
1 Efficient Oblivious Query Processing for
2 Range and kNN Queries
3 Zhao Chang , Dong Xie, Feifei Li, Jeff M. Phillips, and Rajeev Balasubramonian

4 Abstract—Increasingly, individuals and companies adopt a cloud service provider as a primary data and IT infrastructure platform. The

5 remote access of the data inevitably brings the issue of trust. Data encryption is necessary to keep sensitive information secure and

6 private on the cloud. Yet adversaries can still learn valuable information regarding encrypted data by observing data access patterns.

7 To solve such problem, Oblivious RAMs (ORAMs) are proposed to completely hide access patterns. However, most ORAM

8 constructions are expensive and not suitable to deploy in a database for supporting query processing over large data. Furthermore, an

9 ORAM processes queries synchronously, hence, does not provide high throughput for concurrent query processing. In this article, we

10 design a practical oblivious query processing framework to enable efficient query processing over a cloud database. In particular, we

11 focus on processing multiple range and kNN queries asynchronously and concurrently with high throughput. The key idea is to

12 integrate indices into ORAM which leverages a suite of optimization techniques (e.g., oblivious batch processing and caching). The

13 effectiveness and efficiency of our oblivious query processing framework is demonstrated through extensive evaluations over large

14 datasets. Our construction shows an order of magnitude speedup in comparison with other baselines.

15 Index Terms—Data privacy, oblivious RAM, oblivious query processing, range and kNN query

Ç

16 1 INTRODUCTION

17 INCREASINGLY, individuals and companies choose to move
18 their data and IT operations to a cloud service provider
19 (e.g., Azure, AWS) and use the cloud as their primary infra-
20 structure platform. While utilizing a cloud infrastructure
21 offers many attractive features and is a cost-effective solu-
22 tion in many cases, the potential risk of compromising sen-
23 sitive information poses a serious threat.
24 A necessary step for keeping sensitive information secure
25 and private on the cloud is to encrypt the data. To that end,
26 encrypted databases such as Cipherbase [1], [2], CryptDB
27 [3], TrustedDB [4], SDB [5], and Monomi [6], as well as vari-
28 ous query execution techniques over encrypted databases
29 [7], [8], [9], [10] have been developed. But query access pat-
30 terns over an encrypted database can still pose a threat to
31 data privacy and leak sensitive information, even if the data
32 is encrypted before uploading to the cloud and a secure
33 query processing method over encrypted data is used [11],
34 [12], [13], [14]. Islam et al. [15] demonstrate that an attacker
35 can identify as much as 80 percent of email search queries by
36 observing the access pattern of an encrypted email reposi-
37 tory alone. Moreover, by counting the frequency of accessing
38 data items from the clients, the server is able to analyze the
39 importance of different areas in the database. With certain
40 background knowledge, the server can learn a great deal
41 about client queries and/or data. For example, knowing that

42the database stores spatial POIs from NYC, the most fre-
43quently accessed records are probably from Manhattan area
44[11]. The recent Spectre attack [16] shows that potentially
45vulnerable code patterns can be exploited easily by engaging
46speculation features in processors. At its heart, the attack
47takes advantage of the fact that internal program secrets are
48betrayed by the program’s access pattern. It thus highlights
49the importance of ORAM primitives in protecting an
50application’s access pattern and its sensitive data.
51The examples above highlight the necessity of hiding the
52access patterns of clients’ operations on a cloud and protect
53against the sensitive information leakage. To that end,
54Oblivious RAM (ORAM) is proposed by Goldreich [17] and
55Ostrovsky [18] to protect the client’s access patterns from
56the cloud. It allows a client to access encrypted data on a
57server without revealing her access patterns to the server.
58However, most existing practical ORAM constructions
59are still very expensive, and not suitable for deployment in a
60database engine to support query processing over large data
61[11]. Furthermore, an ORAM by itself does not support
62query-level concurrency, i.e., an ORAM processes incoming
63queries synchronously: a new query request is not processed
64until a prior ongoing query has been completed. This creates
65a serious bottleneck under concurrent loads in a database set-
66ting with multiple clients. Many ORAM constructions [17],
67[19], [20], [21], [22], [23] do not even support operation-level
68concurrency, i.e., these ORAMs handle operations (each oper-
69ation is to read or write a block) synchronously. Recent studies
70have addressed this issue and proposed various parallel
71ORAMs at the storage level that can handle operations asyn-
72chronously, e.g., PrivateFS [24], Shroud [25], ObliviStore [26],
73CURIOUS [27], and TaoStore [28], hence, achieving opera-
74tion-level concurrency at the storage level.
75Since each query (e.g., a range or a kNN query) consists
76of a sequence of read operations (read a block, which will

� The authors are with the School of Computing, University of Utah, Salt
Lake City, UT 84112 USA. E-mail: {zchang, dongx, lifeifei, jeffp, rajeev}
@cs.utah.edu.

Manuscript received 5 Oct. 2019; revised 18 Oct. 2020; accepted 17 Feb. 2021.
Date of publication 0 . 0000; date of current version 0 . 0000.
(Corresponding author: Zhao Chang.)
Recommended for acceptance by P. Pietzuch.
Digital Object Identifier no. 10.1109/TKDE.2021.3060757

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

1041-4347 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6846-7614
https://orcid.org/0000-0002-6846-7614
https://orcid.org/0000-0002-6846-7614
https://orcid.org/0000-0002-6846-7614
https://orcid.org/0000-0002-6846-7614
mailto:zchang@cs.utah.edu
mailto:dongx@cs.utah.edu
mailto:lifeifei@cs.utah.edu
mailto:jeffp@cs.utah.edu
mailto:rajeev@cs.utah.edu

77 also result in write operations when operating over an
78 ORAM structure), parallel ORAMs with their support for
79 operation-level concurrency are useful in reducing query latency,
80 which will improve system throughput indirectly, but they
81 are not designed for improving system throughput. For example,
82 a single expensive query that consists of many operations
83 can still seriously hurt system throughput even if its latency
84 has been reduced. In short, operation-level concurrency
85 using a parallel ORAM storage engine does not lead to
86 query-level concurrency in a query engine.
87 Just to clarify, our query-level concurrency works in a
88 batched manner. It means that if any query q1 (in the last
89 batch) is currently executed and a new query q2 arrives in
90 the meantime, we will not run q2 instantly. Query q2 will not
91 start until all the queries in the last batch (including q1) are
92 completed. If another query q3 arrives before the last batch
93 (containing q1) is completed, the execution of q2 and q3 can
94 be performed concurrently in the next batch. The details
95 will be demonstrated in Sections 4.4 and 4.5.
96 Prior efforts mainly focus on designing efficient query
97 processing protocols for specific types of queries, e.g., join
98 [29], [30] and shortest path [19], [31]. Some studies focus on
99 providing theoretical treatment for SQL queries [13], but are

100 of only theoretical interest. There are also investigations
101 working on designing oblivious data structures [14], [32] that
102 help improve the efficiency of certain queries (e.g., binary
103 search) compared to processing these queries using a stan-
104 dard ORAM construction. The idea is that for some query
105 algorithms which exhibit a degree of predictability in their
106 access patterns, it will be beneficial to have customized and
107 more efficient ORAM constructions [32].
108 To the best of our knowledge, Opaque [12] and ObliDB
109 [33] are the state-of-the-art studies concerning generic oblivi-
110 ous analytical processing. However, to support kNN or range
111 queries, Opaque needs to perform expensive scan-based
112 operations (see Baseline part in Section 3). ObliDB [33]
113 exploits indexed storage method and builds oblivious B+
114 trees to support point and range queries. In their implemen-
115 tation, data is fixed to one record per block. But in our
116 implementation of oblivious B-tree in Section 4.2, each
117 block contains B bytes, and the number of records that fit in
118 each data block is QðBÞ rather than one. Hence, our design
119 is more suitable for hard disk storage and reduces the num-
120 ber of disk seeks in query processing. We also leverage a
121 suite of optimization techniques including batch processing
122 and ORAM caching. Extensive experimental evaluation
123 shows that our design with those optimizations achieves an
124 order of magnitude speedup in terms of query throughput,
125 in comparison with Opaque method (without the distrib-
126 uted storage) and the basic oblivious index baseline (similar
127 to ObliDB).
128 Our Contributions. We propose a general oblivious query
129 processing framework (OQF) for cloud databases, which is
130 efficient and practical (easy to implement and deploy) and
131 supports concurrent query processing (i.e., concurrency
132 within a query’s processing) with high throughput. This
133 work focuses on (one and multi-dimensional) range and
134 kNN queries, and explores the design of OQF that is much
135 more efficient than baseline approaches. The proposed
136 framework can be extended to handle other query types
137 (e.g., joins), which is an active ongoing work. In particular,

138� We formalize the definition of an oblivious query
139processing framework (OQF) and review the back-
140ground of oblivious query processing in Section 2.
141� We describe the architecture of our OQF design in
142Section 3, and a present baseline instantiation based
143on a standard ORAM protocol.
144� We present our design of an OQF in Section 4 that
145achieves concurrent query processing with high
146throughput using the idea of integrating an (oblivi-
147ous) index into ORAM and also leveraging a suite of
148optimization techniques (e.g., oblivious batch proc-
149essing and caching).
150� We conduct extensive experiments in Section 5 using
151our oblivious query processing framework on large
152datasets. The results demonstrate a superior perfor-
153mance gain (at least one order of magnitude)
154achieved by our design over baseline constructions.
155The paper is concluded in Section 7 with a review of
156related work in Section 6.

1572 PRELIMINARIES

1582.1 Problem Definition and Security Model

159Consider a client who would like to store her data D on a
160remote server (e.g., cloud) and ask other clients (including
161herself) to issue queries (such as range and k nearest neigh-
162bor queries). A trusted coordinator collects queries from dif-
163ferent clients and answers them by interacting with the
164server. The communication between clients and the coordi-
165nator are secured and not observed by the server. Index
166structures such as B-tree and R-tree are often built to enable
167efficient query processing. Suppose the query sequence to
168the server for queries collectively issued by all clients is
169fðop1; arg1Þ, . . . , ðopm; argmÞg, where opi is a query type
170(which may be range or kNN in our context) and argi pro-
171vides the arguments for the ith query qi. Our goal is to pro-
172tect the privacy of clients by preventing the server from
173inferring knowledge about the queries themselves, the
174returned results, and the databaseD.
175While traditional encryption schemes can provide confi-
176dentiality, they do not hide data access patterns. This ena-
177bles the server to infer the query behavior of clients by
178observing access locality from the index structure and the
179data itself. Formally, our problem can be defined as below:

180Definition 1. ObliviousQueryProcessing: Given an input
181query sequence ~q ¼ fðop1, arg1Þ, ðop2, arg2Þ, . . . , ðopm,
182argmÞg, an oblivious query processing protocol P should inter-
183act with an index structure I built on the server over the
184encrypted database D to answer all queries in ~q such that all
185contents of D and I stored on the server and messages involved
186between the coordinator and the server should be confidential.
187Denote the access pattern produced by P for~q as P ð~qÞ. In addi-
188tion to confidentiality, for any other query sequence ~q� so that
189the access patterns P ð~qÞ and P ð~q�Þ have the same length, they
190should be computationally indistinguishable for anyone but the
191coordinator and clients.

