K Nearest Neighbor Queries and KNN-Joins in
Large Relational Databases (Almost) for Free

Bin Yao, Feifei Li, Piyush Kumar
Computer Science Department, Florida State Universitjlafiassee, FL, U.S.A.
{yao, lifeifei, piyush}@s.fsu.edu

Abstract— Finding the k& nearest neighbors §NN) of a query no restaurants offer both Italian food and French wines) and
point, or a set of query points (NN-Join) are fundamental the kNN retrieval is not necessary at all. It is well known
problems in many application domains. Many previous effors 10 yhat \when the data is stored in a relational database, for

solve these problems focused on spatial databases or staakbne . ¢ f . . | imitive SOL ¢
systems, where changes to the database engine may be reqdire various types of queries using only primitive SQL operators

which may limit their application on large data sets that are the sophisticated query optimizer built inside the datebas
stored in a relational database management system. Furtherore, engine will do an excellent job in finding a fairly good query
these methodhs ma)(/jdnot aultomatically gptimizekNN quer];iefi or execution plan [4].

kNN-Joins when additional query conditions are specified. In ; ; ;
this work, we study both the kNN query and the KNN-Join in These advantages Of.Stonng and processing data sets in a
a relational database, possibly augmented with additionaguery relational df':ltabase mqtlvate us_to study N query and
conditions. We search for relational algorithms that requre no the KNN-Join problem in a relational database environment.
changes to the database engine. The straightforward solath Our goal is to design algorithms that could be implemented
uses the user-defined-function (UDF) that a query optimizer py the primitive SQL operators and require no changes to the
cannot optimize. We design algorithms that could be implemeted database engine. The benefits of satisfying such constraint

by SQL operators without changes to the database engine, . -
hence enabling the query optimizer to understand and genete are threefold. FirsttNN based queries could be augmented

the “best’ query plan. Using only a small constant number With ad-hoc query conditions dynamically, and they are auto
of random shifts for databases in any fixed dimension, our matically optimized by the query optimizer, without updati
approach guarantees to find the approximatekNN with only the query algorithm each time for specific query conditions.
logarithmic number of page accesses in expectation with a Second, such an approach could be readily applied on ex-

constant approximation ratio and it could be extended to find :
the exact kNN efficiently in any fixed dimension. Our design isting commercial databases, without incurring any cost fo

paradigm easily supports thekNN-Join and updates. Extensive Upgrading or updating the database engine, e.g., to make it

experiments on large, real and synthetic, data sets confirmhe support spatial indices. We denote an algorithm that sadisfi

efficiency and practicality of our approach. these two constraints asralational algorithm Finally, this

approach makes it possible to supportAtNN-Join efficiently.

We would like to design algorithms that work well for data
The k-Nearest Neighbor query:lN) is a classical problem in multiple dimensions and easily support dynamic updates

that has been extensively studied, due to its many importatithout performance degeneration.

applications, such as spatial databases, pattern re@mgnit The similar relational principle has been observed for othe

DNA sequencing and many others. A more general versipfoblems as well, e.g., approximate string joins in retzio

is the kNN-Join problem [7], [8], [11], [31], [32]: Given a databases [15]. The main challenge in designing relational

data setP and a query sef), for each poiny € Q we would algorithms is presented by the fact that a query optimizer

like to retrieve itsk nearest neighbors from points iR, cannot optimize any user-defined functions (UDF) [15]. This
Previous work has concentrated on the use of spatiales out the possibility of using a UDF as a main query

databases or stand-alone systems. In these solution methghdition. Otherwise, the query plan always degrades to the

ologies, changes to the database engine maybe necessarygsfpensive linear scan or the nested-loop join approactgtwhi

example, new index structures or novel algorithms need igprohibitive for large databases. For example,

be incorporated into the engine. This requirement poSeSs@ ecr Top & « EROM Addr ess A Restaurant R

limitation when the data set is stored in a database in WhighERE R Type=‘Italian’ AND R W ne=' French’

neither the spatial indices (such as the popular R-treejhveor ORDER BY Euclidean(A. X, AY, RX RY)

kENN-Join algorithms are available. Another limitation oeth In this query, X and Y are attributes representing the

existing approaches that are outside the relational ds¢ali® coordinates of an Address record or a Restaurant record.

the lack of support for query optimization, when additionaEuclidean” is a UDF that calculates the Euclidean distance

I. INTRODUCTION

guery conditions are specified. Consider the query: between two points. Hence, this isk&IN-Join query. Even
Retrieve the k nearest restaurants of ¢ though this query does qualify as a relational algorithre, th
with both Italian food and French w nes. query plan will be a nested-loop join when there are restasra

The results of this query could be empty (in the case whesatisfying both the “Type” and “Wine” constraints, sincesth

query optimizer cannot optimize the UDF “Euclidean”. Thi X, ..., X4}, let A=kNN(q, Rp) be the set oft nearest

implies that we may miss potential opportunities to fullyeighbors ofg from Rp and |z, y| be the Euclidean distance
optimize the queries. Generalizing this example to ANIN- between the pointz and the pointy (or the corresponding
query problem, the UDF-based approach will degrade to thecords for the relational representation of the pointgnt

expensive linear scan approach. (A CRpA(A| = k)A(Ya € A, ¥r € Rp—A, |a,q| < |r,q]).
Our Contributions. In this work, we design relational algo'kNN-Join. In this case, the query is a set of points denoted

rithms that can be implemented using primitive SQL opeeatoBy @, and it is stored in a relational table;RThe schema of

W|tfgr(:u: ttr?e reliance t(.)n.the UDF az a rt'na|(;1 qudery gorw_dltlo& is {qid, X1, - , X, Bi1,--- , Bp}. Each pointg in Q is
S0 that the query optimizer can understand and optimize. resented as a recasdn Rg, and its coordinates are stored

would like to support both approximate and exabiN and in attributes{ X1, ..., X4} of s. Additional attributes ofg,

kNN-Join queries. More specifically, .
) . are represented by attributé®;, - - - , By, } for some valuéh.
» We formalize the problems 0NN queries andkNN- Similarly, gid corresponds to the point id fro). The goal

Joins in a relational database (Section). of the kNN-Join query is to join each recordfrom Ry with

« We provide a constant factor approximate solution basﬁ? kNN from Rp, based on the Euclidean distance defined by
on the Z-order values from a small, constant numberv\?ﬁ '

randomly shifted copies of the database (Section II). X1, -oos Xap and{Vy,..., Ya}, I.e., forvs € Q, we would
provide the theoretical analysis to show that by using only
O(1) random shifts for data in any fixed dimension, ouPther query conditions. Additional, ad-hoc query condi-
approach gives an expected constant factor approximatitans could be specified by any regular expression, over
(in terms of the radius of the nearest neighbor ball) with {A1,---, A} in case ofkNN queries, or botH Ay, --- , Ay}
only log N number of page accesses for thidN query and{Bi,---, By} in case ofkNN-Join queries. The relational
where N is the size of data séP. Our approach can be requirement clearly implies that the query optimizer wié b
achieved with only primitive SQL operators. able toautomaticallyoptimize input queries based on these
« Using the approximate solution, we show how to geguery conditions (see our discussion in Section VII).

exact results for &NN query efficientl;_/ (Section IV). Approximate k nearest neighbors.Suppose;’s kth nearest
Furthermore, we show that for certain types of dai ighbor fromP is p* and r* = |¢,p*|. Let p be thekth

distributions, our exact solution also only useflog N) aarest neighbor of for somekNN algorithm A and ? —
number of page accesses in any fixed dimension. TFe

