At-the-time and Back-in-time Persistent Sketches

Benwei Shi, Zhuoyue Zhao, Yanqing Peng, Feifei Li, Jeff M. Phillips

Use case: website access log

ip	date	time	other
67.85.119.gii	1/1/2021	00:00:04	
216.202.166.fie	1/1/2021	00:00:07	•••
67.85.119.gii	1/1/2021	00:00:07	
208.191.58.ced	1/1/2021	00:00:10	
216.202.166.fie	1/1/2021	00:00:11	
216.243.8.afh	1/1/2021	00:00:17	
67.85.119.gii	1/1/2021	00:00:19	
216.191.239.jdf	1/1/2021	00:00:23	
216.191.239.jdf	1/1/2021	00:00:24	
64.12.96.cib	5/25/2021	23:59:59	

- Frequent IPs from beginning to now?
- Frequent IPs from beginning to time *t*?
- Frequent IPs from time *t* to now?

Settings and notations

Given a data stream $A = (a_0, a_1, \dots, a_{n-1})$, with length *n*, too big to store locally.

Data:	a_0	<i>a</i> ₁	•••	<i>a</i> _{<i>t</i>-1}	a_t	•••	a_{n-t}	•••	<i>a</i> _{<i>n</i>-2}	a_{n-1}
A	0									n-1
A ^t	0			t-1						
A^{-t}							n-t			n-1

- Streaming sketch for A, only the last state of the whole stream.
- At-the-time persistent (ATTP) sketch for A^t, first t items in the stream, for any 0 ≤ t ≤ n given later.
 - Auditing any prior states of the stream
- Back-in-time persistent (BITP) sketch for A^{-t}, last t items in the stream, for any 0 ≤ t ≤ n given later.
 - Like sliding windows with all possible window size t.

Example: Streaming Reservoir Sampling

Algorithm: Reservoir Sampling

Input: $A = (a_0, a_1, \dots, a_{n-1})$

for $i = 0, \cdots, n-1$ do

 $b \leftarrow a_i$ with probability 1/(i+1)

end for

return b

i	0	1	2	3	4	5	6	7	8	9	10
a _i	z	x	У	x	x	У	x	z	У	x	Х
Streaming sketch	h z z	h x				h y				b = x	

Example: ATTP Reservoir Sampling

Algorithm: ATTP Reservoir Sampling

Input: $A = (a_0, a_1, \dots, a_{n-1}), j \leftarrow 0$ for $i = 0, \dots, n-1$ do $b_j \leftarrow a_i, t_j \leftarrow j, j \leftarrow j+1$ with probability 1/(i+1)end for return $b_0, \dots, b_{j-1}, t_0, \dots, t_{j-1}$

i	0	1	2	3	4	5	6	7	8	9	10
a _i	z	x	у	x	x	У	Х	Z	У	Х	Х
ATTP sketch	$b_0 = z$ $t_0 = 0$	$b_1 = x$ $t_1 = 1$				$b_2 = y$ $t_2 = 5$				$b_3 = x$ $t_2 = 9$	

• Simply run k ATTP Reservoir Sampling simultaneously to get a ATTP version of k random samples with replacement.

Random Sampling: Streaming vs ATTP

- Above two algorithm share same running time.
- ATTP sketch need more space for the sketch history.
 - Let S_n be the size of the ATTP Reservoir Sampling, we show that

 $\mathbb{E}(S_n) \le \ln n + 1 \in O(\ln n)$

• A random sample is one of the most versatile data sketch

Problems	Streaming (k)	ATTP
ε -QuantilesEstimation	$O\left(\frac{1}{\varepsilon^2} \log \frac{1}{\delta}\right)$	$O\left(\frac{1}{\varepsilon^2}\log\frac{n}{\delta}\right)$
ε -FrequencyEstimation	$O\left(\frac{1}{\varepsilon^2} \log \frac{1}{\delta}\right)$	$O\left(\frac{1}{\varepsilon^2} \log \frac{n}{\delta}\right)$
arepsilon-ApproximateRangeCount with VC-dimension $ u$	$O\left(\frac{\nu}{\varepsilon^2}\log\frac{1}{\delta}\right)$	$O\left(\frac{\nu}{\varepsilon^2}\log\frac{n}{\delta}\right)$
ε-KernelDensityEstimation	$O\left(\frac{1}{\varepsilon^2} \log \frac{1}{\delta}\right)$	$O\left(\frac{1}{\varepsilon^2}\log\frac{n}{\delta}\right)$

ATTP Random Sampling vs BITP Random Sampling

• Without replacement sampling of size k = 4

ATTP Random Sampling vs BITP Random Sampling

• Without replacement sampling of size k = 4

BITP Random Sampling

• Without replacement sampling of size k = 4

- Same size with ATTP random sample asymptoticly.
- Same update time, O(1), for each item asymptoticly.
- If using interval tree to speed up query time, then need $O(\log k)$ update time.