192Security Model. Note that multiple clients may exist and
193retrieve the data as long as they are trusted by the client
194who is the original data owner and follow the same client
195side protocol. In this paper, we consider an “honest-but-

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

196 curious” server, which is consistent with most existing work
197 in the literature. To ensure confidentiality, the client needs
198 to store the secret keys of a symmetric encryption scheme.
199 The encryption should be done with a semantically secure
200 encryption scheme, and therefore two encrypted copies of
201 the same data block look different [34]. The client should re-
202 encrypt a block before storing it back to the cloud and
203 decrypt a block after retrieving it. Since these encryption/
204 decryption operations are independent of the design of an
205 OQF, we may omit them while describing an OQF.
206 Data is encrypted, retrieved, and stored in atomic units
207 (i.e., blocks), same as in a database system.Wemust make all
208 blocks of the same size; otherwise, the cloud can easily distin-
209 guish these blocks by observing the differences in size. We
210 use N to denote the number of real data blocks in the data-
211 base. Each block in the cloud or client storage contains B
212 bytes (note that the number of entries that fit in a block is
213 QðBÞ and the constants will vary depending on the entry
214 types, e.g., encrypted record versus encrypted index entry).
215 Definition 1 implies that we must make different access
216 types (read and write operations) indistinguishable. This is
217 achieved by performing read-then-write (potentially a
218 dummy write) operations, which is commonly used in exist-
219 ing ORAMs. Our security definition requires indistinguish-
220 ability only for query sequences inducing access patterns of
221 the same length. We will discuss how to protect against vol-
222 ume leakage from range query by introducing padding
223 techniques in Section 4.6.
224 Definition 1 does not consider privacy leakage through
225 any side-channel attack like time taken for each operation
226 (timing attack). Existing work [35] actually offers mecha-
227 nisms for bounding ORAM timing channel leakage to a
228 user-controllable limit. Oblix [36] also considers any side-
229 channel leakage as out of scope. Orthogonal solutions [37],
230 [38] in Oblix also work for our setting.

231 Remarks. Note that our setting is that multiple clients submit
232 queries at any time instead of the scenario where one unique
233 client makes a large number of queries. The coordinator
234 runs the oblivious query algorithms acting as a trusted
235 middle layer between multiple clients and the untrusted
236 cloud (the same setting in TaoStore [28]). The coordinator
237 and the clients are in a closed and private internal network.
238 Analogously, ObliviStore [26] hosts the trusted compo-
239 nents in a small-scale private cloud, while outsourcing the
240 untrusted storage to a remote cloud. If the cloud has a
241 secure hardware that comes with trusted private memory
242 regions, e.g., the enclave from SGX [39], we canmake it co-
243 located on the cloud, serving as the trusted coordinator.

244 2.2 ORAM and Oblivious Data Structure

245 Oblivious RAM.Oblivious RAM (ORAM) is first proposed by
246 Goldreich andOstrovskywhere the keymotivation is to offer
247 software protection from an adversary who can observe the
248 memory access patterns. In the ORAM model, the client,
249 who has a small but private memory, wants to store and
250 retrieve her data using the large but untrusted server storage,
251 while preserving data privacy. Generally, ORAM ismodeled
252 similar as a key-value store. Data is encrypted, retrieved, and
253 stored in atomic units (i.e., blocks) annotated by unique
254 keys. An ORAM construction will hide access patterns of

255block operations (i.e., get() and put()) tomake them com-
256putationally indistinguishable to server.
257An ORAM construction consists of two components:
258anORAMdatastructure and anORAMqueryprotocol, where a
259part of the ORAM data structure is stored on the server
260side, and another (small) part of the ORAM data structure
261is stored on the client side. Client and server then run the
262ORAM query protocol to read and write any data blocks.
263Path-ORAM. Path-ORAM is a key representative among
264proposed ORAM constructions due to its good performance
265and simplicity [11], [23]. It organizes the server side ORAM
266structure as a full binary tree where each node is a bucket
267that holds up to a fixed number of encrypted blocks (from
268the client’s database), while the client hosts a small amount
269of local data in a stash. Path-ORAM maintains the invariant-
270that at any time, each block b is mapped to a leaf node cho-
271sen uniformly at random in the binary tree, and is always
272placed in some bucket along the path to the leaf node that b
273is mapped to. The private stash stores a small set of blocks
274that have not been written back to the server.
275When block b is requested by the client, Path-ORAM pro-
276tocol will retrieve an entire path, with the leaf node that b is
277mapped to, from the server into the client’s stash. Then, the
278requested block b is re-mapped to another leaf node, and
279the entire path that was just accessed is written back to the
280server. When a path is written back, additional blocks may
281be evicted from the stash if the above invariant is preserved
282and there is free space in some bucket along that path.
283In this construction, the client has to keep a position map
284to keep track of the mapping between blocks and leaf node
285IDs, which brings a linear space cost to the client; note that
286even though it is linear with N , the number of blocks in the
287database, the mapping information is much smaller than
288the actual database size. We may choose to recursively build
289Path-ORAMs to store position maps until the final level
290position map is small enough to fit in client memory.
291To store N blocks of size B, a basic Path-ORAM protocol
292requires OðlogN þN=BÞ client side blocks and can process
293each request at a cost of OðlogNÞ. In a recursive Path-
294ORAM, the client needs a memory size of OðlogNÞ and
295each request can be processed in Oðlog BN � logNÞ cost.
296Oblivious Data Structure. For certain data structure (such
297as map and queue) whose data access pattern exhibits some
298degree of predictability, one may improve the performance
299of oblivious access by making these data structures
300“oblivious” (in the memory hierarchy sense), rather than
301simply storing (data and index) blocks from such a data
302structure bluntly into a generic ORAM construction. Wang
303et al. [32] design oblivious data structures and algorithms
304for some standard data structures. In particular, they pro-
305pose the methodology to build oblivious data structures for
306AVL tree. The main idea is that each node keeps the posi-
307tion map information of its children nodes together with
308their page IDs. When retrieving a node from this oblivious
309data structure, we acquire the position map for its children
310simultaneously. Note that most query algorithms over tree
311indices traverse the tree from the root to the leaf. As a result,
312the client only needs to remember the position tag for the
313root node block, and all other position map information can
314be fetched on the fly from the oblivious data structure
315stored on the server.

CHANG ET AL.: EFFICIENT OBLIVIOUS QUERY PROCESSING FOR RANGE AND KNN QUERIES 3

316 3 FRAMEWORK

317 Our proposed OQF consists of four parties: the data owner,
318 clients (data owner can be a client), a trusted coordinator,
319 and the server. The trusted coordinator has limited storage,
320 and answers queries from different clients by interacting
321 with the server while ensuring the security in Definition 1.
322 In a pre-processing step, the data owner partitions
323 records in the database D into blocks, encrypts these data
324 blocks, and builds an ORAM data structure (e.g., Path-
325 ORAM) over these data blocks. She then uploads both
326 encrypted data blocks and the ORAM data structure to the
327 server. She shares the encryption/decryption keys and
328 other metadata (e.g., position map in Path-ORAM), which
329 are needed to execute an ORAM protocol, with the coordi-
330 nator. The server stores the encrypted data blocks and the
331 ORAM data structure into a secure cloud data storage.
332 Subsequently, clients may issue (range and kNN) queries
333 against the cloud server through the coordinator. Using an
334 oblivious query algorithm that will be described later in
335 details, the coordinator reads/writes blocks from/to the server
336 based on an ORAM protocol and returns query results to the
337 clients. The clients and the coordinator are trusted. The com-
338 munication between them are secured and not observed by
339 the cloud. The oblivious query framework is shown in Fig. 1.
340 Note that an ORAM protocol refers to steps taken in order to
341 read or write a single data block securely and obliviouslywith the
342 help of the ORAM metadata on the coordinator and the
343 ORAM data structure on the server. The oblivious query
344 algorithm is constructed based on this ORAM protocol to
345 answer a range or kNN query securely and obliviously.
346 Baseline. The most straightforward solution is to encrypt
347 each data block from the database D, store these encrypted
348 blocks to the server, and process queries obliviously by scan-
349 ning through all the encrypted blocks over the coordinator.
350 Specifically, the coordinator can answer a range query
351 simply by retrieving each encrypted data block from the
352 server, decrypting it and checking all records in the block
353 against the query range. For a kNN query, the coordinator
354 will scan through all encrypted data blocks as well, calcu-
355 late the distance from each data point to the query, and
356 maintain a bounded priority queue to figure out the global
357 kNN result. Note that the coordinator has to retrieve every
358 encrypted block in a fixed order to process each query. From
359 the server’s perspective, the access pattern from the coordi-
360 nator is always the same, thus no information can be
361 inferred by observing access patterns. As a result, simple
362 encryption is enough and ORAM is not required.
363 This baseline is clearly very expensive, but simple to
364 implement. This is essentially the solution explored by the
365 recent work known as Opaque [12]. Opaque uses the above
366 baseline with a distributed cloud storage.

3674 EFFICIENT OQF

3684.1 Integrate an Index into ORAM

369A better solution is to add an index (e.g., B-tree or R-tree)
370over the database D before uploading data to the cloud. It
371takes some care to utilize the index obliviously though.
372The key idea is to ignore the semantic difference of the
373(encrypted) index and data blocks from the data owner, and
374store all the blocks into an ORAM construction, say Path-
375ORAM. Take B-tree as an example: each node in a B-tree
376can be organized in a disk page as shown in Fig. 2a; the
377pointers to its children nodes in the tree are page IDs.
378Hence, we can treat such pages as ORAM blocks uniquely
379identified by their page IDs (i.e., ORAM block IDs).
380In this case, the ORAM data structure on the server is the
381Path-ORAM data structure over both encrypted index and
382data blocks. The ORAM protocol is simply the read and
383write (a single block) operations through Path-ORAM.
384When answering a query, we follow the range or kNN
385query algorithm in a B-tree or R-tree, and start with
386retrieving the root block (of the index) from the server.
387We then traverse down the tree to answer the incoming
388query. Whenever we need a tree node that does not reside
389in the coordinator memory, we retrieve the block by look-
390ing up its block ID through the ORAM protocol. Intui-
391tively, we query the index structure by running the same
392algorithm as that over a standard B-tree or R-tree index.
393The only difference is that we are retrieving index and
394data blocks through an ORAM protocol with the help of
395the ORAM data structure.
396Suppose we exploit the basic Path-ORAM protocol as the
397underlying ORAM protocol. Retrieving a block has OðlogNÞ
398overhead in both communication and computation, whereN
399is the total number of data blocks. The fanout for index blocks
400isQðBÞ, where B is the block size in bytes. Now take a B-tree
401point query as an example. Each point query would cost
402Oðlog BN � logNÞ, where the height of B-tree is Oðlog BNÞ.
403Recall that the basic Path-ORAM protocol requiresOðlogN þ
404N=BÞ client side memory to record the position map, which
405may be not practical for a coordinator over a large dataset. To
406address this problem, we can adopt recursive Path-ORAM
407protocol which only requires OðlogNÞmemory in the coordi-
408nator but increases the cost of retrieving one block to
409Oðlog BN � logNÞ. Hence, the above B-tree query algorithm
410will costOðlog 2

BN � logNÞ.
411One can easily generalize this query algorithm to range
412and kNN queries using the corresponding range and kNN
413query algorithms for a B-tree or an R-tree.