PR .) q;p|. Givene > 0 (or ¢ > 1), we say that(p,7?) € R? x R

exact solution is also_easy to |mplement using SQI_" is a (1 + ¢)-approximate (orc-approximate) solution to the
« We extend our algorithms téNN-Join queries, which ;.\ querykNN(g, P) if 1 < P < (1 +e)r* (or r* < 1P <
can be achieved in relational databases without chan%gs for some con;tant) Alaorith_m Ais called ad+ 6)__

to the engines (Section V). _ approximation (ore-approximation) algorithm.
« We show that our algorithms easily support float values, Similarly for kNN-Joins, an algorithm that finds ath

data in arbitrary dimension and dynamic updates withopt, 5 est neighbor point € P for each query poiny € Q
any changes to the algonthr_ns (Secno_n V). that is at least g1 + ¢)-approximation orc-approximation

o« We present a cp_mprehenswe expe_rlmental study, that kNN(q, P) is a (1 + ¢)-approximate orc-approximate
confirms the significant performance improvement of 0yi\y. join algorithm. The result by this algorithm is referred

approach, against the state of the art (Section VII). 5 a5 a(1 + ¢)-approximate or-approximate join result.
In summary, we show how to find constant approximations

for NN queries in |Ogarithm page accesses with a Sm&ﬂditional notes. The default value ford in our rUnning
constant number of random shifts in any fixed dimension; ogxamples is two, but, our proofs and algorithms are predente
approximate results lead to highly efficient search of thecex for any fixed dimensiond. We focus on the case where the
answers, with a simple post-processing of the results.llifinacoordinates for points are always integers. Handling fhagti
our framework enables the efficient processing:NiN-Joins. Points coordinates is discussed in Section VI. Our approach

e to produce pairgs,), for Vr € ENN(s, R).

We survey the related work in Section VIII. easily supports updates, which is also discussed in Section
VI. The number of records in R and R, are denoted by
Il. PROBLEM FORMULATION N = |Rp| and M = |Rq| respectively. We assume that each

Suppose that the data sétin a d dimensional space is Page can store maximallj records from either R or Ry,
stored in a relational table /R The coordinates of each pointand the fan-out of a B+ tree if. Without loss of generality,
p € P are stored inl attributes{Y7, . .., Yy }. Each point could We assume that points iR are all in unique locations. For the
associate with other values, e.g., types of restauraneséTad- general case, our algorithms can be easily adapted by bigaki
ditional attributes are denoted By, , ..., A,} for some value the ties arbitrarily.

g- Hence, the schema ofRis {pid, Y1, -, Yy, A1, -+, Ag} I1l. A PPROXIMATION BY RANDOM SHIFTS

wherepid corresponds to the point id frort. The z-value of a point is calculated by interleaving the

kNN queries. Given a query pointg and its coordinates binary representations of its coordinate values from thetmo

significant bit (msb) to the) least significant bit (Isb). For Algorithm 1: zX-kNN (point ¢, point sets{ P°, ..., P*})
example, given a point{2,6) in a 2-d space, the binary . —
representation of its coordinates (810, 110). Hence, itsz- 1 Candidates” = 0;
value is011100 = 28. The Z-order curve for a set of points
P is obtained by connecting the points ihby the numerical
order of theirz-values and this produces the recursively y TR .
) . 5 For each poinp in C*, letp = p — v;;

shaped curve. A key observation for the computation:-of c=cyc
value is that, it only requires simple bit-shift operatiansich o '
are readily available or easily achievable in most comnaérci? Let AX = kNN(g, C') and outputAX.
database engines. For a pojintz, denotes itsz-value.

Our idea utilizes thez-values to map points in a multi-
dimensional space into one dimension, and then translate th= k. In this case, leP’ be a randomly shifted version of the
ENN search for a query point into one dimensional range point setP, ¢’ be the correspondingly shifted query point and
search on the-values around thg's z-value. In most cases, A, be thek nearest neighbors gf in P’. Note that4, = A.
z-values preserve the spatial locality and we can §isdkNN Let points in P’ be {p1,p2,...,pn} and they are sorted by
in a close neighborhood (saypositions up and down) of its their z-values. The successor gf w.r.t the z-values inP’ is
z-value. However, this is not always the case. In order to gégnoted ag, for somer € [1, N]. Clearly, the candidate set
a theoretical guarantee, we produgeindependent, randomly C' in this case is simply' = {p,_x, ..., pr+1}. Without loss
shifted copies of the input data sét and repeat the aboveof generality, we assume that both- £ andr + & are within
procedure for each randomly shifted versionraf the range of1, N], otherwise we can simply take additional

Specifically, we define the “random shift” operation, apoints after or before the successor as explained abovesin th
shifting all data points inP by a random vectorv € R?. algorithm description. We us®(c,r) to denote a ball with
This operation is simply + @ for all p € P, and denoted centerc and radius- and letrad(p, S) be the distance from
as P + 7. We independently at random generatsiumber the pointp to the farthest poinin a point setS. We first show
of vectors {v7,...,v4} whereVi € [1,a], v; € R% Let the following lemmas in order to claim the main theorem.
P = P47, P’ = P andu = 0. For eachP’, its points are
sorted by theirz-values. Note that the random shift operatio
is executed only once for a data getand used for subsequen
queries. Next, for a query poigtand a data seP, let z, be
the successot-value of z, among all z-values for points in
P. The v-neighborhood ofg is defined as they points up
and down next taz,. For the special case, whep does not

2 fori=0,...,ado
Find z;, as the successor of 3 in P’;
Let C* be~ points up and down next te/, in P*;

[Lremma 1 Let M be the sma.IIest box, centeredtcontain-
ng A, and with side lengtf2’ (wherei is assumed w.l.0.g to

e an integer> 0) which is randomly placed in a quadtr&e
(associated with the Z-order). If the evefitis defined as\/
being contained in a quadtree badx with side length2i*7,
and Mr is the smallest such quadtree box, then

have~ points before or after, we simply take enough points 1\¢ gi-1

after or beforez, to make the total number of points in the Pr(&;) < <1 o E) 2=

~-neighborhood to b&~y + 1, including z, itself. Our kNN o 2)

query algorithm essentially finds thg-neighborhood of the Proof: The proof is in the Appendix. .

query pointy’ = q_+7{ in P! fofi € [0,] and S?'eCt the final Lemma 2 The Z-kNN algorithm gives an approximate-
top k& from the points in the unione@y+1) v-neighborhoods, . ot neighbor balB(¢/, rad(¢', C)) usingg’ and P’ where

with a maximum(a 4 1)(2y + 1) number of distinct points. rad(¢,C) is at most the side length dff;-. Here My is the

ge()vfjlﬁni(r)]tilth(i)sr it?:g]()qth:? izsirt:éo-rtt::ri\tl s)lgr?(r)i'fgr?hi?nitl_iisn esmaIIest quadtree box containing, as defined in Lemma 1.
9 ’ P Proof: zX-kNN scans at leagt,_x . ..pr+x, and picks

