δ ), and the space bound

O(nε log 1
δ log n) bits.

5.2 PIRS±γ: An Approximate Solution
The exact solution works when only a small number of er-
rors can be tolerated. In applications where γ is large, the
quadratic space requirement is prohibitive. If we relax the
definition of CQVγ to allow raising alarms when approx-
imately γ errors have been observed, we can design more
space-efficient algorithms. This approximation is often ac-
ceptable since when γ is large, users probably will not con-
cern too much if the number of errors detected deviates from
γ by a small amount. This section presents such an approx-
imate solution, denoted with PIRS±γ , that guarantees the
following:

Theorem 8 PIRS±γ: 1. raises no alarm with probability at
least 1 − δ on any w =γ− v where γ− = (1 − c

ln γ )γ;
and 2. raises an alarm with probability at least 1 − δ on
any w 6=γ+ v where γ+ = (1 + c

ln γ )γ, for any constant
c > − ln ln 2 ≈ 0.367.

Note that this is a very sharp approximation; the multiplica-
tive approximation ratio 1± c

ln γ is close to 1 for large γ.
PIRS±γ also contains multiple layers of buckets, where

each bucket is assigned a subset of the components of v
and summarized using PIRS (Figure 2). Focusing on one
layer only, our desiderata is on any w =γ− v not to raise
an alarm with probability at least 1/2 + ε for some constant
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ε ∈ (0, 1/2), and on any w 6=γ+ v to raise an alarm with
probability at least 1/2 + ε. By using O(log 1

δ ) independent
layers and reporting the majority of the results, the proba-
bilistic guarantee will be boosted to 1 − δ using Chernoff
bounds [30].

Let k be the number of buckets per layer. The compo-
nents of v are distributed into the k buckets in a γ+-wise
independent fashion, and for each bucket the PIRS sum of
those components is computed using δ′ = 1/γ2. Given
some w, let this layer raise an alarm only if all the k buck-
ets report alarms. The intuition is that if w contains more
than γ+ erroneous members, then the probability that every
bucket gets at least one such component is high; and if w
contains less than γ− erroneous members, then the proba-
bility that there exists some bucket that is not assigned any
erroneous members is also high.

The crucial factor that determines whether a layer could
possibly raise an alarm is the distribution of erroneous com-
ponents into buckets. The event that all buckets raise alarms
is only possible if each bucket contains at least one inconsis-
tent component. Let us consider all the inconsistent compo-
nents in w in some order, say w1, w2, . . ., and think of each
of them as a collector that randomly picks a bucket to “col-
lect”. Assume for now that we have enough inconsistent el-
ements, and let the random variable Y denote the number of
inconsistent components required to collect all the buckets,
i.e., Y is the smallest i such that w1, . . . , wi have collected
all the buckets. Then the problem becomes an instantia-
tion of the coupon collector’s problem [30] (viewing buck-
ets as coupons and erroneous components as trials). With
k buckets, it is known that E(Y ) = k ln k + O(k), there-
fore we set k such that γ = dk ln ke. It is easy to see that
k = O(γ/ ln γ), hence the desired storage requirement.

We need the following sharp bounds showing that Y can-
not deviate too much from its mean.

Lemma 2 ([30], Theorem 3.8) For any constant c′,

Pr[Y ≤ k(ln k − c′)] ≤ e−ec
′

+ o(1),

Pr[Y ≥ k(ln k + c′)] ≤ 1− e−e−c
′

+ o(1),

where o(1) is in terms of k.

Notice that ln γ ≤ 2 ln k for any k ≥ 2, so Lemma 2 also
infers that for any real constant c:

Pr[Y ≤ γ − c γ

ln γ
= γ−] ≤ e−ec + o(1), (5)

Pr[Y ≥ γ + c
γ

ln γ
= γ+] ≤ 1− e−e−c + o(1). (6)

Now, consider the following two cases. If w =γ− v,
then the probability that these less than γ− independent er-
roneous components cover all buckets is bounded by (5),
which is also the upper bound for the probability that the

layer raises an alarm. Thus, there exists some constant ε
such that the probability of raising a false alarm is (for large
γ)

e−e
c ≤ 1/2− ε,

for any c > ln ln 2. If w 6=γ+ v, then considering only
γ+ of the inconsistent components which are independently
distributed to the buckets, there are two cases in which a true
alarm is not raised: 1. These γ+ components do not cover
all buckets; and 2. All the buckets are covered but at least
one of them fails to report an alarm. The probability that the
first case occurs is bounded by (6); while the probability that
the second case happens is at most 1 − (1 − δ′)k. By the
union bound, the total probability that we produce a false
negative is at most

1−e−e−c +o(1) + 1− (1− δ′)k ≤ 2−ee−c −2−
2
γ +o(1).