4144.2 Oblivious B-Tree and R-Tree

415Another approach is to explore the idea of building an oblivi-
416ous data structure [14], [32], which will eliminate the need of
417storing any position map at the coordinator. In particular,
418Wang et al. [32] leverage pointer-based technique to build an
419oblivious AVL tree. In our design, we simply replace a stan-
420dard B-tree or R-tree in Section 4.1 with an oblivious B-tree

Fig. 1. Oblivious query framework.

Fig. 2. B-tree internal node layout.

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

421 or R-tree. Note that B-tree/R-tree has much larger fanout in
422 index levels than AVL tree and then achieves a lower tree
423 height. SupposeN is the number of real data blocks and B is
424 the block size in bytes. In B-tree/R-tree, the fanout is QðBÞ
425 and the tree height is Oðlog BNÞ; but in AVL tree, the fanout
426 is only two, which leads to OðlogNÞ tree height. Since the
427 cost of searching over a tree index is related to the tree height,
428 oblivious B-tree/R-tree achieves higher query performance
429 than oblivious AVL tree.
430 The main idea of building oblivious tree structures is
431 that each node in the index keeps the position map infor-
432 mation of its children nodes together with their block IDs.
433 Fig. 2b shows the new B-tree node for an oblivious B-tree.
434 When retrieving a node from the server using the ORAM
435 protocol, we have acquired the position map for its chil-
436 dren nodes simultaneously. Note that most query algo-
437 rithms over tree indices traverse the tree from the root to
438 leaf nodes. As a result, the coordinator only needs to
439 remember the position tag of the root node, and all other
440 position map information can be fetched on the fly as
441 part of the query algorithm.
442 As before, the Path-ORAM structure on the cloud stores
443 both index and data blocks and makes no distinction
444 between these two types of blocks. We illustrate how to
445 answer a query obliviously in this case, using again B-tree
446 point query as an example (see Fig. 3 for an illustration):

447 1) The coordinator retrieves the root node block from
448 the cloud through the Path-ORAM protocol by using
449 its position map, and then assigns the root node
450 block to a random leaf node ID in the Path-ORAM
451 tree by altering its position map.
452 2) By observing key values in the retrieved node b, the
453 coordinator decides which child node to retrieve
454 next and acquires its position map information
455 directly from the parent node b.
456 3) The coordinator retrieves the child node using the
457 position map acquired in the last step and assigns a
458 new random leaf node ID to the child node block by
459 altering the position map stored in its parent node.
460 4) Repeat Step 2 and 3 until the coordinator reaches a
461 leaf node. The record(s) that matches the point query
462 search key will be found.
463 Note that when retrieving any node b other than the root
464 node, we need to alter the position tag of its parent node to
465 store the fact that b is assigned to the path with a new

466random leaf node in the Path-ORAM tree. Thus, we need to
467modify the Path-ORAM protocol slightly, to prevent the
468protocol from writing an index block back to the cloud
469while we are still traversing its descendants.
470In summary, by integrating the position map information
471to the block content of a tree node, we can avoid saving the
472full position map in coordinator memory or using the
473expensive recursive Path-ORAM construction. Specifically,
474this new method requires OðlogNÞ coordinator memory,
475which includes the Path-ORAM stash (with OðlogNÞ size)
476and the memory needed (with Oðlog BNÞ size) to store the
477traversed path for updating the position map information
478recursively. Its query cost for each B-tree point query is
479Oðlog BN � logNÞ, the same as that of using the original
480Path-ORAM construction with a standard index.
481Lastly, a similar design and analysis can be carried out
482for constructing an oblivious R-tree from a standard R-tree;
483we omit the details in the interest of space.

4844.3 A Comparison of Different Designs

485Table 1 compares Baseline (Opaque) in Section 3 (essen-
486tially Opaque method [12] without distributed storage in
487cloud), ORAM+Index in Section 4.1 (ORAM with a stan-
488dard index) and Oblivious Index in Section 4.2. The com-
489parison is based on B-tree point query in terms of cloud
490storage, coordinator storage, number of communication
491rounds per query, and computation overhead per query.
492Recall that for all the designs, per query, number of
493accessed blocks in the cloud, communication overhead in
494bytes, and computation cost in the coordinator have the
495same Big-O complexity. Hence, we use the computation
496overhead to denote the Big-O complexity of those metrics.
497Note that Oblivious Index saves the coordinator memory
498size, but involves Oð1Þ times more computation overhead
499and communication rounds than ORAM+Index to recur-
500sively update the position map information to the server.
501Therefore, Oblivious Index may be suitable when the coor-
502dinator only has limited memory.

5034.4 Optimizations

504In most practical database applications with multiple cli-
505ents, a critical objective is to improve the overall query
506throughput. A useful optimization technique is to process
507queries in batches. This allows the coordinator to retrieve
508index and data blocks from the cloud in batch.
509Batch processing brings the benefit of ORAM caching.
510The coordinator can leverage a good caching strategy that
511takes advantage of the access pattern for queries in the
512same batch. In detail, the coordinator introduces an ORAM
513buffer of a given size on her side, and the ORAM buffer
514stores a set of blocks from the Path-ORAM structure on the
515cloud that she has previously retrieved. If there is a buffer

Fig. 3. An example of querying an oblivious B-tree.

TABLE 1
Comparison of Different Designs

Design Computation Overhead Cloud Storage Communication Round Coordinator Storage

Baseline (Opaque) OðNÞ OðNÞ OðNÞ Oð1Þ
ORAM+Index Oðlog BN � logNÞ OðNÞ Oðlog BNÞ OðlogN þN=BÞ
Oblivious Index Oðlog BN � logNÞ OðNÞ Oðlog BNÞ OðlogNÞ

CHANG ET AL.: EFFICIENT OBLIVIOUS QUERY PROCESSING FOR RANGE AND KNN QUERIES 5

516 hit for a subsequent block request, the coordinator does not
517 need to retrieve that block from the cloud again using the
518 expensive ORAM protocol. Note that each of these blocks
519 can be either an index or a data block from the original data-
520 base with an index (e.g., a B-tree/R-tree or an oblivious
521 B-tree/R-tree).
522 An important and interesting challenge arises from this
523 discussion, which is how to design a good caching strategy
524 for the coordinator to improve the overall performance of
525 the proposed oblivious query processing framework.

526 4.4.1 ORAM Caching at the Coordinator

527 Formally, given a buffer size t (number of data blocks that
528 can be stored in the coordinator’s buffer) and a query batch
529 size g (g queries in one query batch), our objective is to
530 design a good ORAM caching strategy to reduce the cost of
531 processing a sequence of query batches obliviously and
532 improve the overall query throughput of the proposed
533 OQF, where the system query throughput is simply defined
534 as the number of queries processed per minute.
535 To illustrate the key idea of our design, we assume for now
536 that given a query batch with g queries fq1; . . . ; qgg, the coor-
537 dinator is able to infer the set of blocks (index and data
538 blocks) to be retrieved by each query, i.e., there is a mapping
539 function h that takes a query q and outputs the set of block
540 IDs that refers to blocks to be accessed while processing q.
541 We will discuss how to design h in Section 4.5.
542 The following analysis assumes the basic Path-ORAM
543 protocol, where the coordinator would traverse a whole
544 path (read-and-then-write) from the Path-ORAM structure
545 stored on the cloud server through Path-ORAM protocol,
546 when a cache miss happens for reading a particular block b.
547 Formally, the problem is reduced to the followings.
548 Given a query sequence of s query batches: fðq1;1; . . . ; q1;gÞ;
549 . . . ; ðqs;1; . . . ; qs;gÞg, the ith batch needs to retrieve a set of mi

550 blocks with IDs fidi;1; . . . ; idi;mi
g that will be accessed by ðqi;1;

551 . . . ; qi;gÞ. We also letm ¼ minfm1; . . . ; msg. When the context
552 is clear, we drop the subscript for a batch i. Our objective is to
553 design a good ORAM caching strategy to minimize the num-
554 ber of cache misses over the s batches, with the following con-
555 straint: queries within a batch can be processed in arbitrary
556 order, but queries across different batches cannot be re-
557 ordered. Hence, we can bound and adjust the query latency
558 for each query by tuning the query batch size g.
559 OfflineOptimalStrategy: In offline setting, the coordinator
560 knows block IDs from all (future) query batches. We denote
561 the optimal strategy for a given query sequence as opt.
562 OnlineStrategy: In online setting, the coordinator knows
563 only block IDs from the current query batch. The goal is to
564 find a strategy that enjoys a good competitive ratio [40]. Spe-
565 cifically, suppose I represents the class of all valid inputs
566 (each input in I is a sequence of batches of queries), A rep-
567 resents the class of all valid online algorithms for the
568 ORAM caching problem, and costðA; IÞ represents the cost
569 of running algorithm A 2 A over an input I 2 I . Then the
570 competitive ratio of A is

rðAÞ ¼ max
I2I

costðA; IÞ
costðopt; IÞ ;

572572

573where costðA; IÞ (or costðopt; IÞ) is proportional to the num-
574ber of retrieved blocks from the cloud through ORAM.
575ORAM Caching Strategy. We are given a query sequence
576Q ¼ fðq1;1, . . . , q1;gÞ, . . . , ðqs;1, . . . , qs;gÞg that will access a
577block sequence Qb ¼ fðid1;1, . . . , id1;m1

Þ, . . . , ðids;1, . . . ,
578ids;msÞg. Whenever the coordinator needs to replace a
579cached block, she evicts the block in her cache that is not
580accessed until Furthest-In-Future (FIF) with regard to Qb.
581The evicted block is then re-mapped to a new leaf node ID
582in Path-ORAM data structure, before being placed into the
583private stash with the new mapping information.
584Recall that in Path-ORAM protocol, when reading a
585block b, an entire path (which contains b) will be retrieved
586from the cloud. Here, we assume the coordinator only
587caches the block b in her buffer and places other real blocks
588along that path into the stash as that in the original protocol.
589Under this setting, each cache miss (caused by the
590request to access a block) leads to the same cost, which is to
591read a block from the ORAM data structure in the cloud
592using the ORAM protocol. Recall that the coordinator re-
593orders the queries within a batch. After that, the ordering of
594queries is fixed. This setting leads to the following result.
595The proof is fairly straightforward, and hence omitted.