5, we obtain the original point from its shifted version if it X .
is selected to be a candidate in one of thaeighborhoods. the top k nearest nelghbors_ tg among these candlda_ltes.
This step simplifies the final retrieval of tHeNN from the \I/_v(iatthathielaireesr][uz\k/);[;firgo"’ns E)Zet\//viqa} a?ge”;)e(azg?t
candidate seC. It also implies that the candidate sef§’s 9 p ('.J e (¢, Ag)),

nearest neighbor ball of’. Similarly, let ¥ be the number

may contain duplicate points, i.e., a point may be in the ; . :
y b P €. ap y 1 f points betweenp, and the point with the smallest z-

neighborhood of the query point in more than one randomR . ; , B
shifted versions. Value in B(¢',rad(q’, Ay)). Clearly, a + b = k. Note that

/! ! i 1 i 1
The 2-kNN is clearly very simple and can be implementeﬁ(q ’Tadéq ’A‘?')) 'Ct M |%é(\:/;>nta>|ne: 'I:;S'dEMT’ hence
efficiently using only(a.+ 1) one-dimensional range searches € number of points nsidey = &. NOW, pr...Prik

each requires only logarithmic 10s w.r.t the number of pag ustt f:on:alumsgomftstmfmdej\;[f. Sslmllarly, p;]*k N 'pﬁ mtuzt ¢
occupied by the data seiN(/B) if v is some constant. More contain at ieash points from//z. SINCE We have collected a

: , .
importantly, we can show that, with — O(1) and~ — O(k), leastk points from My, rad(q’, C) is upper bounded by the

zX-kNN gives a constant approximatiotNN result in any side length ofM7. u
fixed dimensiond, with only O(log %Jrk/B) page accesses.Lemma 3 Mr is only constant factor larger thanV/ in
In fact, we can show these results with just= 1 and expectation.

Proof: The expected side length af/; is:

oo

j=1

E[2"H] < i 2 Pr(&;) < 2°
j=1
where Lemma 1 giveBr(&;). Using Taylor's approximation:
(1 — i>d <(1—d277 (14+2717) +d*27%7 1)
27 -

and substituting it in the above expectation calculatiomcan
show thatE[2¢+7] is O(2%). The detail is in the Appendixm
These lemmas lead to the main theorem forkAN.

rs, IN the next step, we retrieve all records that locate within
~ positions away fromr,. This can be done as:
SELECT * FROM
(SELECT TOP ~ » FROM Rp WHERE Rp. zval

> rs.zval ORDER BY Rp.zval ASC

UNI ON

SELECT TOP ~ * FROM Rp WHERE Rp. zval

< rs.zval ORDER BY Rp.zval DESC) AS C

Again, due to the clustered B+ tree index on theal
this query is essentially a sequential scan aroundwith a
query cost ofO(log, X +). The first SELECT clause of
this query is similar to the successor query as above. The
secondSELECT clause is also similar but the ranking is in

Theorem 1 Using o = O(1), or just one randomly shifted descending order of theval However, even in the second
copy of P, andy = O(k), 2Z¥-kNN guarantees an expectedcase, the query optimizer is robust enough to realize thtdt wi

constant factor approximate kNN result with{log ; X+k/B)
number of page accesses.

Proof: The 10 cost follows directly from the fact that

the one dimensional range search used bykRN takes
O(log X +k/B)

index. Letq be the point for which we just computed th

the clustered index on theval no ranking is required and it
simply sequentially scang records backwards from.

The final step of our algorithm is to simply retrieve the top
k records from thes@~y + 1 candidates (including;), based

number of page accesses with a B-tre" their Euclidean distance to the query pajntHence, the
&JDF ‘Euclidean’ is only applied in the last step withy + 1

number of records. The complete algorithm can be expressed
pin one SQL statement as follows:

1 SELECT TOP k * FROM
2 (SELECT TOP y+1 * FROM Rp,

(SELECT TOP 1 zval FROM Rp
WHERE Rp.zval > q.zval
ORDER BY Rp.zval ASC) AS T

WHERE Rp. zval >T. zval

ORDER BY Rp.zval ASC
UNI ON

SELECT TOP ~ * FROM Rp

approximatek-nearest neighbor balB(¢’, rad(q’, C)). From
Lemma 2, we know thatad(q’, C) is at most the side lengt
of Mr. From Lemma 3 we know that the side length/df;
is at most constant factor larger thaad(q’, A,) in P’,in 3
expectation. Note thatad(q, A,) in P equalsrad(¢’, Ay) 4
in P’. Hence our algorithm, in expectation, computes
approximatek-nearest neighbor ball that is only a consta
factor larger than the truk-nearest neighbor ball. m 3
Algprlthm_ 1 clearly indicates th_athkNN o_nly relies on _9 WERE Rp. zval < T.zval
one dimensional range search as its main building blocke(Lif; croER BY Rp. zval DESC) AS C
4). One can easily implement this algorithm with just SQI12 ORDER BY Euclidean(q. X;, . X2, C. Y1, C. Y2) (QL)

statements over tables that store the point §&1% ..., P}, For all SQL environments, ling to 5 need to be copied
We simply use the original data sét to demonstrate the jhto the FROM clause in line9. We omit this from the SQL
translation of the 2-kNN into SQL. Specifically, we pre- statement to shorten the presentation. In the sequel,rfoiasi
process the table R so that an additional attributeval is sjtyations in all queries, we choose to omit this. Essdptial
introduced. A record- €Rp uses{Yy,..., Yy} to compute |ine 2 to line 11 in QL select they-neighborhood of; in P,

its 2-value and store it as theval Next, aclustered B+-tree \yhich will be the candidate set for finding the approximate
indexis built on the attributeval over the table R. This also ;NN of 4 using the Euclidean UDF by ling and 12.

implies that records in R are sorted by thevalattribute. For |, general, we can pre-proce$®!, ..., P} similarly to

a given query point;, we first calculate its-value (denoted get the randomly shifted tablegRL,...,R3} of Rp, the
aszval as well) and then, we find theuccessorecord ofg gpove procedure could be then easily repeated and the final
in Rp, based on theval attribute of B andq. In the sequel, answer is the to: selected based on applying the Euclidean
we assume that such a successor record always exists. Ini#f= over the union of théa + 1) y-neighborhoods retrieved.
special case, wheq's z-value is larger than all the-values The whole process could be done in just one SQL by repeating
in Rp, we simply take its predecessor instead. This techniq@ie 2 to line 11 on each randomly shifted table and unioning
detail will be omitted. The successor can be found by: them together with the SQL operator UNION.

SELECT TCP 1 » FROM Rp WHERE Rp. zval In the work by Liao et al. [23], using Hilbert-curves a
Note thatTOP is a ranking operator that becomes part afet of d + 1 deterministic shifts can be done to guarantee
the standard SQL in most commercial database engines. Boconstant factor approximate answer but in this case the

example, Microsoft SQL Server 2005 has théP operator space requirement is higld)(d) copies of the entire pointset
available. Recent versions of Oracle, MySQL, and DB2 have required, and the associated query cost is increased by
the LI M T operator which has the same functionality. Since multiplicative factor ofd. In contrast, our approach only
table R> has a clustered B+ tree on tlzeal attribute, this requiresO(1) shifts for any dimension and can be adapted
qguery has only a logarithmic cost (to the size gf)Rn terms to yield exactanswers. In practice, we just use the optimal
of the 10s, i.e.,O(log %). Suppose the successor record igalue of « = min(d,4) that we found experimentally to

> ¢.zval

h

give the best results for any fixed dimension. In addition, z-
values are much simpler to calculate than the Hilbert values
especially in higher dimensions, making it suitable for &@L
environment. Finally, we emphasize that randomly shifted
tables {R},...,R%} are generated only once and could be
used for multiple, different queries.