For γ large enough, there exists a constant ε > 0 such that
this probability is at most 1/2− ε for any c > − ln ln 2.

To summarize, if c > max{ln ln 2,− ln ln 2} =
− ln ln 2, then both the false positive and false negative
probabilities are at most 1/2− ε for some constant ε at one
layer with k = O(γ/ log γ) buckets. Below we analyze
the error probabilities of using ` = O(log 1

δ ) independent
layers.

To drive down the error probabilities for both false pos-
itives and false negatives to δ, we use ` = O(log 1

δ ) layers
and report simple majority. We quantify this probability for
false negatives; the other case is symmetric.

Each layer can be viewed as a coin flip that raises a true
alarm with probability at least 1/2+ε. Let the random vari-
able Z denote the number of layers that raise alarms. This
process is a sequence of independent Bernoulli trials, hence
Z follows the binomial distribution. For ` independent lay-
ers, the expectation of Z is at least µ = (1/2 + ε)`. By
the Chernoff bound, the probability that a majority of layers
raise alarms is

Pr[Z <
1

2
`] = Pr[Z <

(
1− 2ε

1 + 2ε

)
µ] < e−

µ
2 ( 2ε

1+2ε )2

.

(7)
Therefore, we need to ensure that e−

µ
2 ( 2ε

1+2ε )2 ≤ δ, which
can be satisfied by taking ` = d 1+2ε

ε2 ln 1
δ e.

Finally, we use the technique discussed in Section 5.1 to
generate γ+-wise independent random numbers, by storing
O(γ+) = O(γ) truly random numbers per layer. We have
thus obtained the desired results:

Theorem 9 PIRS±γ uses O(γ log 1
δ (logm + log n)) bits

of space, spends O(γ log 1
δ ) time to process an update and

O(|w|(γ + log m
|w| ) log 1

δ ) time to perform a verification.

As mentioned before, the technique of [36] can be used
to obtain space-time trade-offs with respect to generating
the γ+-wise independent random numbers.
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5.3 Information Disclosure on Multiple At-
tacks

Similarly to the analysis in Section 4, since PIRSγ has false
negatives only, it is a randomized algorithm with one-sided
errors like PIRS. It is easy to prove that Theorem 5 holds
for PIRSγ as well.

PIRS±γ is a randomized algorithm with two-sided er-
rors, which is in favor of attackers and may be exploited by
a smart server, since a portion of the seeds can be excluded
both in the case that Alice is sending an incorrect answer
and when she is sending a correct answer but PIRS±γ re-
ports a false alarm. Using arguments similar to Theorem 5
the following can be stated:

Theorem 10 Assuming that Alice has returned a total of k
results w1, . . . ,wk to PIRS±γ , including both honest an-
swers and attacks, the probability that PIRS±γ correctly
identifies all consistent and inconsistent wi’s is at least
1− kδ.

Theorem 10 is slightly weaker than Theorem 5, since a new
possible attack strategy for Alice is to simply return cor-
rect results and wait until a sufficient portion of the seeds
have been ruled out before launching an attack. However,
since the success probability drops linearly to the number of
rounds, one can always intentionally set δ extremely small.
For instance, if we choose δ = 2−30, it will take Alice a
million rounds in order to have a 0.1% chance of launching
a successful attack. As always, information disclosure by
the clients is not necessary for most applications.

6 Tolerance for Small Errors
In this section we prove the hardness of solving CQVη (Def-
inition 3) using sub-linear space, even if approximations are
allowed. This problem can be interpreted as detecting if
there is any component of w that has an absolute error ex-
ceeding a specified threshold η. We show that this problem
requires at least Ω(n) bits of space.

Theorem 11 Let η and δ ∈ (0, 1/2) be user specified pa-
rameters. Given a data stream S, let X be any synopsis
built on v that given w: 1. raises an alarm with probability
at most δ if w ≈η v; and 2. raises an alarm with probabil-
ity at least 1− δ if w 6≈(2−ε)η v for any ε > 0. Then X has
to use Ω(n) bits.