596Theorem 1. For a query sequence with fixed ordering of queries,
597the optimal offline method for our ORAM caching problem is
598the FIF caching strategy.

599The offline optimalmethod inspires us to design the follow-
600ing online strategy. In online setting, the coordinator can only
601see Qb;i ¼ fðidi;1; . . . ; idi;mi

Þg for query batch Qi ¼
602fðqi;1; . . . ; qi;gÞg. After processing the jth query from Qi, there
603are two classes of blocks in the ORAM cache: classa : those
604who will appear in fðqi;jþ1; . . . ; qi;gÞg; classb : those who will
605not appear in fðqi;jþ1; . . . ; qi;gÞg. A key observation is that if the
606coordinator was to see the entire future query batches as in offline set-
607ting, each block from classb should be evicted first before
608evicting any block from classa. Each block in classb is guaran-
609teed to be referenced only further-in-the-future than any block
610in classa, and in the offline optimalmethod, evicted first.
611This observation leads to the following online strategy.
612At any point while processing a query batch, we perform
613FIF for any blocks in the ORAM cache that belong to classa
614as defined above at this point, and we use Least Recently
615Used (LRU) for the remaining blocks in the ORAM cache
616that belong to classb as also defined above. We always evict
617a block from classb before evicting any block in classa, and
618only start evicting blocks from classa if classb is already
619empty. An evicted block is re-mapped to a randomly chosen
620leaf node ID in Path-ORAM data structure and placed into
621the private stash, waiting to be written back to the server.
622We denote this algorithm as batch-FIF.

623Theorem 2. 1 If there are duplicate block IDs within any batch,
624rðbatch-FIFÞ � t (t is the buffer size); otherwise,

625A) If t � m, the competitive ratio rðbatch-FIFÞ � 2;
626B) Otherwise, the competitive ratio rðbatch-FIFÞ � t.

1. Due to the space limit, all proofs of lemmas and theorems are
given in the supplemental material, which can be found on the Com-
puter Society Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2021.3060757

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

http://doi.ieeecomputersociety.org/10.1109/TKDE.2021.3060757
http://doi.ieeecomputersociety.org/10.1109/TKDE.2021.3060757

627 4.4.2 Other Optimizations

628 Query Locality. The coordinator can re-order queries within
629 each query batch to improve their locality, which will lead
630 to better ORAM caching performance regardless of which
631 caching strategy is to be used. For one-dimensional queries,
632 this is easily done by sorting (based on the query point if it
633 is a kNN query or the left-range point if it is a range query).
634 For two-dimensional queries, we can leverage a space-fill-
635 ing curve, and use the z values of the query point for a kNN
636 query and the centroid of a range query box for sorting and
637 re-ordering queries in a batch.
638 Batch Writing. In the original protocol, for each read oper-
639 ation the coordinator needs to retrieve the entire path and
640 then write the same path back to the cloud. Details are rep-
641 resented in “Path-ORAM” part in Section 2.2. Instead of
642 immediately writing each path back to the cloud, we can
643 also introduce a batch concept to wait for retrieving � paths
644 and then write all the � paths back to the cloud at once.
645 Batch writing to tree-based ORAM is also leveraged in prior
646 studies [28], [36], [41]. Specifically, the coordinator can keep
647 the set H that stores the leaf node indices of the retrieved
648 paths, where maxjHj ¼ �. During batch writing, she writes
649 the � paths in H back to the cloud from the bottom level to
650 the top level, which ensures that blocks in her cache and
651 stash can be pushed as deep down into the tree as possible.
652 Given a leaf node index x, let P ðx; ‘Þ denote the bucket in
653 level ‘ of path P ðxÞ. Now for any given block b, for each leaf
654 node index x inH, if b is mapped to x (according to the posi-
655 tion map information), and the bucket P ðx; ‘Þ still has space
656 to hold more blocks, the coordinator pushes b into P ðx; ‘Þ
657 and removes b from her cache or stash. The coordinator
658 repeats this process until no more blocks from her cache or
659 stash can be written back to one of the � paths.
660 Finally, for each leaf node index x inH and each level ‘ of
661 path P ðxÞ, if bucket location P ðx; ‘Þ still holds blocks with
662 the number less than the maximum capacity of a bucket, the
663 coordinator appends some randomly generated dummy
664 blocks to P ðx; ‘Þ to fulfill its maximum capacity. Finally, she
665 writes all � paths inH back to the cloud and clearsH.
666 In our implementation, queries need to be blocked tem-
667 porarily while writing the � paths back to the cloud. As in
668 TaoStore [28], we can also keep an additional subtree struc-
669 ture for saving these paths in coordinator and asynchro-
670 nously write back the � paths in the background.
671 Partial Path Retrieval. In the original Path-ORAM proto-
672 col, for each block access operation, the coordinator needs
673 to retrieve a whole path from the cloud. With the ORAM
674 caching mechanism and batch writing optimization that we
675 have introduced, for each block access operation, the coordi-
676 nator only needs to retrieve a partial path, which is not kept
677 in her cache and stash, rather than a whole path in the origi-
678 nal Path-ORAM protocol. To be clear, this partial path oper-
679 ation is only performed as part of a batch retrieval, where
680 the part of the path not retrieved in this sub-operation is still
681 retrieved in a larger batch retrieval operation.
682 An example is shown in Fig. 4. Suppose that blocks along
683 the red-colored paths have already been retrieved and
684 cached by the coordinator. Now the coordinator needs to
685 retrieve the blue-colored path P ðxÞ for a block b, which is
686 mapped to the leaf level node with node ID x. Here, she
687 only needs to retrieve the leaf bucket, since all the remaining

688buckets (the dotted blue-colored part in path P ðxÞ) have
689already been retrieved.
690To decide which part of P ðxÞ to retrieve, the coordinator
691builds a set H to store the leaf node indices of retrieved
692paths. Given a path to be retrieved by the current operation,
693identified by the leaf node ID x, she finds

leftðxÞ ¼argmaxy2Hy < x;

rightðxÞ ¼argminy2Hy > x:
695695

696

697The coordinator checks which part of P ðxÞ is not covered
698by P ðleftðxÞÞ [P ðrightðxÞÞ and only retrieves the blocks
699from the partial path. Furthermore, and more importantly,
700the coordinator can check this without the access to the
701Path-ORAM’s binary tree structure.

702Theorem 3. Under partial path retrieval, for any path P ðxÞ,
703each block is either retrieved or already in the stash.

704Block Sorting. If the coordinator has the function h that
705maps queries to block IDs to be accessed, she can further sort
706the block IDs in the current batch based on their position tags
707in Path-ORAM. This improves the performance when com-
708bined with batch writing and partial path retrieval optimiza-
709tions. For those optimizations to make sense, there must be
710some blocks that reside in the overlap part of the � paths.
711Sorting blocks based on their position tags aims to increase
712the number of overlapping blocks. Intuitively, paths in Path-
713ORAM that share more overlapping blocks will be put close
714to each other in the block access sequence after sorting, due
715to Path-ORAM’s full binary tree structure. Then, more over-
716lapping blocks along paths lead to less communication and
717computation overhead in Path-ORAM. Besides, block sorting
718also improves the performance of ORAM caching. It makes
719duplicate block accesses occur in a sequential way, and the
720coordinator only needs to retrieve each block once rather
721than multiple times.

7224.5 Query to Block ID Mapping

723Lastly, in order to apply our ORAM caching algorithm, a
724mapping function h that maps a query to a set of block IDs
725is needed. These block IDs represent the index and data
726blocks that the coordinator needs to retrieve from the cloud.
727Intuitively, the coordinator caches only one specific level of
728B-tree or R-tree index in her storage, which is a popular
729tree-based ORAM optimization [41], [42], [43]. Since the fan-
730out is large in a B-tree or R-tree index (see the analysis in
731Section 4.1), this overhead to the coordinator’s storage is still
732far less than storing the entire index. Given any query, the
733coordinator first finds which set of blocks that she may need to
734access by performing a local search algorithm on the cached
735level of the index. More specifically, for every node u that is

Fig. 4. Partial path retrieval.

CHANG ET AL.: EFFICIENT OBLIVIOUS QUERY PROCESSING FOR RANGE AND KNN QUERIES 7

736 cached at the coordinator, we remember the set of index and
737 data blocks from the subtree of u. Henceforth, the local
738 search will return the super set of index and data blocks a
739 query will need to access. This super set allows us to infer
740 the set covers of block IDs to access for all queries in a query
741 batch, and our caching decision will be made based on these
742 set covers of block IDs, instead of the exact set of block IDs.
743 We take range query in R-tree as an example, as shown in
744 Fig. 5. This R-tree index has three index levels and one leaf
745 level with data blocks. Each (index or leaf) node in the R-tree
746 is shown with its block ID. Suppose that we have a query
747 batch Q ¼ fðq1; q2Þg, and results of q1 and q2 reside in data
748 blocks ð13; 14; 15; 17Þ and ð14; 16; 17; 18Þ respectively. Thus,
749 the coordinator needs to access blocks (0, 1, 4, 5, 6, 13, 14, 15,
750 17) to answer q1 (highlighted in red), and blocks (0, 1, 2, 5, 6, 7,
751 14, 16, 17, 18) to answer q2 (highlighted in blue). Assume that
752 the coordinator caches the second level of the R-tree index,
753 which contains the minimum bounding rectangle (MBRs) of
754 blocks in the third level of the index, as well as the set of all
755 block IDs from the subtree of node 1 and node 2 respectively.
756 She will know the results of q1 reside in theMBRs of blocks (4,
757 5, 6) and those of q2 reside in the MBRs of blocks (5, 6, 7).
758 Thus, the block sequence to be accessed should beQb ¼ fð4, 5,
759 6, [12, 13], [14, 15], [16, 17], 5, 6, 7, [14, 15], [16, 17], [18, 19�Þg,
760 where ½idx1 , idx2 , . . .� means that the coordinator may access
761 one or more blocks that reside in that set of blocks. In our
762 ORAM caching strategy, to find the furthest reference to a
763 given block in the current query batch, we look for either the
764 exact block ID or a set that covers that block ID. The rest of the
765 caching strategy remains the same as that in Section 4.4.
766 A similar procedure can be developed for kNN queries
767 by maintaining the priority queue using the MBRs for the
768 children nodes of the cached level.