Streaming Misra-Gries

Space: $\frac{1}{\varepsilon} = 3$, An ε -FrequencyEstimation: $f(a) - \hat{f}(a) \le \varepsilon n$

ATTP Misra-Gries with Checkpoints

An ATTP (2 ε)-FrequencyEstimation: $f(a) - \hat{f}(a) \le 2\varepsilon n$ need space $0\left(\frac{1}{\varepsilon^2}\log n\right)$ at most.

ATTP Misra-Gries with Elementwise Improvements Chain Misra-Gries (CMG)

An ATTP (2 ε)-FrequencyEstimation: $f(a) - \hat{f}(a) \le 2\varepsilon n$ need space $0\left(\frac{1}{\varepsilon}\log n\right)$ at most.

From Mergeability to ATTP and BITP Sketches

- Any "mergeable" (includes sampling, linear) sketches can be made ATTP and BITP with small overhead.
- Some more specialized ATTP and BITP results:

Algorithms	For Problem	ATTP Size	BITP Size
Misra-Gries	<i>ɛ</i> -FrequencyEstimation	$O\left(\frac{1}{\epsilon}\log n\right)$ (Chain Misra-Gries)	$O\left(\frac{1}{\epsilon^2}\log n\right)$ (Tree Misra-Gries)
FrequentDirections	<i>ɛ</i> -MatrixCovariance	$O\left(rac{\mathbf{d}}{\mathbf{\epsilon}}\mathbf{log}\ \mathbf{A}\ _{\mathbf{F}} ight)$	$O\left(\frac{1}{\epsilon^2} log \ A\ _F\right)$

Main results for ATTP and BITP sketches

Problems	BITP	ATTP						
ε -QuantilesEstimation	$O\left(\left(1/\varepsilon^2\right)\log n\right)^*$	$O\left(\left(1/\varepsilon^2\right)\log n\right)^*$						
wt. ε -QuantilesEstimation	$O\left(\left(1/\varepsilon^2\right)\log n\right)^*$	$O\left(\left(1/\varepsilon^2\right)\log n\right)^*$						
ε -FrequencyEstimation	$O\left(\left(1/\varepsilon^2\right)\log n\right)$	$O((1/\varepsilon)\log n)$						
wt. ε -FrequentEstimation	$O\left(\left(1/\varepsilon^2\right)\log n\right)^*$	$O\left(\left(1/\varepsilon^2\right)\log n\right)^*$						
ε -ApproximateRangeCount	$O\left(\left(1/\varepsilon^2\right)\log n\right)^*$	$O\left(\left(1/\varepsilon^2\right)\log n\right)^*$						
wt. ε -ApproximateRangeCount	$O\left(\left(1/\varepsilon^2\right)\log n\right)^*$	$O\left(\left(1/\varepsilon^2\right)\log n\right)^*$						
ε -KernelDensityEstimation	$O\left(\left(1/\varepsilon^2\right)\log n\right)^*$	$O\left(\left(1/\varepsilon^2\right)\log n\right)^*$						
ε -MatrixCovariance	$O\left(\left(d/\varepsilon^2\right)\log\ A\ _F\right)$	$O((d/\varepsilon)\log A _F)$						
Weighted at watco whith U-bounde	d weights: $\frac{\max weight}{\min weight}$	$\leq U$, and $U = poly(n)$; $O\left(\binom{\alpha}{d^2/\alpha}\log d\log\left(\frac{\alpha}{\epsilon}\right) A _{2}^{2}\right)$						
: Randomized with high probability.								

Experiments: ATTP Heavy Hitter

- Sampling: ATTP random sampling without replacement.
- CMG: ATTP Chain Misra-Gries.
- PCMHH: persistent Count-Min sketch (Z. Wei et. al., 2015).

Experiments: BITP Heavy Hitter

- Sampling: BITP random sampling without replacement.
- TMG: Tree Misra-Gries.
- PCMHH: persistent Count-Min sketch.

Conclusion

- We defined the new concept of ATTP sketches and BITP sketches which only require a logarithmic overhead on most existing sketches.
- We described frameworks for making ATTP/BITP sketches from existing streaming/mergeable sketches. We also gave several ATTP and BITP algorithms and theoretically analyzed them for different types of sketching problems.

Data	<i>a</i> ₀	<i>a</i> ₁	•••	a_{t-1}	a _t	•••	a_{n-t}	•••	<i>a</i> _{<i>n</i>-2}	<i>a</i> _{<i>n</i>-1}
A	0									n-1
A ^t	0			t-1						
A^{-t}							n-t			n-1

- A streaming sketch for A.
- An ATTP sketch for A^t for any $0 \le t \le n$ given later.
- A *BITP* sketch for A^{-t} for any $0 \le t \le n$ given later.