Proof : We will reduce from the problem of approximat-
ing the infinity frequency moment, defined as follows. Let
A = (a1, a2, . . .) be a sequence of elements from the set
{1, . . . n}. The infinity frequency moment, denoted by F∞,
is the number of occurrences of the most frequent element.
Alon et al. [3] showed that any randomized algorithm that

makes one pass over A and computes F∞ with a relative
error of at most 1/3 and a success probability greater than
1 − δ for any δ < 1/2, has to use Ω(n) memory bits. In
particular, they proved that even if each element appears at
most twice, it requires Ω(n) bits in order to decide if F∞ is
1 or 2 with probability at least 1− δ.

Let X by a synopsis solving the problem stated in The-
orem 11. We will show how to use X to compute the in-
finity frequency moment for any A in which each element
appears at most twice. We will make one pass over A. For
any element i that we encounter, we update X with the tu-
ple s = (i, η). In the end, we verify w = 0 using X (v). If
X asserts that w ≈η v, we return F∞ = 1; if X asserts that
w 6≈(2−ε)η v, we return F∞ = 2. It is not difficult to see
that we have thus computed the correct F∞ with probability
at least 1− δ.

If we allow relative errors instead of absolute errors, the
problem is still difficult, as can be shown by setting s =
(i, n) for element i, and doing the verification with w =
(n/(1 + η), · · · , n/(1 + η)) in the proof above.

Given the hardness of solving CQVη, we are interested
in seeking alternative methods that might be able to give us
approximate answers using space less than the exact solu-
tion. Here we briefly discuss one such method.

The CM sketch. The CM sketch [18] uses O( 1
ε log 1

δ′ )
words of space and provides an approximate answer ṽi for
any i ∈ [n], that satisfies vi − 3ε||v||1 ≤ ṽi ≤ vi + 3ε||v||1
with probability 1 − δ′, for any ε ∈ (0, 1). However, this
does not make it applicable for solving CQVη as: 1. The
estimation depends on ||v||1 and it only works well for
skewed distributions. Even in that case, in practice the es-
timation works well only for the large vi’s; and 2. ||v||1 is
not known in advance. However, if we can estimate an up-
per bound on ||v||1, say ||v||1 ≤ Γ, then by setting ε = 1

3
η
Γ

and δ′ = δ/n, we can use the CM sketch to get approximate
answers ṽi such that |ṽi − vi| ≤ η holds for all i simulta-
neously with probability at least 1 − δ. Now, given some
w, we generate an alarm iff there exists some i such that
|wi − ṽi| ≥ 2η. This way, we give out a false alarm with
probability at most δ if w ≈η v, and generate an alarm with
probability 1 − δ if w 6≈3η v. For other w’s, no guarantee
can be made (see Figure 3). Especially, some false nega-
tives may be observed for some range of w. This solution
uses O( 1

ε log n
δ logW ) bits of space and O(log n

δ ) time per
update (W is the largest expressible integer in one word of
the RAM model). The space dependence on 1

ε is expen-
sive, as 1

ε = Γ
η in this case and the upper bound on ||v||1 in

practice might be large.
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viη

false negatives

η

ṽi

Figure 3. False negatives for the CM sketch
approach.

7 Extensions
In this section we discuss several extensions of PIRS. We
will focus on PIRS-1 for count queries only; the same argu-
ments apply to sum queries, as well as to PIRS-2, PIRSγ ,
and PIRS±γ .

Handling Multiple Queries. The discussion so far focused
on handling a single query per PIRS synopsis. Our tech-
niques though can be used for handling multiple queries si-
multaneously. Consider a number of aggregate queries on
a single attribute (e.g., packet size) but with different parti-
tioning on the input tuples (e.g., source/destination IP and
source/destination port). LetQ1, . . . ,Qk be k such queries,
and let the i-th query partition the incoming tuples into ni
groups for a total of n =

∑k
i=1 ni groups. A simple solu-

tion for this problem would be to apply the PIRS algorithm
once per query, using space linear in k. Interestingly, by
treating all the queries as one unified query of n groups we
can use one PIRS synopsis to verify the combined vector v.
The time cost for processing one update increases linearly
in k, since each incoming tuple is updating k components
of v at once (one group for every query in the worst case):

Corollary 1 PIRS-1 for k queries occupies O(log m
δ +

log n) bits of space, spendsO(k) time to process an update,
and O(|w| log m

|w| ) time to perform a verification.