769 4.6 Security Analysis

770 The security of the oblivious index structure (oblivious
771 B-tree and R-tree) and the query protocol as proposed in
772 Section 4.2 follows directly from the same security guaran-
773 tee and analysis as that in the design of oblivious data struc-
774 ture [32]. The security of the ORAM caching introduced in
775 Section 4.4 relies on the two critical facts. One is that the cli-
776 ents and the coordinator are trusted. The other is that the
777 communication between them is secured and not observed
778 by the cloud server. From the server’s point of view, he still
779 receives a sequence of requests to read one block at a time
780 and those blocks being read are written back to a randomly
781 chosen path from the Path-ORAM’s binary tree structure. In
782 other words, the Path-ORAM protocol is still followed while
783 accessing a sequence of seemingly random blocks.
784 For batch writing optimization together with partial path
785 retrieval optimization in Section 4.4.2, from the perspective
786 of the cloud, the coordinator still first retrieves � uniform

787random paths and then writes these � paths back to the
788cloud. The security guarantee and analysis are similar to
789those for write-back operation in TaoStore [28]. TaoStore
790also writes in batches of � paths, and leaks no additional
791information to normal Path-ORAM, except for value of �
792which only pertains to the implementation, not the actual
793data or queries. Hence, it still satisfies Definition 1.
794For security analysis in ORAM caching, the additional
795sensitive information leaked is only that each ORAM
796retrieval corresponds to a cache miss in trusted coordinator.
797But since we do not consider timing attack (see “Security
798model” part in Section 2.1), as most existing ORAM con-
799structions, such leakage is not a major concern in our set-
800ting. Introducing ORAM caching still follows Definition 1.
801To be honest, there does exist some security issue regard-
802ing query correlation. Suppose we build 5 levels of B-tree
803index for a sequence of data blocks. If batch 1 makes exact 5
804Path-ORAM accesses and batch 2 makes 5X more ORAM
805accesses than a specific number, the adversary does learn
806some query correlation information across batches.
807Last, since volume leakage from range query may facili-
808tate reconstruction attacks over encrypted databases [44],
809we also introduce a padding mode, similar to that in Opa-
810que [12] and ObliDB [33], to protect against such volume
811leakage. A basic approach is to pad the total number of
812Path-ORAM accesses for queries in each batch to the worst-
813case number by issuing dummy block requests, which leaks
814nothing with regard to the queries. Furthermore, some
815novel padding techniques can be introduced, e.g., exploring
816differential privacy rather than full obliviousness to reduce
817the padding number [45], or padding the number of Path-
818ORAM accesses in each batch to the closest power of a con-
819stant x (e.g., 2 or 4) [46], [47], [48], leading to at most
820log xjRmaxj distinct numbers, where jRmaxj is the worst-case
821number of Path-ORAM accesses in each batch.

8225 EXPERIMENTAL EVALUATION

8235.1 Datasets and Setup

824Basically, we evaluate our method (OQF+Optimization),
825Baseline (Opaque) in Section 3, ORAM+Index in Section 4.1,
826and Oblivious Index in Section 4.2. Note that our method
827uses either ORAM+Index or Oblivious Index. The costs of
828the two instantiations under (OQF+Optimization) are simi-
829lar while Oblivious Index needs less coordinator memory.
830Shared Scan is an improved approach over Baseline
831(Opaque). Shared Scan answers each batch of queries all
832together by leveraging only one single scan operation. Dur-
833ing query processing, it keeps the states of all queries in a
834batch at the same time and shares the retrieved blocks from
835the scan operation across the queries within that batch.
836For one-dimensional range query, we also make an evalu-
837ation of disk-based Oblivious AVL Tree. In our implementa-
838tion, we put consecutive nodes in each level of the original
839oblivious AVL tree into blocks andmake each block still con-
840tain B bytes. Our implementation reduces the number of
841disk seeks, since retrieving one block can help us access
842QðBÞ nodes, although the fanout of the tree is still two.
843Lastly, we also compare our method with Raw Index.
844Raw Index builds a B-tree/R-tree index over data blocks
845and stores all index and data blocks to the cloud without

Fig. 5. An example of the set cover-based technique.

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

846 using any encryption or any ORAM protocol. During query
847 processing, the coordinator performs batch query process-
848 ing and caching with the same cache size as that in our
849 method. The caching strategy is LRU.
850 We compare these methods on three datasets in our
851 experiments. Statistics on the datasets are given in Table 2.
852 USA. USA is from the 9th DIMACS Implementation
853 Challenge (Shortest Paths), which contains points on road
854 networks in USA.
855 Twitter. Twitter dataset is sampled from the geo-locations
856 in tweets collected by us from October to December in 2017.
857 OSM. OSM (short for OpenStreetMap) is a collaborative
858 project to create a free editable map of the world. The full
859 OSM data contains 2,682,401,763 points in 78 GB.
860 SETUP. We use a Ubuntu 14.04 machine with Intel Core
861 i7 CPU (8 cores, 3.60 GHz) and 18 GB main memory as the
862 coordinator. The cloud server is a Ubuntu 14.04 machine
863 with Intel Xeon E5-2609 CPU (8 cores, 2.40 GHz), 256 GB
864 main memory and 2 TB hard disk. The bandwidth is 1 Gbps.
865 In our experiments, the cloud server hosts a MongoDB
866 instance as the outsourced storage. We also implement a
867 MongoDB connector class, which supports insertion, dele-
868 tion and update operations on blocks inside the MongoDB
869 engine. The cloud server supports read and write operations
870 from the coordinator through the basic operations on blocks.
871 All methods are implemented in C++. AES/CFB from
872 Crypto++ library is adopted as our encryption function in
873 all methods. The key length of AES encryption is 128 bits.
874 Default Parameter Values. The default values for key
875 parameters are as follows. We set the size of each encrypted
876 block to 4 KB (the same as [11], [19], [26]). We set the num-
877 ber of blocks in each bucket of Path-ORAM to 4 (the same as
878 [11], [23]). We set default cache reserved factor c to 50,
879 which means the threshold of cache size t ¼ c � logN (N is
880 the number of blocks in database). We set default query
881 batch size g (see Section 4.4.1) to 50. We set default batch-
882 write size � (see “Batch writing” part in Section 4.4.2) to 10.
883 Query Generation. We generate 2,000 queries for each
884 query type, where each query batch contains g queries. For
885 R-tree query, given the center point of each query batch, a
886 new query point is generated by adding a random offset
887 (no larger than a given batch locality parameter) over each
888 dimension of the center point. The default batch locality
889 parameter is 0.05 (for both longitude and latitude dimen-
890 sions). By default, the range size for each R-tree range
891 query is 0:05� 0:05 (longitude dimension�latitude dimen-
892 sion), and k ¼ 10 for each R-tree kNN query. A similar pro-
893 cedure works for B-tree range query generation. The only

894difference is we set the default result size of each B-tree
895range query to be 1,000.

896Remarks. Ideally, if the coordinator accesses the same
897number of blocks in the cloud for answering each query,
898the communication cost between the cloud and the coor-
899dinator should be roughly inversely proportional to the
900query throughput for each method. It is confirmed by our
901experimental results (see Figs. 8, 9, and 10 and Figs. 12,
90213, 14, 15, and 16) to some extent. For simplicity, we
903mainly focus on experimental results for query through-
904put while brushing lightly over those for communication
905cost in the following sections.

9065.2 Cloud and Coordinator Storage Costs

907Fig. 6a shows the cloud storage cost in default setting. Base-
908line (Opaque) and Shared Scan achieve the same and mini-
909mum cost, since they only store all encrypted data blocks to
910the cloud. Raw Index needs a little more cost, since it also
911builds an index over the data blocks. The other four meth-
912ods have a similar storage overhead (roughly 10X larger
913than Baseline (Opaque), Shared Scan and Raw Index), since
914they all require Path-ORAM data structure on cloud.
915Fig. 6b shows the coordinator storage cost. Baseline
916(Opaque) has the minimum cost, since the coordinator only
917keeps a constant number of blocks during scan-based opera-
918tions. Shared Scan needs a little more cost, since it also
919keeps the parameters and states of all queries in a batch dur-
920ing query processing. Oblivious AVL Tree and Oblivious
921Index achieve less cost than ORAM+Index, since they inte-
922grate position map information into tree nodes to reduce
923the coordinator memory size. Especially, Oblivious AVL
924Tree needs a little more private memory than Oblivious
925Index, since Oblivious AVL Tree has a larger tree height
926and needs OðlogNÞ (rather than Oðlog BNÞ) memory to store
927a traversed tree path. Raw Index and our method have
928larger private memory sizes (which are set to be the same)
929than ORAM+Index, since the coordinator keeps an addi-
930tional ORAM cache with the threshold c � logN .

9315.3 Overall Initialization Time Cost

932Initializing the original Path-ORAM [23] is very expensive,
933since each real block insertion pays a Path-ORAM write
934operation with OðlogNÞ cost. To avoid the high initializa-
935tion cost, we pre-build the ORAM data structure in trusted
936storage and then upload it to the cloud using bulk loading.
937In our bulk loading based initialization, the communica-
938tion overhead and I/O cost of the whole data structure
939dominate the overall initialization cost, which is roughly pro-
940portional to cloud storage cost. Fig. 7 shows the overall ini-
941tialization time cost of different methods. Baseline (Opaque)

TABLE 2
Datasets

Dataset # of Points Raw Data Size

USA 23,947,347 681 MB
Twitter 247,032,130 7.1 GB
OSM_40M 40,000,000 1.1 GB
OSM_200M 200,000,000 5.6 GB
OSM_400M 400,000,000 12 GB
OSM_800M 800,000,000 23 GB
OSM_1600M 1,600,000,000 46 GB

aOSM_XXM is a random sample of the full OSM dataset.

Fig. 6. Cloud and coordinator storage costs.

CHANG ET AL.: EFFICIENT OBLIVIOUS QUERY PROCESSING FOR RANGE AND KNN QUERIES 9

942 and Shared Scan have the minimum cost, since they simply
943 store the encrypted data blocks to the cloud. Raw Index needs
944 a little more cost, since it also builds an index over the data
945 blocks. All other four methods have a similar cost (still
946 roughly 10X larger than Baseline (Opaque), Shared Scan and
947 Raw Index), due to building the Path-ORAM data structure.
948 When the raw data size increases from 1.1 to 46 GB, their ini-
949 tialization cost increases from 656 to 32,451 seconds.

950 5.4 Query Performance in Default Setting

951 Fig. 8a shows query throughput for R-tree range query in
952 default setting. The label on y-axis “qpm” is short for
953 “queries per minute”. Not surprisingly, Baseline (Opaque)
954 has the lowest query throughput, and Raw Index achieves
955 the largest one. Shared Scan achieves around 50X larger
956 query throughput than Baseline (Opaque). The reason is
957 that Shared Scan leverages only one single scan to answer
958 each batch of queries, while Baseline (Opaque) must scan
959 all the blocks once for each query in the batch. ORAM
960 +Index has roughly 2X larger query throughput than Obliv-
961 ious Index, since in ORAM+Index the coordinator only per-
962 forms a get() operation through Path-ORAM protocol for
963 each block access, while in Oblivious Index she also per-
964 forms a put() operation for each block access (see Step 4 in
965 Fig. 3). In general, Shared Scan, ORAM+Index and Oblivi-
966 ous Index have comparable performances in terms of query
967 throughput. Our method achieves much larger query
968 throughput than those three methods (by almost one to two
969 orders of magnitude), due to the ORAM caching and other
970 optimizations that we have introduced. Fig. 8b shows the

971

972

973

974

975

976

977

978

979

980981communication cost for R-tree range query in default set-
982ting. For each method, the communication cost is roughly
983inversely proportional to the query throughput.
984The performances of R-tree kNN query and B-tree range
985query are shown in Figs. 9 and 10. The trends are similar to
986those for R-tree range query in Fig. 8. Especially, for B-tree
987range query (aka one-dimensional range query), Fig. 10
988shows that Oblivious Index achieves 2X-4X larger query
989throughput and less communication cost than Oblivious
990AVL Tree, due to higher fanout and lower tree height.