v
P7ﬂ<§h

p2
p3
P14

¢ 5
IV. EXACT kNN RETRIEVAL j" y o X e

= J\ z-val Ds

The z¢¥-kNN algorithm finds a good approximate solution 2L ZaZp1%a Zpa Zps Zpath Ve
in O(log, X + k/B) number of 10s. We denote theNN (a) kNN box. (b) AX = A
result from thezX-£NN algorithm as.AX. One could further Fig. 1. kNN box: definition and exact search.
retrieve the exactNN results based odx. A straightforward
solution is to perform a range query using the approximaf@shion, this immediately implies tha}, € [z, z,]. The case
kth nearest neighbor balbf AX, B(.AX). It is defined as the for higher dimensions is similar. u
ball centered at; with the radiusrad(q, AX), i.e., B(AX) = Lemma 4 implies that the-values of all exackNN points
B(q,rad(q, AX)). Clearly,rad(q, AX) > r*. Hence, the exact Will be bounded by the rangey, z1,|, wherez, andz; are the
ENN points are enclosed b§(.A%). This implies that we can z-values for thej, andé,, points of M (AX), in other words:
find the exactNN for ¢ by:

Corollary 1 Letz, and z;, be thez-values ofy, andd;, points

SELECT TOP k » FROM Rp of M(AX). For all p € A, z, € [z, 21].
WHERE Eucl i dean(q. Xi, g. X2, Rp. Y1, Rp. Y2) < rad(p, AX)
ORDER BY Eucl i dean(q. X1, 4. X2, Rp. Y1, Rp. Y2) (@) Proof: By B(A) C M(AX) and Lemma 4. []

This query does reduce the number of records participated jfconsider the example in Figure 1(a), Corollary 1 guarantees
the final ranking procedure with the Euclidean UDF. Howevefat zp; for i € [1,5] and z, are located between, and z,
it still needs to scan the entire tablepRo calculate the N the one-dimensionad-value axis. Thez*-kNN essentially
Euclidean UDF first for each record, thus becomes Veﬁ(;archeS/ number of points around both the left and the right

expensive. Fortunately, we can again utilize thealues to ©Of Z¢ In the z-value axis, forv number of randomly shifted
find the exacttNN based ondX much more efficiently. copies of P, including P itself. However, as shown in Figure

We define thekNN box for .AX as the smallest box that1(8) it may still miss some of the exakNN points. Lety,
fully enclosesB(AX), denoted as\/(AX). Generalizing this and~yy, denot(_a the left and nght—th pomts_, respectively for this
notation, let.AX be the kNN result of ZX-kNN when it is search. In this case, let= 2, z,, is outside the search range,

applied only on table B and M (AX) and B(AY) be the specifically, z,, > z,,. Hence, z-kNN could not _find th_e
corresponding:NN box andkth nearest neighbor ball from exactkNN result. However, given Corollary 1, an immediate
table R». The exactkNN results from all table R's are the result is that one can guarantee to find the exaiitl result by

same and they are always equaldoln the sequel, when the considering all poi_nts with theig-values bgtweem and z;,
context is clear, we omit the subscripfrom AX. of M(AX). Infact, if z,, < zp andz,, > 25 in at least oneof

An example of thekNN box is shown in Figure 1(a). In the table R's for i = O_, ...,a, we know for sure thazX-k_NN_
this case, theX-kNN algorithm on this table R returns the has successfully retrieved the exahNN result; otherwise it
kNN result asAX = {p1, ps, pa} for k = 3 andp, is thekth MY have missed some exadiN points. The case whe@
nearest neighbor. HencB(.AX) = B(q, |¢, pa|), shown as the @ndzx are both contained by,, andz,, of the M(A) in
solid circle in Figure 1(a). TheNN box M (AX) is defined by one pf the ra_ndomly shifted tables is |Ilustrat_ed in Figufie)1
the lower-left and right-upper corner pointsandsy,, i.e., the In this case, in one of thex+ 1) randomly shifted tables, the

A points in Figure 1(a). As we have argued above, the exgcPrder curve passes through, first before any points in
kNN result must be enclosed B3(.4%), hence, also enclosed (4A*) (€., z,, < 2 and it comes to,, after all points
by M(AX). In this case, the exadtNN result is {p1, ps,ps} N M (AX) have been visited (i.ez,, > z;). As a result, the

and the dotted circle in Figure 1(a) is the exath nearest c@ndidate points considered by-kNN include every point
neighbor ballB(A). in A ar_1d thekNN result from the algorithnzX-ENN will be
exact, i.e. AX = A.

Lemma 4 For a rectangular box)/ and its lower-left and ~ When this is not the case, i.e., eithgr< 2! or zj > 2!

upper-right corner pointsy, o5, Yp € M, z, € [z, zn], Where or bothin all tablesR%’s for i = 0, ..., a, AX might not be

zp stands for thez-value of a pointp and z, z;, correspond equal to.A. To address this issue, we first choose one of the

to the z-values ofd, and 4, respectively (See Figure 1(a)). table R, such that its}M (A}) contains the least number of
Proof: Consider 2-d points, lep.X and p.Y be the points among:NN boxes from all tables; then the candidate

coordinate values op in z-axis andy-axis respectively. By points for the exackNN search only need to include all points
p e M, we havep. X € [6,.X,0,.X] andp.Y € [6,.Y,8,.Y]. contal_ned by this box, |.eM(A}‘) from the table R. o
Since thez-value of a point is obtained by shuffling bits of To find the exackNN from the boxM (AY), we utilizing

its coordinate values from the msb to the Isb in an altergatihemma 4 and Corollary 1. In short, we calculate ﬂjeand

q°.zval R[}):, q*.zval R}D

Algorithm 2: z-kNN (point ¢, point sets{PY, ..., P*})

. . \£) (zval) [J(zval]
1 Let A¥ be kNN(g, C*) whereC” is from Line 4 in the —] = ——
zX-kNN algorithm; ¥ {[H B { H %

2 Let 2} andz] be the z-values of the lower-left and T !

[\g} = %
upper-right corner points for the bak/ (AX); L=
3 Let 2!, andz!, be the lower bound and upper bound of
the z-values 2-kNN has searched to producg;
aif Jie[0,a], stz <z andz!, >z then

5 | ReturnAX by zX-kNN as A;

6 else) o S
7 Find j € [0, o] such that the number of points i, |f_th|s count equald), then [z}, z}] C [%’_Z%]- One can

. : GG e e easily create one SQL statement to do this checking for all

with z-values inc [z}, 2] is minimized; , .
| . tables. If there is at least one table with a count equd to
8 Let C. be those points and retuth = KNN(q, C.); b
among R, ...,R%, then we can can safely retusdx as the

exact kNN result. Otherwise, we continue to the next step.

We first select the table (say}'R with the smallestZ? value.