Clearly, this is a very strong result, since we can effectively
verify multiple queries with a few words of memory.

Handling sliding windows. Another nice property
of PIRS-1 is that it is decomposable, i.e., for any
v1,v2,X (v1 + v2) = X (v1) · X (v2). (For PIRS-2, we
have X (v1 + v2) = X (v1) +X (v2)) This property allows
us to extend PIRS for periodically sliding windows using
standard techniques [20]. Again using our earlier example,
one such sliding window query might be the following.

SELECT SUM(packet_size) FROM IP_Trace
GROUP BY source_ip, destination_ip
WITHIN LAST 1 hour SLIDE EVERY 5 minutes

In this case, we can build a PIRS-1 for every 5-minute
period, and keep it in memory until it expires from the slid-
ing window. Assume that there are k such periods in the
window, and let X (v1), . . . ,X (vk) be the PIRS for these

periods. When the server returns a result w, the client com-
putes the overallX (v) =

∏k
i=1 X (vi), and then verifies the

result.

Corollary 2 For a periodically sliding window query with
k periods, our synopsis uses O(k(log m

δ + log n)) bits
of space, spends O(1) time to process an update, and
O(|w| log m

|w| ) time to perform a verification.

Synchronization. In our discussions we omitted super-
script τ for simplicity. Hence, an implicit assumption was
made that the result wτs returned by the server was synchro-
nized with X (vτc) maintained by the client, i.e., τs = τc.
Correct verification can be performed only if the server and
the client are synchronized. Obviously, such perfect syn-
chronization is hard to obtain in practice, especially in a
DSMS. Also, if n is large, transmitting the result itself takes
non-negligible time. The solution to this problem is as fol-
lows. Suppose that the client sends out a request to the
server asking for the query result at time τ , which is ei-
ther a time instance at present or in the future. When the
client has received sτ from the stream S and has computed
the synopsis for vτ , it makes a copy of X (vτ ), and contin-
ues updating PIRS. When the server returns the answer wτ ,
the client can do the verification using the snapshot. The
synchronization problem once again illustrates the impor-
tance of using small space, as keeping a copy (or potentially
many copies if there are significant delays in the server’s re-
sponse) could potentially become very expensive. Similar
ideas can be used on the server side for dealing with queries
referring to the past.

Exploiting locality. In many practical situations data
streams tend to exhibit a large degree of locality. Simply
put, updates to v tend to cluster to the same components. In
this setting, it is possible to explore space/time trade-offs.
We can allocate a small buffer used for storing exact aggre-
gate results for a small number of groups. With data local-
ity, a large portion of updates will hit the buffer. Whenever
the buffer is full and a new group needs to be inserted, a
victim is selected from the buffer using the simple least re-
cently used (LRU) policy. Only then does the evicted group
update PIRS, using the overall aggregate value computed
within the buffer. We flush the buffer to update PIRS when-
ever a verification is required. Since we are aggregating the
incoming updates in the buffer and update the synopsis in
bulk, we incur a smaller, amortized update processing cost
per tuple.

8 Empirical Evaluation
In this section we evaluate the performance of the proposed
synopses over two real data streams [6, 1]. The experimen-
tal study demonstrates that our synopses: 1. use very small
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WC IPs
Count 0.98 µs 0.98 µs
Sum 8.01 µs 6.69 µs

Table 1. Average update time per tuple.

space; 2. support fast updates; 3. have very high accuracy;
4. support multiple queries; and 5. are easy to implement.

8.1 Setup

Our synopses are implemented using GNU C++ and the
GNU GMP extension which provides arbitrary precision
arithmetic, useful for operating on numbers longer than 32
bits. The experiments were run on an Intel Pentium 2.8GHz
CPU with 512KB L2 cache and 512MB of main memory.
Our results show that using our techniques, even a low-
end client machine can efficiently verify online queries with
millions of groups on real data streams.