9915.5 Scalability

992We focus on R-tree range query on OSM dataset to report
993the experimental results regarding scalability.
994Fig. 11a shows the cloud storage cost against raw data
995size. Baseline (Opaque) and Shared Scan have the minimum
996cost, since they simply store all encrypted data blocks to the
997cloud. Raw Index needs a little more cost, since it also builds
998an index over the data blocks. When raw data size increases
999from 1.1 to 46 GB, all other three methods have a similar
1000storage cost, increasing from 16 to 512 GB. Fig. 11b shows
1001the coordinator memory size against raw data size. Baseline
1002(Opaque) still has the minimum cost. Shared Scan has a lit-
1003tle more cost, due to storing parameters and states of all
1004queries in each batch. Oblivious Index still has much less
1005cost than ORAM+Index, Raw Index and our method, which
1006increases with the data size logarithmically, not linearly. For
1007the other three methods, the cost grows (roughly) linearly
1008with the data size. The reason is that OðN=BÞ blocks in the
1009position map dominate the coordinator storage when the
1010number of blocks is large. However, since position map
1011entries are small in size, our coordinator storage size only
1012increases from 8 to 73 MB, when raw data size increases
1013from 1.1 to 46 GB. It can be further mitigated if we instanti-
1014ate our method with oblivious index.
1015Fig. 12 shows query performance against raw data size.
1016Baseline (Opaque) has the lowest performance, while
1017Raw Index still achieves the best. Our method still
1018achieves 4X-405X larger query throughput and 5X-106X
1019less communication cost than Shared Scan, ORAM+Index

Fig. 8. Performance of R-tree range query.

Fig. 9. Performance of R-tree kNN query.

Fig. 10. Performance of B-tree range query.

Fig. 11. Storage cost against raw data size.

Fig. 7. Overall initialization time cost.

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

1020 and Oblivious Index, when raw data size varies from 1.1
1021 to 46 GB.

1022 5.6 Selectivity, Locality, Batching, and Caching

1023 We focus on R-tree range query on OSM_400M to report the
1024 experimental results regarding selectivity, locality, query
1025 batch size g and caching strategy. We also focus on R-tree
1026 range query to report results regarding batch-write size �.
1027 Query Selectivity. Fig. 13 shows query performance
1028 against query range size. Baseline (Opaque) has the lowest
1029 but stable query performance due to scan-based operations.
1030 Shared Scan also has a stable query performance, around
1031 50X better than Baseline (Opaque). Raw Index still achieves
1032 the best performance. When range size is small
1033 (� 0:01� 0:01), ORAM+Index and Oblivious Index achieve
1034 better performance than Shared Scan, due to index search-
1035 ing. When range size varies from 0:005� 0:005 to 0:1� 0:1,
1036 our method achieves 18X-40X larger query throughput and
1037 around 20X less communication cost than Shared Scan,
1038 ORAM+Index and Oblivious Index.
1039 Query Locality. Fig. 14 shows query performance against
1040 batch locality parameter. Baseline (Opaque), Shared Scan,
1041 ORAM+Index, and Oblivious Index have a stable query per-
1042 formance, since the coordinator does not performORAM cach-
1043 ing and cannot take advantage of any locality information. For
1044 our method and Raw Index, when the parameter increases,
1045 query points in a batch will be distributed more sparsely,
1046 which leads to less locality, < nbw > i:e: < =nbw > , less cache
1047 hit rate and less query throughput. When the parameter varies
1048 from 0.005 to 0.5, our method achieves 5X-243X larger query

1049

1050

1051

1052

1053

1054

1055

1056

10571058throughput and 7X-106X less communication cost than Shared
1059Scan, ORAM+Index and Oblivious Index.
1060Query Batching. Fig. 15 shows query performance against
1061query batch size g. Baseline (Opaque), ORAM+Index and
1062Oblivious Index have a stable query performance, since these
1063methods do not introduce any optimization in batch process-
1064ing. Shared Scan achieves roughly g times performance
1065improvement than Baseline (Opaque) when g increases. Raw
1066Index also has a stable query performance, since LRU cach-
1067ing strategy does not benefit from any information in future
1068block accesses, no matter how large g grows. For our method,
1069the performance improvement is very limited when g grows,
1070since the cache size is relatively large in our setting. Hence, a
1071basic LRU caching strategy has achieved very high cache hit
1072rate, and batch-FIF only obtains limited advantage from
1073future block accesses. Fig. 16 shows query performance
1074against batch-write size � in default setting. When � increases
1075from 1 to 20, our method achieves 23-35 percent larger query
1076throughput and 19-26 percent less communication cost, due
1077to batch writing and partial path retrieval optimizations.
1078ORAM Caching. Here, we compare the performance of
1079three ORAM caching strategies. Offline OPT is the offline
1080optimal caching strategy (< nbw > i:e: < =nbw > , FIF algo-
1081rithm in Section 4.4). ORAM Caching+Exact Block ID is our
1082online algorithm when given the exact block IDs to access in
1083a query batch (< nbw > i:e: < =nbw > , the online batch-FIF
1084algorithm in Section 4.4), which shows the ideal case of our
1085ORAM caching strategy. ORAM Caching+Block ID Map-
1086ping is the same online ORAM caching strategy but now
1087working with query to block ID mapping as described in
1088Section 4.5. In all three caching strategies, the coordinator
1089keeps an cache with the same threshold of cache size.
1090Fig. 17 shows query performance against query locality
1091with default cache size threshold. The three caching strate-
1092gies have comparable cache hit rate and query throughput in
1093our block access sequence. When locality parameter is below
10940.1, the cache hit rate is above 96 percent and query through-
1095put is above 620 qpm for all caching strategies. Fig. 18 shows
1096query performance against cache size. Both cache hit rate
1097and query throughput have Offline OPT > ORAM Caching

Fig. 12. Query performance against raw data size.

Fig. 13. Influence of query selectivity.

Fig. 14. Influence of query locality.

Fig. 15. Influence of query batch size g.

Fig. 16. Influence of batch-write size �.

CHANG ET AL.: EFFICIENT OBLIVIOUS QUERY PROCESSING FOR RANGE AND KNN QUERIES 11

1098 +Exact Block ID > ORAM Caching+Block ID Mapping.
1099 When private memory size is below 22 MB, ORAM Caching
1100 +Block IDMapping only has 1.6X-1.8X less query throughput
1101 than ORAM Caching+Exact Block ID, which demonstrates
1102 the effectiveness of our query to block ID mapping strategy
1103 under a small cache size. When private memory size is up to
1104 24 MB, the cache hit rate is above 94 percent and query
1105 throughput is above 190 qpm for ORAM Caching+Block ID
1106 Mapping. Fig. 19a shows the communication cost against
1107 cache size, which has Offline OPT < ORAM Caching+Exact
1108 Block ID < ORAM Caching+Block ID Mapping. When pri-
1109 vate memory size is up to 22 MB, the communication cost of
1110 ORAM Caching+Block IDMapping is below 3MB/Query.

1111 5.7 Query Latency

1112 Lastly, Fig. 19b shows query latency for R-tree range query in
1113 default setting. For Baseline (Opaque), ORAM+Index and
1114 Oblivious Index, the query latency is roughly proportional to
1115 communication cost, since they all process incoming queries
1116 synchronously and sequentially. Shared Scan has roughly the
1117 same query latency with Baseline (Opaque), since the query
1118 results of each query in a batch are not fully generated until
1119 the scan operation for that batch is completed. For our method
1120 and Raw Index, the coordinator needs to re-order the queries
1121 in a batch to improve query throughput, which in fact hurts
1122 query latency to some extent. But our method still has compa-
1123 rable query latency with ORAM+Index and Oblivious Index.

1124 6 RELATED WORK

1125 Generic ORAMs.ORAMs allow the client to access encrypted
1126 data in a remote server while hiding her access patterns. For
1127 detailed analysis on various ORAM constructions, please
1128 refer to recent work [11]. However, most ORAM construc-
1129 tions are not suitable for the multi-user scenario, since they
1130 handle operation requests synchronously in a sequential fash-
1131 ion. Hence, the system throughput is seriously limited.
1132 Range ORAMs [46], [47] are well-designed ORAMs to
1133 specifically support range queries. To minimize the number
1134 of disk seeks, they take advantage of data locality informa-
1135 tion and access ranges of sequentially logical blocks.

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

11461147However, range ORAMs need much larger cloud storage
1148cost, since they must deploy OðlogNÞ separate sub-ORAMs.
1149They also bring much more bandwidth overhead and I/O
1150cost in bytes, although they achieve a less number of disk
1151seeks. Besides, they are only suitable for key-value stores
1152but do not work for relational tables with multiple columns.
1153There exist more advanced ORAM constructions, such as
1154PrivateFS [24], Shroud [25], ObliviStore [26], CURIOUS [27]
1155and TaoStore [28]. They focus on building oblivious file sys-
1156tems, supporting multiple clients, enabling parallelization,
1157supporting asynchronous operations and building distrib-
1158uted ORAM data stores. In other words, those constructions
1159above focus on achieving operation-level parallelism or asyn-
1160chronicity. In contrast, our OQF focuses on improving
1161query-level throughput where each query consists of multi-
1162ple operations in a sequence. Hence, those constructions are
1163orthogonal to our study. OQF can use such a construction
1164(e.g., TaoStore) as the secure ORAM storage on the cloud.
1165Recent studies also investigate how to support the
1166ORAM primitive more efficiently inside the architecture
1167design of new memory technologies (e.g., [49]). Our design
1168of OQF can benefit from these hardware implementations.
1169Oblivious Query Processing. Oblivious query processing
1170techniques for specific types of queries have also been
1171explored. Li et al. [29] study how to compute theta-joins
1172obliviously. Arasu et al. [13] design oblivious algorithms in
1173theory for a rich class of SQL queries, and Krastnikov et al.
1174[30] improve their oblivious binary equi-join algorithm. Xie
1175et al. [19] propose ORAM based solutions to perform short-
1176est path computation and achieve performance improve-
1177ment on private information retrieval (PIR) based solutions
1178[50], [51]. ZeroTrace [43] is a new library of oblivious mem-
1179ory primitives, combining ORAM techniques with SGX.
1180However, it only performs basic get/put/insert operations
1181over Set/Dictionary/List interfaces. Obladi [52] is the first
1182system to provide oblivious ACID transactions. The contri-
1183bution is orthogonal to our study.
1184To the best of our knowledge, Opaque [12] and ObliDB
1185[33] are the state-of-the-art studies concerning generic oblivi-
1186ous analytical processing. We have compared with Opaque
1187(without the distributed storage) and ObliDB (similar to
1188Oblivious Index baseline) in Section 5 and achieved an order
1189of magnitude speedup in query throughput. Lastly, as we
1190point out in “Remarks” part of Section 2.1, the coordinator in
1191OQF can be replaced with an enclave from SGX [39] on
1192cloud, which eliminates the need for a trusted coordinator.
1193Oblivious Data Structures. Prior studies [14], [32], [53] also
1194design oblivious data structures. Wang et al. [32] apply
1195pointer-based and locality-based techniques to some com-
1196monly-used data structures (e.g., binary search trees). In this

Fig. 19. (a) Communication cost against cache size. (b) R-tree range
query latency.Fig. 17. ORAM caching strategy against query locality.