21 of this box and do a range query wiﬂaj Zj] on thezval This is done by Q4), in which we find the valug. Then we
- i S i e i rselect the finakNN result from R, among the records with
attribute in table R. Since there is a clustered index builf® PR 9
on thezval attribute, this range query becomes a sequentaivalues betweert;, z; | via (Qp) .
scan in[z, z]] which is very efficient. It essentially involvesSELECT TGP 1 1 D FROM
logarithmic 10s to access the path from the root to the leffSELECT 0 AS ID, COUNT(*) AS L FROM R} AS R’

; : . WHERE RC.zval > 2) AND RC.zval < 2
level in the B+ tree, plus some sequential I0s linear to the ™ "y on ... ~ Nl on -
number of points between, and z] in table R,. The next SELECT a AS ID, COUNT(*) AS L FROM R} AS R*
lemma is immediate based on the above discussion.z} et X“;'E$E R, ;VSL TZ LZ?AséND R¥.zval < 2
be the successot-value to ¢*'s z-value in table R where) ' Q4
¢' = q+7;, 2}, be thez-value of a poinp in table R, and L’ SELECT TOP k » FROM R, //The ID from Q4 is |

be the number of points in the rangg, 2i] from table B,. ~WHERE Rj,.zval > 2] AND Rj.zval < z
ORDER BY Euclidean(q’. X1, g7. X2, R,. Y1, R,. Y2) (Q5)

Lemma 5 For the algorithmzX-kNN, if there exists at least One can combing¢ Q8) , (Q4) and(Q®) to get the exact

2
e

)|
)
)

]
)|
)|

Fig. 2. Exact search ofNN.

onei € {0, ..., a}, such thatz}, z}] C [ZEYZ’ZE.Y}L]’ thenAx = kNN result based on the approximat&IN result given by
A; otherwise, we can findd C [z],z]] for some table B (QL) (the z*-kNN algorithm).
wherej € {0,...,a} and L7 = min{L°, ..., L}. Finally, we would like to highlight that theoretically, for

many practical distributions, thekNN algorithm still achieves
These discussion leads to a simple algorithm for finding ttie(log % + k/B) number of page accesses to report the
exactkNN based on ¥-kNN and it is shown in Algorithm 2. exact kNN result in any fixed dimension. WhedX = A,
We denote it as the 2NN algorithm. this result is immediate by Theorem 1. Whetx # A, the
Figure 2 illustrates the NN algorithm. In this casey = 1, key observation is that the number of “false positives” i th
In both table B and R;, [2+,, 2+,] does not fully contain candidate se€. (line 8 in Algorithm 2) is bounded by some
[2¢, z1]. Hence, algorithnzX-kNN does not guarantee to returrconstanO (k) for many practical data distributions. Hence, the
the exacttNN. Among the two tables}z}, z}] contains less number of candidate points that tlzécNN algorithm needs
number of points thafi?, 2)] (in Figure 2,L! < L°), hence 10 check is stillO(k), the same as theX-kNN algorithm.
we do the range query usirig}, z1] in table R. and apply the Referring back to Figure 1(b), the false positives NN box
“Euclidean” UDF on the records returned by this range qued/ (A}) are defined as those pointsuch thap ¢ M (A) but
to select the final, exadtNN records. Algorithm ztNN can zp € [2;, z;,]. For example, in Figure 1(b), the false positives
be achieved using SQL alone. The first step is to checkafe {ps,ps,pr}. Note thatpy is not a false positive w.r.t this
AX = A. This is equivalent to check if:{, 2] C [2%,,21,] *NN box as itis beyond the randej, ;]. _
for somei. Note that we can calculate the coordinate values ofLeét P be a fixed distribution of points in a fixed-
5; andd;, for any M (AY) easily with addition and subtraction,dimensional space, i.ed, is considered as a constant. Lt
given ¢’ and Az(, and convert them into the-values éé and be ii.d. fromP and its size beV > k£ > 1. We will call
zi) in SQL (we omit this detail for brevity). That said, thisthis distribution aboubling Distributionif it has the following
checking on table R can be done via: property: LetS be ad dimensional ball with center; € P and
radiusr that containg points. Then, the dimensional balls’
with centerp; and radiu2r has at mosvk points, for some
AND R pid NOT IN (SELECT pid FROM R, AS RL v = O(1). This is a similar restriction to the doubling metric

WHERE RL.zval > 2! AND RL.zval < z!) (@) restriction on metric spaces and has been used before [21].

SELECT COUNT(*) FRO\/I FZ;; AS R)
WHERE R zval > z; AND R zval < zj

Note that many distributions of points occurring in realadatequivalent to retrieving tog records in each group based on

sets, including uniform distribution satisfy this propert some ranking functions and grouping conditions. This hanbe
) o addressed by all commercial database engines. For example,

Theorem 2 .F.or doubling dlstrlbuno)?s, the gxpected numbeMicrosoft SQL Server, this is achieved by tRANK() OVER

of false positives for &NN boxM (AY) for all i € {0,...,a} (PARTI TI ON BY ... ORDER BY ...) clause. Conceptu-

is O(k); the number of points that are fully enclosed by, his clause assigns a rank number to each record iedolv

M(A7) is also O(k). in one partition or group according to its sorted order irt tha

Proof: Without loss of generality, let be any fixed partition. Hence, we could simply select the tuple with the
value from0 to a. Let M7 be the smallest quadtree boxank number that is less than or equalktdrom each group.
that containsM (AY). Let d = 1. We will now show that Oracle, MySQL and DB2 all have their own operators for
the number of points inV/7 is O(k). The expected number similar purposes.

of points in M(AY) is at mostkvs + kv?33 + kvgL + We denote this query as the-kNNJ algorithm. It is
J

. < kz;';l Z(J;’TW = O(k), sincerv = O(1). A similar important to notethat in some engines, the query optimizer
argument shows that as the dimension increases (but is stihy not do a good job in optimizing the tdpeguery for each
0O(1)), the expected number of points M (AX) is still O(k). group. An alternative approach is to implement the same idea
A two level expectation argument shows that the expectedth a store procedure, By the same argument as shown in
number of points inMr is still O(k). The details of this Section Ill, the following result is immediate.

calculation are omitted for brevity. The points T aré | emma 6 Using o = O(1) and v = O(k), the zX-kNNJ
consecutive in z-values and the Z-order curve enters thertowggorithm guarantees an expected constant approxirabis-

left corner and sweeps through the entifg- before it leaves jgin result inO (%(logf % + %)) number of page accesses.
through the upper right corner @ffr. Since,M (AX) C Mr,
the curve passing through the lower left cornedé{.4X) and) ,
ending at the upper right corner 8f (AX) can not go out of IV to derive S_QL staterr_\e_nts as tIze_kNNJ algorithm for the
M. This implies that all the false positives are contained IﬂxactkNN-Jom. We omit it for brevity.

My and hence the expected number of false positives is alsd®U’ @Pproach is quite flexible and supports a variety of
upper bounded by (k) in expectation. interesting queries. In particular, we demonstrate howitad

be adopted to support the distance basddin query, denoted

Corollary 2 For doubling distributions, the-kNN algorithm, as thef-DJoin. Our idea for thef-DJoin is similar to the
using O(1) number of random shifts, retrieves the exabiN principle adopted in [24]. This query joins each recaide
result with O(log ¢ & + k/B) number of page accesses foR, with the set.A?(s;) which contains all records; € Rp

data in any fixed dimension. such that|s;,r;| < 6 for some specified value. Suppose

Our Theorem requires just random shift. In practice, we $: COTTésponds to a query poigt An obvious observation
use several random shifts to amplify the probability of igett iS that thefurthestpoint (or record) tog in A%(s;) always
smallerMr sizes (which in turn reduces the query cost), at tfegs @ distance that is at mogt Hence, the ballB(q, 6))
expense of increasing storage cost. We explore this tréidegPmpletely encloses all points frord?(s;). Let the 6-box