The World Cup (WC) data stream [6] consists of web
server logs for the 1998 Soccer World Cup. Each record
in the log contains several attributes such as a timestamp,
a client id, a requested object id, a response size, etc. We
used the request streams of days 46 and 47 that have about
100 millions records. The IP traces (IPs) data stream [1] is
collected over the AT&T backbone network; each tuple is
a TCP/IP packet header. Here, we are interested in analyz-
ing the source IP/port, destination IP/port, and packet size
header fields. The data set consists of a segment of one day
traffic and has 100 million packets. Without loss of gen-
erality, unless otherwise stated, we perform the following
default query: 1. Count or Sum (on response size) query
group-by client id/object id for the WC data set; 2. Count or
Sum (on packet size) query group-by source IP/destination
IP for the IPs data set. Each client id, object id, IP address,
the response size, or the packet size is a 32-bit integer. Thus,
the group id is 64-bit long (by concatenating the two group-
ing attributes), meaning a potential group space of n = 264.
The number of nonzero groups is of course far lower than
n: WC has a total of 50 million nonzero groups and IPs has
7 million nonzero groups.

8.2 PIRS

A very conservative upper bound for the total response size
and packet size ism = 1010 � n ≈ 2×1019 for all cases in
our experiments. So from our analysis in Section 4, PIRS-1
is clearly the better choice, and is thus used in our experi-
ments. We precomputed p as the smallest prime above 264

and used the same p throughout this section. Thus, each
word (storing p, α, and X (v)) occupies 9 bytes.

Space usage. As our analysis has pointed out, PIRS uses

only 3 words, or 27 bytes for our queries. This is in contrast
to the naı̈ve solution of keeping the exact value for each
nonzero group, which would require 600MB and 84MB of
memory, respectively.

Update cost. PIRS has excellent update cost which is cru-
cial to the streaming algorithm. The average per-tuple up-
date cost is shown in Table 1 for Count and Sum queries on
both WC and IPs. The update time for the two count queries
stays the same regardless of the data set, since an update al-
ways incurs one addition, one multiplication, and one mod-
ulo. The update cost for sum queries is higher, since we
need O(log u) time for exponentiation. The cost on WC
is slightly larger as its average u is larger than that of IPs.
Nevertheless, PIRS is still extremely fast in all cases, and is
able to process more than 105 tuples (106 tuples for count
queries) per second.

Detection accuracy. As guaranteed by the theoretical anal-
ysis, the probability of failure of PIRS-1 is δ ≤ m/p, which
is at most 0.5 × 10−9. Note that our estimate of m is very
conservative; the actual δ is much smaller. We generated
100, 000 random attacks and, not surprisingly, PIRS identi-
fied all of them.

8.3 PIRSγ and PIRS±γ

For the rest of the experiments, we focus on the Count query
on the WC data set. Similar patterns have been observed on
the IPs data set.

Update cost. In this set of experiments we study the per-
formance of PIRSγ and PIRS±γ . Clearly, PIRSγ has linear
update cost w.r.t the number of layers and γ (the number of
inconsistent groups to detect), as confirmed in Figure 4(a).
It is not hard to see that PIRSγ and PIRS±γ have almost the
same update cost if they are configured with the same num-
ber of layers. Essentially, each one has to generate the γ-
wise (or γ+-wise) independent random numbers on-the-fly
and update one PIRS synopsis at each layer. Hence, we only
show the cost for PIRSγ . However, the space cost of the
two synopses is different. PIRSγ , as an exact solution for
CQVγ , is expected to use much larger space than its coun-
terpart PIRS±γ , which gives approximate solutions. This
is demonstrated in Figure 5. By construction, at each layer
PIRSγ has O(γ2) and PIRS±γ O( γ

ln γ ) buckets, which is
easily observed in Figure 5(a) and 5(b) respectively.

Space/Time Trade-offs. If the client can afford to allocate
some extra space, but still cannot store the entire vector v,
as discussed in Section 7, it is possible to exploit the local-
ity in the input data streams to reduce the amortized update
cost. A simple LRU buffer has been added to PIRSγ and
PIRS±γ and its effect on update cost is reported in Figure
4(b) with γ = 10. Again, both synopses exhibit very sim-

12



 0

 40

 80

 120

 160

 200

 240

 0  5  10  15  20  25

u
p

d
a

t 
ti
m

e
 p

e
r 

tu
p

le
(m

ic
ro

s
s
e

c
s
)

gamma 

layer = 5 
layer = 10
layer = 15

(a) Update cost per tuple.
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Figure 4. PIRSγ ,PIRS±γ : running time.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  5  10  15  20  25  30  35

m
e

m
o

ry
 u

s
a

g
e

 (
K

B
)

gamma

layer = 5
layer = 10
layer = 15

(a) PIRSγ .
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(b) PIRS±γ .