Fig. 18. ORAM caching strategy against cache size.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

1197 work, we extend their construction and propose oblivious
1198 B-tree and oblivious R-tree. Hoang et al. [14] propose some
1199 new oblivious data structures including Oblivious Tree Struc-
1200 ture (OTREE). However, OTREE only works for binary tree
1201 structures but cannot be extended for larger fanout (e.g., in
1202 B-tree andR-tree). Oblix [36] builds an oblivious sortedmulti-
1203 map (OSM) based on oblivious AVL tree [32] and supports
1204 queries over hkey, sorted list of values i pairs. ObliDB [33]
1205 exploits indexed storagemethod and builds obliviousB+ trees
1206 to support point and range queries. In their implementation,
1207 data is fixed to one record per block. But in our implementa-
1208 tion of oblivious B-tree in Section 4.2, each block contains B
1209 bytes, and the number of records that fit in each data block is
1210 QðBÞ rather than one. Hence, our design is more suitable for
1211 hard disk storage and reduces the number of disk seeks in
1212 query processing.
1213 Private Index. Existing work [9], [54], [55], [56] also designs
1214 specialized private index to support some specific types of
1215 queries including secure nearest neighbor query and kNN
1216 query. Hu et al. [57] devise secure protocols for point query on
1217 B-tree andR-tree.However, theirmethodworks for two-party
1218 model where the client owns the query and the cloud server
1219 owns the data, which is different fromourmodel.
1220 A number of searchable indices [58], [59], [60], [61], [62],
1221 [63] are also proposed to support range query over encrypted
1222 data using searchable encryptions.However, those searchable
1223 indices cannot protect query access patterns.
1224 Secure Multi-Party Computation. Some recent work explores
1225 building anORAM for securemulti-party computation (MPC)
1226 [64], [65]. MPC is a powerful cryptographic primitive that
1227 allows multiple parties to perform rich data analytics over
1228 their private data, while no party can learn the data from
1229 another party. Hence, MPC-based solutions [64], [65], [66],
1230 [67], [68] have a different problem setting from our cloud data-
1231 base setting andwe do not evaluate them in our study.
1232 Differential Privacy. Differential privacy (DP) is an effec-
1233 tive model to protect against unknown attacks with guaran-
1234 teed probabilistic accuracy. Existing DP-based solutions
1235 build key-value data collection [69], build index for range
1236 query [70] or support general SQL queries [45], [71]. In brief,
1237 DP-based solutions [45], [69], [70], [71], [72], [73], [74], [75],
1238 [76] provide differential privacy for query results, while our set-
1239 ting is to answer queries exactly.

1240 7 CONCLUSION

1241 This paper proposes an oblivious query framework (OQF).
1242 We investigate different instantiations of anOQF and demon-
1243 strate a design that is practical, efficient, and scalable. Our
1244 design introduces ORAM caching and other optimizations
1245 and integrates these optimizations with oblivious indices like
1246 obliviousB-tree and obliviousR-tree. Extensive experimental
1247 evaluation has demonstrated the superior efficiency and scal-
1248 ability of the proposed design when being compared against
1249 other alternatives and state-of-the-art baselines that exist in
1250 the literature. Our investigation focuses on range and kNN
1251 queries, however, the proposed framework is generic enough
1252 and can be extended to handle other query types (e.g., joins),
1253 which is an active ongoing work. The current design does not
1254 address challenges associated with ad-hoc updates, which is
1255 another future direction to explore.

1256ACKNOWLEDGMENTS

1257Thanks for NSF CCF-1350888, ACI-1443046, CNS-1514520,
1258CNS-1564287, CNS-1718834, IIS-1816149, CDS&E-1953350,
1259and the support from Visa Research and Microsoft Research
1260PhD Fellowship.

1261REFERENCES

1262[1] A. Arasu, K. Eguro, M. Joglekar, R. Kaushik, D. Kossmann, and
1263R. Ramamurthy, “Transaction processing on confidential data using
1264Cipherbase,” inProc. IEEE Int. Conf. Data Eng., 2015, pp. 435–446.
1265[2] A. Arasu et al., “Secure database-as-a-service with Cipherbase,” in
1266Proc. ACM SIGMOD Int. Conf. Manage. Data, 2013, pp. 1033–1036.
1267[3] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
1268“CryptDB: Protecting confidentiality with encrypted query proc-
1269essing,” in Proc. ACMSymp. Operating Syst. Princ., 2011, pp. 85–100.
1270[4] S. Bajaj and R. Sion, “TrustedDB: A trusted hardware-based data-
1271base with privacy and data confidentiality,” IEEE Trans. Knowl.
1272Data Eng., vol. 26, no. 3, pp. 752–765, Mar. 2014.
1273[5] Z.He et al., “SDB: A secure query processing systemwith data inter-
1274operability,” Proc. VLDB Endowment, vol. 8, no. 12, pp. 1876–1879,
12752015.
1276[6] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, “Processing
1277analytical queries over encrypted data,” Proc. VLDB Endowment,
1278vol. 6, no. 5, pp. 289–300, 2013.
1279[7] A. Arasu, K. Eguro, R. Kaushik, and R. Ramamurthy, “Querying
1280encrypted data,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
12812014, pp. 1259–1261.
1282[8] H. Hacig€um€us, B. R. Iyer, C. Li, and S. Mehrotra, “Executing SQL
1283over encrypted data in the database-service-provider model,” in
1284Proc. ACM SIGMOD Int. Conf. Manage. Data, 2002, pp. 216–227.
1285[9] B. Yao, F. Li, and X. Xiao, “Secure nearest neighbor revisited,” in
1286Proc. IEEE 29th Int. Conf. Data Eng., 2013, pp. 733–744.
1287[10] W. K. Wong, B. Kao, D. W. Cheung, R. Li, and S. Yiu, “Secure
1288query processing with data interoperability in a cloud database
1289environment,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
12902014, pp. 1395–1406.
1291[11] Z. Chang, D. Xie, and F. Li, “Oblivious RAM: A dissection and
1292experimental evaluation,” Proc. VLDB Endowment, vol. 9, no. 12,
1293pp. 1113–1124, 2016.
1294[12] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
1295I. Stoica, “Opaque: An oblivious and encrypted distributed analyt-
1296ics platform,” in Proc. USENIX Conf. Netw. Syst. Des. Implementa-
1297tion, 2017, pp. 283–298.
1298[13] A. Arasu and R. Kaushik, “Oblivious query processing,” in Proc.
1299Int. Conf. Database Theory, 2014, pp. 26–37.
1300[14] T. Hoang, C. D. Ozkaptan, G. A. Hackebeil, and A. A. Yavuz,
1301“Efficient oblivious data structures for database services on the
1302cloud,” IACR Cryptol. ePrint Arch., vol. 2017, pp. 1238, 2017. [Online].
1303Available: http://eprint.iacr.org/2017/1238
1304[15] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern dis-
1305closure on searchable encryption: Ramification, attack and miti-
1306gation,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2012.
1307[16] P. Kocher et al., “Spectre attacks: Exploiting speculative exe-
1308cution,” in Proc. IEEE Symp. Secur. Privacy, 2019, pp. 1–19.
1309[17] O. Goldreich, “Towards a theory of software protection and simu-
1310lation by oblivious RAMs,” in Proc. Annu. ACM Symp. Theory
1311Comput., 1987, pp. 182–194.
1312[18] R. Ostrovsky, “Efficient computation on oblivious RAMs,” in Proc.
1313Annu. ACM Symp. Theory Comput., 1990, pp. 514–523.
1314[19] D. Xie et al., “Practical private shortest path computation based on
1315oblivious storage,” in Proc. IEEE 32nd Int. Conf. Data Eng., 2016,
1316pp. 361–372.
1317[20] O. Goldreich and R. Ostrovsky, “Software protection and simula-
1318tion on oblivious RAMs,” J. ACM, vol. 43, no. 3, pp. 431–473, 1996.
1319[21] E. Stefanov, E. Shi, and D. X. Song, “Towards practical oblivious
1320RAM,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2012.
1321[22] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li, “Oblivious RAM
1322with OððlogNÞ3Þ worst-case cost,” in Proc. Int. Conf. Theory Appl.
1323Cryptol. Inf. Secur., 2011, pp. 197–214.
1324[23] E. Stefanov et al., “Path ORAM: An extremely simple oblivious
1325RAM protocol,” in Proc. ACM SIGSAC Conf. Comput. Commun.
1326Secur., 2013, pp. 299–310.
1327[24] P. Williams, R. Sion, and A. Tomescu, “PrivateFS: A parallel obliv-
1328ious file system,” in Proc. ACM SIGSAC Conf. Comput. Commun.
1329Secur., 2012, pp. 977–988.