We could extend the exaatkNN algorithm from Section

in our experiments. for a records; be the smallest box that enclosBgq,) and
denote it asM (A%(s;)). Clearly, all points fromA?(s;) are
V. ENN-JOIN AND DISTANCE BASED 6-JOIN also fully enclosed byM (A%(s;)). By Lemma 4, we have

An important feature for our approach is that we can easil§’ 7P € A%(si), 2 € [20,2n], herez, and 2, are the:-
and efficiently support join queries. The basic principle ofalues of the bottom-left and top-right corner points of the
finding the k nearest neighbors stays the same for - 00X M(A%(s;)). This becomes exactly the same problem as
Join query over two tables (Rand Re. However, the main the exactkNN search and similar ideas fromkNN could
challenge is to achieve this using a single SQL statement. Wgn be applied.
still generate B, ..., R% in the same fashion. Concentrating
on the approximate solution, we need to perform the simila
procedure as shown in Section Ill to joining two tableg;(R Our method easily supports the floating point coordinates by
and R.'s). The general problem is to join each individuatomputing the:-values explicitly for floating point coordinates
record s; from Rg to 2y + 1 number of records from R in the pre-processing phase. This is done via the same bit-
arounds;'s successor (based on thevalue) recordr,(s;) in interleaving operation. The only problem with this apptoac
Rp; and then for each such group; @nd the2y + 1 records is that the number of bits required for interleavidesingle
aroundrs(s;)) we need to select the tdprecords based on precision co-ordinates i856d, assuming IEEE754 floating
their Euclidean distances tg. A simple approach is to usepoint representation. To avoid such a long string we can use
a store procedure to implement this idea, i..e, for eachrdecahe following trick: We fix the length of the interleaved Zelr
from Ry, we execute theX-kNN query from Section III. bits to be at most.d bits, whereu is a small constant. We scale

If one would like to implement this join with just one SQLthe input data such that all coordinates lie betwéen). We
statement, the observation is that the second step abovéhien only interleave the firgt bits of each coordinate after the

|I. FLOAT VALUES, HIGHER DIMENSIONS AND UPDATES

decimal point. For most practical data setss 32 (equivalent (essentially the TA algorithm [13]). Both steps are achikve
to more thard digits of precision in the decimal system). by using stored procedures. We did not implement the iJoin
There are no changes required to our framework for dealinfgorithm [32], the state of the art method fielN-Joins, us-
with data in any dimension. Though our techniques work fang only SQL, as it is not clear if that is feasible. Furtherso
any dimension, however, as increases, the number of bitsit is based on iDistance and o#NN algorithm significantly
required for thez-value also increases. This introduces storagitperforms the SQL-version iDistance. All experimentsave
overhead as well as performance degradation (the fanoheof executed on a Windows machine with an Ite§3GHz CPU.
clustered B+ tree on theval attribute drops). Hence, for theThe memory of the SQL Server is set t&GB.
really large dimensionality (say > 30) one should consider

. . ; . Data sets.The real data sets were obtained from [1]. Each data
using techniques that are specially designed for thoseosesy

for example the LSH-based method [5], [14], [25], [30] set represents the road-networks for a state in United State
AnotheF; nice property of our a ro’ach i,s the: eas' arye have tested California, New Jersey, Maryland, Floridd an
- property appro ASY Afhers. They all exhibit similar results. Since tBalifornia

efficient support of updates, both insertions and deletibos . X o .

the deletion of a record. we simply delete based on its data set is the largest with more thehmillion points, we only

pid from all tables R R“. Forpz;/n insertion of a record shpw its results. By d_efault, we randomly samplenillion

r that corresponds to’ a p’oipt we calculate the-values for points from theCalifornia data set. We also generate two types
0 o, recallp’ — p + 7. Next, we simply insert: into of synthetic data sets, namely, the unifotdN) points, and the

glft'ét')feps F? F{’)O‘ bult) withlaiffere’ntz-values The databaserandom—clustereﬂ—CIuste) points. Note that th€alifornia

: . S data set is ir2-dimensional space. For experiments in higher
engine will take care of maintaining the clustered B+ tre&-. :
o . . imensional space, we use th& and R-Clusterdata sets.
indices on thezval attribute in all these tables.

Finally, our queries are parallel-friendly as they execufgetup. Unless otherwise specified, we measured an algo-
similar queries over multiple tables with the same schema.rithm’s performance by thevall clock timemetric which is the
total execution timef the algorithm, i.e, including both the 10
VII. EXPERIMENT cost and the CPU cost. By defaul)0queries were generated
We implemented all algorithms in a database server runnifay each experiment and we report the averageofte query
Microsoft SQL Server 2005. The state of the art algorithm fdfor both kNN and £NN-Join queries, the query point or the
the exacttNN queries in arbitrary dimension is the iDistanceuery points are generated uniformly at random in the space
[20] algorithm. For the approxima#eNN, we compare against of the data setP. The default size ofP is N = 105. The
the Medrank algorithm [12], since it is the state of the artdefault value fork is 10. We keepa = 2, randomly shifted
for finding approximatekNN in relatively low dimensions copies, for theUN data set andv = min{4,d}, randomly
and is possible to adapt it in the relational principle. Weoal shifted copies, for th€alifornia and R-Clusterdata sets, and
compared against the approach using deterministic shifts wsety = 2k. These values af and~y do not change for different
the Hilbert-curve [23], however, that method requi@sd) dimensionsFor the Medrank algorithms, we set its: value
shifts and computing Hilbert values in different dimensionas2 for experiments in two dimensions andor d larger than
Both become very expensive whénincreases, especially in2. This is to make fair comparison with our algorithms (with
a SQL environment. Hence, we focused on the comparistre same space overhead). The default dimensionality is
against theMedrankalgorithm. We would like to emphasize
they were not initially designed to be relational aIgoriEhmA' Results for th&:NN Query

that are tailored for the SQL operators. Hence, the resultspact of «. The number —UN -~ Calformia

here do not necessarily reflect their behavior when beind us# “randomly shifted” copies | o O\ DG
without the SQL constraint. We implemented iDistance [20jas a direct impact on the § R

using SQL, assuming that the clustering step has been pmeaning time for algorithms | 2°®

processed outside the database and its incremental, ikecuraX-kNN and z-kNN, as well moo DN
range exploration is achieved by a stored procedure. Wé bais their space overhead. Its* N

the clustered B+ tree index on the one-dimensional distaneiect on the running time is
value in this approach. We used the suggesdt@ clusters shown in Figure 4. For the 54 Tmpact ofa on The Tanmng
with the k-means clustering method, and the recommemled zX-kNN algorithm, we expect e

value from [20]. For theM edrank, the pre-processing step isits running time to increase linearly with. Indeed, this

to generatex random vectors, then createone-dimensional is the case in Figure 4. The running time for the exact
lists to store the projection values of the data sets onto thEIN algorithm has a more interesting trend. For the uniform
« random vectors, lastly sort these lists. We created one UN data set, its running time also increases linearly with
clustered index on each list. In the query step, we leveraged simply because it has to search more tables, and for
on the cursors in the SQL Server as the ‘up’ and ‘dowrhe uniform distribution more random shifts do not change
pointers and used them to retrieve one record from eachlistthe probability of AX = _A. This probability is essentially
every iteration. The query process terminates when therk arPr(3i, [z}, 2] € [2},,2!]) and it stays the same in the
elements have been retrieved satisfying the dynamic thi@shuniform data for differenta. values. The number of false

— zX—kNN - - Medrank

—zX—kNN - - Medrank — zX—kNN - - Medrank — ZX—kNN
+UN @
Zu & California I +UN Zon
2.2 - California 5l A R-Cluster J 3 Yoo B - California 1.4 - California
A #-R-Cluster g ° TRl A AB-R-Cluster #-R-Cluster
18 N B N 25 A 13
14 D
N N 11
15 B
1 g & i 1
0 20 40 60 80 100 6 2 3 4 5 6 0 10 20 30 40 50
k N: X10 a Yy
(a) Vary k. (b) Vary N. (c) Vary a. (d) Vary ~.