Figure 5. PIRSγ , PIRS±γ: memory usage.

ilar behavior. As the figure indicates, a very small buffer
(up to 500 KB) that fits into the cache is able to reduce the
update cost by an order of magnitude. The improvement on
the update cost of this buffering technique depends on the
degree of locality in the data stream. Note that if this sim-
ple buffering technique is still insufficient for achieving the
desired update speed (e.g., when there is very little locality
in the data stream or γ is large) we could use the technique
of [36] to reduce the cost to O(log 1

δ ) (independent of γ)
by using extra space, but generating random numbers much
faster.

Detection accuracy. We observed that both of our synopses
can achieve excellent detection accuracy as the theoretical
analysis suggests. All results reported here are the ratios
obtained from 100, 000 rounds. Since the detection mech-
anism of the synopses does not depend on the data char-
acteristics, both data sets give similar results. Figure 6(a)
shows the ratios of raising alarms versus the number of ac-
tual inconsistent groups, with γ = 10 and 10 layers. As
expected, PIRSγ has no false positives and almost no false
negatives; only very few false negatives are observed with
10 and 11 actual inconsistent groups. On the other hand,
PIRS±γ has a transition region around γ and it does have
false positives. Nevertheless, the transition region is sharp
and once the actual number of inconsistent groups is slightly
off γ, both false positives and negatives reduce to zero. We
have also studied the impact of the number of layers on the

# queries 5 10 15 20
update time (µs) 5.0 9.9 14.9 19.8

memory usage (bytes) 27 27 27 27

Table 2. Update time and memory usage of
PIRS for multiple queries.

detection accuracy. Our theoretical analysis gives provable
bounds. For example with PIRSγ the probability of missing
an alarm is at most 1/2` (for ` layers). In practice, the prob-
ability is expected to be even smaller. We repeated the same
experiments using different layers, and Figure 6(b) reports
the result for PIRSγ . With less layers (4–6) it still achieves
excellent detection accuracy. Only when the number of ac-
tual inconsistent groups is close to γ, a small drop in the
detection ratio is observed. Figure 6(c) reports the same ex-
periment for PIRS±γ with layers from 10 to 20. Smaller
number of layers enlarges the transition region and larger
number of layers sharpens it. Outside this region, 100%
detection ratio is always guaranteed. Finally, experiments
have been performed over different values of γ’s and simi-
lar behavior has been observed.

8.4 Multiple Queries
Our final set of experiments investigates the effect of mul-
tiple, simultaneous queries. Without loss of generality, we
simply execute the same query a number of times. Note
that the same grouping attributes with different query ids
are considered as different groups. We tested with 5, 10,
15, and 20 queries in the experiments. Note that on the
WC data set, the exact solution would use 600MB for each
query, hence 12GB if there are 20 queries. Following the
analysis in Section 7, our synopses naturally support mul-
tiple queries and still have the same memory usage as if
there were only one query. Nevertheless, the update costs
of all synopses increase linearly with the number of queries.
In Table 2 we report the update time and memory usage for
PIRS; similar results were observed for PIRSγ and PIRS±γ .

9 Related Work
PIRS is a way of summarizing the underlying data streams.
In that respect our work is related with the line of work on
sketching techniques [3, 29, 9, 18, 21, 23]. As discussed
in Section 3, since these sketches are mainly designed for
estimating certain statistics of the stream (e.g. the frequency
moments), they cannot solve the verification problem.

Another approach for solving the CQV problem is to use
program execution verification [13, 40] on the DSMS of
the server. We briefly discuss two representatives from this
field [17, 42]. The main idea behind these approaches is for
the client to precompute hash values in nodes of the control
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(c) PIRS±γ , γ = 10.

Figure 6. Detection with tolerance for limited number of errors.

flow graph of the query evaluation algorithm on the server’s
DSMS. Subsequently, the client can randomly select a sub-
set of nodes from the expected execution path and ask the
server for the corresponding hashes. If the sever does not
follow the correct execution it will be unable to provide the
correct hashes. With guaranteed probability (with respect to
the sampling ratio) the client will be able to verify whether
the query has been honestly executed by the server or not.
Clearly, these techniques do not solve the CQV problem
since, first, the server can honestly execute the algorithm
throughout and only modify the results before transmitting
them to the client, and second, there is no way for the client
to compute the correct hashes of the program execution, un-
less if it is recomputing the same algorithm in real-time, or
storing the whole stream for later processing.