CHANG ET AL.: EFFICIENT OBLIVIOUS QUERY PROCESSING FOR RANGE AND KNN QUERIES 13

http://eprint.iacr.org/2017/1238

1330 [25] J. R. Lorch, B. Parno, J. W. Mickens, M. Raykova, and J. Schiffman,
1331 “Shroud: Ensuring private access to large-scale data in the data cen-
1332 ter,” in Proc. USENIX Conf. File Storage Technol., 2013, pp. 199–214.
1333 [26] E. Stefanov and E. Shi, “ObliviStore: High performance oblivious
1334 cloud storage,” in Proc. IEEE Symp. Secur. Privacy, 2013, pp. 253–267.
1335 [27] V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and Y. Huang,
1336 “Practicing oblivious access on cloud storage: The gap, the fallacy,
1337 and the new way forward,” in Proc. ACM SIGSAC Conf. Comput.
1338 Commun. Secur., 2015, pp. 837–849.
1339 [28] C. Sahin, V. Zakhary, A. E. Abbadi, H. Lin, and S. Tessaro,
1340 “TaoStore: Overcoming asynchronicity in oblivious data storage,”
1341 in Proc. IEEE Symp. Secur. Privacy, 2016, pp. 198–217.
1342 [29] Y. Li and M. Chen, “Privacy preserving joins,” in Proc. IEEE 24th
1343 Int. Conf. Data Eng., 2008, pp. 1352–1354.
1344 [30] S. Krastnikov, F. Kerschbaum, and D. Stebila, “Efficient oblivious
1345 database joins,” Proc. VLDB Endowment, vol. 13, no. 11, pp. 2132–
1346 2145, 2020.
1347 [31] K. Mouratidis and M. L. Yiu, “Shortest path computation with no
1348 information leakage,” Proc. VLDB Endowment, vol. 5, no. 8,
1349 pp. 692–703, 2012.
1350 [32] X. S. Wang et al., “Oblivious data structures,” in Proc. ACM SIG-
1351 SAC Conf. Comput. Commun. Secur., 2014, pp. 215–226.
1352 [33] S. Eskandarian and M. Zaharia, “ObliDB: Oblivious query proc-
1353 essing for secure databases,” Proc. VLDB Endowment, vol. 13,
1354 no. 2, pp. 169–183, 2019.
1355 [34] B. Pinkas and T. Reinman, “Oblivious RAM revisited,” in Proc.
1356 Annu. Cryptol. Conf., 2010, pp. 502–519.
1357 [35] C. W. Fletcher, L. Ren, X. Yu, M. van Dijk, O. Khan, and S. Devadas,
1358 “Suppressing the oblivious RAM timing channel while making
1359 information leakage and program efficiency trade-offs,” in Proc.
1360 IEEE 20th Int. Symp.High Perform. Comput. Archit., 2014, pp. 213–224.
1361 [36] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa, “Oblix:
1362 An efficient oblivious search index,” in Proc. IEEE Symp. Secur.
1363 Privacy, 2018, pp. 279–296.
1364 [37] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting privi-
1365 leged side-channel attacks in shielded execution with D�ej�a Vu,” in
1366 Proc. ACM Asia Conf. Comput. Commun. Secur., 2017, pp. 7–18.
1367 [38] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and
1368 M. Costa, “Strong and efficient cache side-channel protection
1369 using hardware transactional memory,” in Proc. USENIX Conf.
1370 Secur. Symp., 2017, pp. 217–233.
1371 [39] T. Kim, Z. Lin, and C. Tsai, “CCS’17 Tutorial Abstract: SGX secu-
1372 rity and privacy,” in Proc. ACM SIGSAC Conf. Comput. Commun.
1373 Secur., 2017, pp. 2613–2614.
1374 [40] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge,
1375 U.K.: Cambridge Univ. Press, 1995.
1376 [41] L. Ren et al., “Constants count: Practical improvements to oblivi-
1377 ous RAM,” in Proc. USENIX Conf. Secur. Symp., 2015, pp. 415–430.
1378 [42] M. Maas et al., “PHANTOM: Practical oblivious computation in a
1379 secure processor,” in Proc. ACM SIGSAC Conf. Comput. Commun.
1380 Secur., 2013, pp. 311–324.
1381 [43] S. Sasy, S. Gorbunov, and C. W. Fletcher, “ZeroTrace: Oblivious
1382 memory primitives from Intel SGX,” in Proc. Netw. Distrib. Syst.
1383 Secur. Symp., 2018.
1384 [44] P. Grubbs, M. Lacharit�e, B. Minaud, and K. G. Paterson, “Pump
1385 up the volume: Practical database reconstruction from volume
1386 leakage on range queries,” in Proc. ACM SIGSAC Conf. Comput.
1387 Commun. Secur., 2018, pp. 315–331.
1388 [45] J. Bater, X. He, W. Ehrich, A. Machanavajjhala, and J. Rogers,
1389 “Shrinkwrap: Efficient SQL query processing in differentially
1390 private data federations,” Proc. VLDB Endowment, vol. 12, no. 3,
1391 pp. 307–320, 2018.
1392 [46] A. Chakraborti, A. J. Aviv, S. G. Choi, T. Mayberry, D. S. Roche,
1393 and R. Sion, “rORAM: Efficient range ORAM with Oðlog 2NÞ
1394 locality,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2019.
1395 [47] G. Asharov, T. H. Chan, K. Nayak, R. Pass, L. Ren, and E. Shi,
1396 “Locality-preserving oblivious RAM,” in Proc. Annu. Int. Conf.
1397 Theory Appl. Cryptogr. Techn., 2019, pp. 214–243.
1398 [48] I. Demertzis, D. Papadopoulos, C. Papamanthou, and S. Shintre,
1399 “SEAL: Attack mitigation for encrypted databases via adjustable
1400 leakage,” in Proc. USENIX Secur. Symp., 2020, pp. 2433–2450.
1401 [49] A. Shafiee, R. Balasubramonian, M. Tiwari, and F. Li, “Secure
1402 DIMM: Moving ORAM primitives closer to memory,” in Proc.
1403 IEEE Int. Symp. High Perform. Comput. Archit., 2018, pp. 428–440.
1404 [50] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private
1405 information retrieval,” J. ACM, vol. 45, no. 6, pp. 965–981, 1998.
1406 [51] P. Williams and R. Sion, “Usable PIR,” in Proc. Netw. Distrib. Syst.
1407 Secur. Symp., 2008.

1408[52] N. Crooks, M. Burke, E. Cecchetti, S. Harel, R. Agarwal, and
1409L. Alvisi, “Obladi: Oblivious serializable transactions in the
1410cloud,” in Proc. 13th USENIX Conf. Operating Syst. Des. Implementa-
1411tion, 2018, pp. 727–743.
1412[53] M. Keller and P. Scholl, “Efficient, oblivious data structures for
1413MPC,” in Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur., 2014,
1414pp. 506–525.
1415[54] S. Papadopoulos, S. Bakiras, and D. Papadias, “Nearest neighbor
1416search with strong location privacy,” Proc. VLDB Endowment,
1417vol. 3, no. 1, pp. 619–629, 2010.
1418[55] X. Yi, R. Paulet, E. Bertino, and V. Varadharajan, “Practical k near-
1419est neighbor queries with location privacy,” in Proc. IEEE 30th Int.
1420Conf. Data Eng., 2014, pp. 640–651.
1421[56] Y. Elmehdwi, B. K. Samanthula, and W. Jiang, “Secure k-nearest
1422neighbor query over encrypted data in outsourced environ-
1423ments,” in Proc. IEEE 30th Int. Conf. Data Eng., 2014, pp. 664–675.
1424[57] H. Hu, J. Xu, X. Xu, K. Pei, B. Choi, and S. Zhou, “Private search
1425on key-value stores with hierarchical indexes,” in Proc. IEEE 30th
1426Int. Conf. Data Eng., 2014, pp. 628–639.
1427[58] R. Li, A. X. Liu, A. L.Wang, and B. Bruhadeshwar, “Fast range query
1428processing with strong privacy protection for cloud computing,”
1429Proc. VLDB Endowment, vol. 7, no. 14, pp. 1953–1964, 2014.
1430[59] R. Li and A. X. Liu, “Adaptively secure conjunctive query process-
1431ing over encrypted data for cloud computing,” in Proc. IEEE 33rd
1432Int. Conf. Data Eng., 2017, pp. 697–708.
1433[60] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis,
1434and M. N. Garofalakis, “Practical private range search revisited,”
1435in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2016, pp. 185–198.
1436[61] P. Karras, A. Nikitin, M. Saad, R. Bhatt, D. Antyukhov, and S.
1437Idreos, “Adaptive indexing over encrypted numeric data,” in
1438Proc. ACM SIGMOD Int. Conf. Manage. Data, 2016, pp. 171–183.
1439[62] C. Horst, R. Kikuchi, and K. Xagawa, “Cryptanalysis of compara-
1440ble encryption in SIGMOD’16,” in Proc. ACM SIGMOD Int. Conf.
1441Manage. Data, 2017, pp. 1069–1084.
1442[63] I. Demertzis and C. Papamanthou, “Fast searchable encryption
1443with tunable locality,” in Proc. ACM Int. Conf. Manage. Data, 2017,
1444pp. 1053–1067.
1445[64] X. S. Wang, Y. Huang, T.-H. H. Chan, A. Shelat, and E. Shi,
1446“SCORAM: Oblivious RAM for secure computation,” in Proc.
1447ACM SIGSAC Conf. Comput. Commun. Secur., 2014, pp. 191–202.
1448[65] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “ObliVM: A
1449programming framework for secure computation,” in Proc. IEEE
1450Symp. Secur. Privacy, 2015, pp. 359–376.
1451[66] J. Bater, G. Elliott, C. Eggen, S. Goel, A. N. Kho, and J. Rogers,
1452“SMCQL: Secure query processing for private data networks,”
1453Proc. VLDB Endowment, vol. 10, no. 6, pp. 673–684, 2017.
1454[67] N. Volgushev, M. Schwarzkopf, B. Getchell, M. Varia, A. Lapets,
1455and A. Bestavros, “Conclave: Secure multi-party computation on
1456big data,” in Proc. Eur. Conf. Comput. Syst., 2019, pp. 3:1–3:18.
1457[68] A. Dave, C. Leung, R. A. Popa, J. E. Gonzalez, and I. Stoica,
1458“Oblivious coopetitive analytics using hardware enclaves,” in
1459Proc. Eur. Conf. Comput. Syst., 2020, pp. 39:1–39:17.
1460[69] Q. Ye, H. Hu, X. Meng, and H. Zheng, “PrivKV: Key-value data
1461collection with local differential privacy,” in Proc. IEEE Symp.
1462Secur. Privacy, 2019, pp. 317–331.
1463[70] C. Sahin, T. Allard, R. Akbarinia, A. E. Abbadi, and E. Pacitti, “A
1464differentially private index for range query processing in clouds,”
1465in Proc. IEEE 34th Int. Conf. Data Eng., 2018, pp. 857–868.
1466[71] N. M. Johnson, J. P. Near, and D. Song, “Towards practical differ-
1467ential privacy for SQL queries,” Proc. VLDB Endowment, vol. 11,
1468no. 5, pp. 526–539, 2018.
1469[72] R. Chen, H. Li, A. K. Qin, S. P. Kasiviswanathan, and H. Jin,
1470“Private spatial data aggregation in the local setting,” in Proc.
1471IEEE 32nd Int. Conf. Data Eng., 2016, pp. 289–300.
1472[73] T. Wang, J. Blocki, N. Li, and S. Jha, “Locally differentially private
1473protocols for frequency estimation,” in Proc. USENIX Conf. Secur.
1474Symp., 2017, pp. 729–745.
1475[74] G. Cormode, S. Jha, T. Kulkarni, N. Li, D. Srivastava, and T. Wang,
1476“Privacy at scale: Local differential privacy in practice,” in Proc.
1477ACM SIGMOD Int. Conf. Manage. Data, 2018, pp. 1655–1658.
1478[75] N. Wang et al., “Collecting and analyzing multidimensional data
1479with local differential privacy,” in Proc. IEEE 35th Int. Conf. Data
1480Eng., 2019, pp. 638–649.
1481[76] T. Wang et al., “Answering multi-dimensional analytical queries
1482under local differential privacy,” in Proc. Int. Conf. Manage. Data,
14832019, pp. 159–176.

1484" For more information on this or any other computing topic,
1485please visit our Digital Library at www.computer.org/csdl.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