Fig. 3. The approximation quality of theX-kNN and Medrankalgorithm: average and the %5-%95 confidence interval.

positive points also does not change much for the uniformuch. Hence, ay value that is close t& (say 2k) is good
data, when using multiple shifts. On the other hand, for enough. Finally, another interesting observation is tfoatthe
highly skewed data set, such &slifornia, increasing the California and theR-Clusterdata sets, four random shifts are
« value could bring significant savings, even thoughNN enough to ensurg¢-kNN to give a nice approximation quality.
has to search more tables. This is due to two reasons. FiFstr theUN data set, two shifts already make it give an approx-
in highly skewed data sets, more “randomly shifted” copigmation ratio that is almost. This confirms our theoretical
increase the probabilityr(3i, [z}, z},] C [22,,2%,]). Second, analysis, that in practic@(1) shift for 2X-kNNis indeed good
more shifts also help reduce the number of false positivetpoi enough. Among the three data sets, not surprisingly,UiNe
around thekNN box, in at least one of the shifts. Howeverdata set consistently has the best approximation quality an
largera values also indicate searching more tables. We expdloé skewed data sets give slightly worse results. Incrgasin
to see a turning point, where the overhead of searching mewdues does bring the approximation qualityMédrankcloser
tables, when introducing additional shifts, starts to duate. to zX-kNN (Figure 3(c)), howeverX-kNN still achieves much
This is clearly shown in Figure 4 for thekNN algorithm on better approximation quality.

California, anda = 4 is the sweet spot. This result explains .])) .

our choice for the default value of. On the storage side, theRunning time. Next we test the running time (Figure 5
cost is linear ina. However, since we only keep a smallin next page) of different algorithms for theNN queries,
constant number of shifts in any dimension, such a spa¢ging default values for all parameters, but varyigand
overhead is small. The running time and the space overhead'of Since bothCalifornia andR-Clusterare skewed, we only
the Medrankalgorithm increase linearly ta. Since its running show results fronCalifornia. F|gur§_5 immediately tells that
time is roughly2 orders of magnitude more expensive ttzin both thezx-kNN and thez-kNN significantly outperform other
kNN andz-kNN, we omitted it in Figure 4. methods by one to three orders of magnitude, including the

brute-force approadBF (the SQL query using the “Euclidean”
Approximation quality. We next study the approximationUDF directly), on millions of points and varying. In many
quality of zx-kNN, comparing againd¥ledrank For different cases, the SQL version of tiiéedrank method is even worse
values ofk (Figure 3(a)),N (Figure 3(b)),a (Figure 3(c)), thantheBF approach, because retrieving records from multiple
and~ (Figure 3(d)), Figure 3 confirms that-kNN achieves tables by cursors in a sorted order, round-by-round fashion
very good approximation quality and significantly outpenfis is very expensive in SQL; and updating the candidate set in
Medrank For z¢-ENN, we plot the averageogether with the Medrank is also expensive by SQL. Ti#-£NN has the best
5% — 95% confidence intervafor 100 queries, and only the running time followed by the-kNN. Both of them outperform
average for thevledrankas it has a much larger variance. Irthe iDistance method by at least one order of magnitude. In
all cases, the average approximation ratiozdfkNN stays most cases, both th&-kNN and thez-kNN take as little as
below 1.1, and the worst cases never exceed. This is 0.01 to 0.1 second, for & nearest neighbor query @everal
usually two times better or more thawedrank These results millions of records, fork < 100. Interestingly enough, both
also indicate that our algorithm not only achieves an egog¢ll Figure 5(a) and 5(b) suggest, that the running time for both
expected approximation ratio as our theorem has suggestbe, z<-kNN and thez-kNN increase very slowly, w.r.t the
but also has a very small variance in practice, i.e., its tvoiemcrement on the: value. This is because the dominant cost
case approximation ratio is still very good and much bettéor both algorithms, is to identify the set of candidate p®in
than the existing method. Figure 3(a) and Figure 3(b) indicausing theclusteredB+ tree. The sequential scan (with the
that the approximate ratio @ak-k£NN s roughly a constant over range depending on the value) around the successor record
k and N, i.e., it has a superb scalability. Figure 3(c) indicatds extremely fast, and it is almost indifferent to thevalues,
that the approximation quality ak-kNNimproves when more unless there is a significant increase. Figure 5(c) and 5(d)
“randomly shifted” tables are used. However, for all dats,seindicate that the running time of all algorithms increas¢hwi
even witha = 2, its average approximation ratio is alreadyarger N values. For theCalifornia data set, as the distribution
around1.1. Figure 3(d) reveals that increasingslightly does is very skewed, the chance that our algorithms have to scan
improve the approximation quality ak-kANN, but not by too more false positives and miss exadiN results is higher.

$>BF - iDistance <> 2-kNN-Ax X_gN-E-Medrank > BF -©-iDistance <-z-kNN-A X_k\N-BFMedrank B>BF “©-iDistance - 2-kNN-AxzX—kN-E-Medrank DB -©-iDistance €-2-kNN-4- 2X-kNN-B- Medrank
2 —a—8—* —H
10°
B B g z 10" W‘D

20 40 60 80 100 20 40 60 80 100 3 o5 1 3 o5 7
k k N:X10 N:X10

(a) Vary k: UN. (b) vary k: California. (c) vary N: UN. (d) vary N: California.

1

Running time (secs)

N
Q.

.
<

,_.

S,
o
%

H
S,

Running time (secs)
0}
0]
Running time (secs)
Running time (secs)

H
S

fﬁ
|

H
5
ol
—
5
ot
.
°,
ot
-
~
.
S
o

Fig. 5. kNN queries: running time of different algorithms, defadlt= 10%, k = 10,d = 2, = 2,y = 2k.

Hence, thezX-kNN and thez-kNN have higher costs than their 8% Dstance Sz-knLzl-qu & wedrank —2-kNN - - Medrank
performance in th&JN data set. Nevertheless, Figure 5(c) and *| -~ = = B chuser »
5(d) show thatzX-kNN and z-<NN have excellent scalability :
comparing to other methods, w.r.t the size of the database. F
example, for7 million records, they still just take less thar

Running time (secs)
5 5 5
P/
v P
v B
° \'s
- b
B>

time increases slowly with the dimensionality. This is extpe £
since the 10s contribute the dominant cost. Increasing the” s»
dimensionality does not significantly affect the total nianb S o
of pages in the database. The running time?6fNN and z- oot
kNN do increase with the dimensionality, but at a much slower
pace compared to the SQL-versions of the iDistance, Medrank Fig. 7. kNN-Join running timezX-kNNJvs BF.