Various authentication techniques are also relevant to the
present work. The idea is that by viewing v as a mes-
sage, the client could compute an authenticated signature
σ(v) and any alteration to v will be detected. Here the
authenticated signature refers to any possible authentica-
tion techniques, such as RSA or Message Authentication
Code (MAC). However, a fundamental challenge in apply-
ing such techniques to our problem is how to perform in-
cremental updates using σ(v) alone, without storing v, i.e.,
in the present setting the message v is constantly updated.
Cryptography researchers have devoted considerable effort
in designing incremental cryptography [11]. Among them
incremental signature and incremental MAC [11, 12] are
especially interesting for this work. However, these tech-
niques only support updates for block edit operations such
as insert and delete, i.e., by viewing v as blocks of bits,
they are able to compute σ(v′) using σ(v) alone if v′ is ob-
tained by inserting a new block (or deleting an old block)
into (from) v. However, in our setting the update operation
is arithmetic: vτi = vτ−1

i + uτ , which cannot be handled
by simply deleting the old entry followed by inserting the
new one, since we only have uτ as input, and no access to
either vτ−1

i or vτi . Hence, such cryptographic approaches
are inapplicable.

There is also considerable work on authenticating query

execution in an outsourced database setting [37, 33, 27, 28].
Here, the client queries the publisher’s data through a third
party, namely the server, and the goal is to design efficient
solutions to enable the client to authenticate the query re-
sults. In [33, 27] cryptographic primitives such as digital
signatures and the Merkle hash tree are applied to design ef-
ficient index structures build by the data publisher to enable
authentication of query results. In [37], it is assumed that
the client possess a copy of the data and a random sampling
based approach (by posing test queries with known results)
is used. All these techniques apply only to offline settings
and not for online, one-pass streaming scenarios. In [28]
authentication of sliding window queries over data streams
has been studied, however, the outsourced model is differ-
ent from what we have presented here. The client does not
possess the data stream and the data publisher is responsible
for injecting “proofs” (in the forms of some cryptographic
primitives) into its data stream so that the server could con-
struct a verification object associated with a query requested
by the client. Hence, it is fundamentally different from the
problem we have studied in this paper (where the client and
the data publisher are the same entity).

Verifying the identity of polynomials is a fingerprinting
technique [30]. Fingerprinting is a method for efficient,
probabilistic checking of equality between two elements
x, y from a large universe U . Instead of testing the equality
using x, y deterministically with complexity at least log |U |,
a probabilistic approach is to pick a random mapping from
U to a significantly smaller universe V such that with high
probability x, y are identical if and only if their images in
V are identical. The images of x and y are their finger-
prints and their equality can be verified in log |V | time. Fin-
gerprint techniques generally employ algebraic techniques
combined with randomization. Classical examples include
verifying univariate polynomial multiplication [22], multi-
variate polynomial identities [35], and verifying equality of
strings [30]. We refer readers for an excellent discussion on
these problems to [30]. Although the general technique of
polynomial identity verification is known, our use of it in
the setting of query verification on data streams appears to
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be new.
We would like to point out that other security issues

for secure computation/querying over streaming and sen-
sor data start to receive attention recently. For example, or-
thogonal to our problem, [15, 24] have studied the problem
of secure in-network aggregation for aggregation queries in
sensor networks. Both works utilize cryptographic tools,
such as digital signatures, as building blocks for their algo-
rithms and assume the man-in-middle attack model. Fur-
thermore, the verifier does not have access to the original
data stream. Hence, they are fundamentally different from
our work. Nevertheless, they attest to the fact that secure
computation of aggregation queries has a profound impact
in many real applications.

10 Conclusion
The present work introduced an important new problem,
that of verifying query results in an outsourced data stream
setting. We proposed various space/time efficient prob-
abilistic algorithms for selection queries and aggregation
queries that can be reduced to count and sum. First, we pro-
posed algorithms for detecting any error in the results with
very high confidence. Then, we extended this algorithm
to identify query results with more than a pre-determined
number of errors. Finally, we proved that identifying query
results with large absolute or relative errors is hard. In the
future, we plan to investigate algorithms for join queries and
other types of aggregate functions, for example max/min.
Finally, we would like to extend these techniques for identi-
fying subsets of the result vectors than contain only correct
answers.
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