and BF. When the dimension exceeds eight, the performance _ :

of the SQL version iDistance becomes worse than Biffe results bet_weeer-lf:NN an(_j Z+%NN in the 5NN queries, j[he
method. When dimensionality become, our algorithms exact version qf this algorithm (|.akaN_J) has very similar
provide more than two orders of magnitude performance gaﬁﬁrforma_nce (in terms of the running tlme) to th‘e_kNNJ
compared to th&F, theiDistanceand theMedrankmethods, For brevity, we fOCl_JS on thaX-kNN_J algor_|thm. l_:lgurg !
for both the uniform and the skewed data sets. Finally, V\?QOWS the running time of theNN-Join queries, using either
study the approximation quality of theX-kNN algorithm, the 2<-kNNJ) or the BF when we vary e'the”.V or d_qn UN
compared against thdedrankwhen dimensionality increasesand R-Clusterdata sets. In all (.:ases>,<-kNl}lJ is significantly
and the result is shown in Figure 6(b). Fa¥-kNN, we better than theBF method, which essentially reduces to the

show its average as well as the 5%-95% confidence inter/agsted loogoin. Both algorithms are not sensitive to varying

Clearly, zX-kENN gives excellent approximation ratios acrosé values up tok = 100 and we omitted this result for brevity.

all dimensions and consistently outperforms theedrank Howgver, theBrI]: me;)holgl_ does7 not scallleN\\]/velll V\./i;h larger
algorithm by a large margin. Furthermore, similar to resulfjata ases as shown by Figure 7(a). algorithm, on

in two dimension from Figure 3z-kNN has a very small the contrary, has a much slower increase in its running time
variance in its approximation quality across all dimensionWhen N becomes larger (up-t6 million records). Finally,

For example, its average approximation ratio1i€ when in terms of dimensionality (Figure 7(b)), both algorithme a
d = 10, almost two times better thaMedrank and its

more expensive in higher dimensions. However, once again,
worst case is belovt.4 which is still much better than the th€Z-kNNJalgorithm has a much slower pace of increment.
approximation quality of théMedrank

,_.
3
3
3

second.)

Effect of dimensionality. We next investigate the impact of e oy _
dimensionality to our algorithms, compared to B and the (&) Running timeR-Cluster (b) Approximation Quality
SQL-version of the iDistance antl/edrank methods, using Fig. 6. kNN queries: impact of the dimensionality.
the UN and R-Clusterdata sets. The running time for both —UN - -R-Cluster —UN - ~R-Cluster
data sets are similar, hence we only report the result from =«{Z%, s

R-Cluster Figure 6(a) indicates that the SQL version of the §zx g

Medrankmethod is quite expensive. T method’s running ~ 2:» 2 o

0 2 10

4 6
Dimensionality

(a) Vary N. (b) Vary dimensionality.

We also studied the approximation quality @rkNNJ. Since
it is developed based on the same idea as theztheNN

B. Results for thé:NN-Join Query algorithm, their approximation qualities are the same. dé¢gn

.)) . the results were not shown.
In this section, we study th&NN-Join queries, by com-

paring thezX-kNNJ algorithm to theBF SQL query that uses C. Updates and Distance BaséeJoin
the UDF “Euclidean” as a major join condition (as shown We also performed experiments on the distance b#sed
in Section I). By default,M = |@| = 100. Similar to Join queries. That too, has very good performance in pectic

As discussed in Section VI, our methods easily supporesigned for data in extremely high dimensions (typically
updates, and the query performance is not affected by dynanii> 30 and up-tol100 or more). It is not optimized for data in
updates. Many existing methods foRN queries could suffer relatively low dimensions. Our focus in this work is to desig
from updates. For example, the performance of the iDistanedational algorithmsthat are tailored for the later (to 10
method depends on the quality of the initial clusters. Whatimensions). Another approximate method that falls inie th
there are updates, dynamically maintaining good clustees iclass is the Medrank method [12]. In this method, elemergs ar
very difficult problem [20]. This is even harder to achieve iprojected to a random line, and ranked based on the proximity
a relational database with only SQL statements. Medrankds the projections to the projection of the query. Multiple

also very expensive to support ad-hoc updates [12]. random projections are performed and the aggregation rule
- N picks the database element that has the best median rank. A
D. Additional Query Conditions limitation of both the LSH-based methods and the Medrank

Finally, another benefit of being relational is the easyethod is that they can only give approximate solutions and
support for additional, ad-hoc query conditions. We hawould not help for finding the exact solutions. Note that fioy a
verified this with both thezx-kNN and z-kNN algorithms, by approximateéNN algorithm, it is always possible to, in a post-
augmenting additional query predicates and varying theyquegprocessing step, retrieve the exabiN result by a range query
selectivity of those predicates. When databases have dagta- using the distance betweerand thekth nearest neighbor from
(some statistical information on different attributespitable the approximate solution. However, it no longer guararaegs
for estimating the query selectivity, the query optimizeable query costs provided by the approximate algorithm, as it was
to perform further pruning based on those additional quengt designed for the range query which, in high dimensional
conditions. This is a natural result as both #ekNN andz- space, often requires scanning the entire database.

ENN algorithms are implemented by standard SQL operators.Another method is to utilize the space-filling curves and
map the data into one dimensional space, represented by the
work of Liao et al. [23]. Specifically, their algorithm uses

The nearest neighbor query with, norms has been ex- O(d + 1) deterministicshifted copies of the data points and
tensively studied. In the context of spatial databasegeR-tstores them according to their positions along a Hilberveur
provides efficient algorithms using either the depth-fi2é8i[or Then it is possible to guarantee that a neighbor within an
the best-first [18] approach. These algorithms typicalljofe O(d'*'/*) factor of the exact nearest neighbor, can be returned
the branch and bound principle based on the MBRs in &or any L, norm with at mosO((d+1) log N) page accesses.
R-tree index [6], [16]. Some commercial database engin@air work is inspired by this approach [10], [2Blpwever, with
have already incorporated the R-tree index into their syste significant differencesWe adopted the Z-order for the reason
However, there are still many already deployed relationtllat the Z-value of any point can be computed using only the
databases in which such features are not available. Algo, thit shuffle operation. This can be easily done in a relational
R-tree family has relatively poor performance for data mel/o database. More importantly, we usandom shifts instead
six dimensions and theNN-join with the R-tree is most likely of deterministic shifts. Consequently, onty(1) shifts are
not available in the engines even if R-tree is available. needed to get an expected constant approximation resingy us

Furthermore, R-tree does not provide any theoretical guanly O(log N) page accesses fany fixed dimensiondn
antee on the query costs for nearest neighbor queries (epeactice, our approximate algorithm gives orders of mamgtat
for approximate versions of these queries). Computationaiprovement in terms of its efficiency, and at the same time
geometry community has spent considerable efforts in desigguarantees much better approximation quality comparing to
ing approximate nearest neighbor algorithms [2], [9]. Aryadopting existing methods by SQL. In addition, our approach
et al. [2] designed a modification of the standard kd-tresupportsefficient, exackNN queries. It obtains the exakNN
called the Balanced Box Decomposition (BBD) tree thdor certain types of distributions using ont9(log N) page
can answer(l + ¢)-approximate nearest neighbor queries iaccesses for any dimension, again using j0$t) random
O(1/ellog N). BBD-tree takesO(N log N) time to build. shifts. Our approach also works féNN-Joins.

BBD trees are certainly not available in any database engineSince we are using Z-values to transform points from higher

Practical approximate nearest neighbor search methodsdimensions to one dimensional space, a related work is the
exist. One is the well-known locality sensitive hashing K)S UB-Tree [28]. Conceptually, the UB-Tree is to index Z-vaue
[14], where data in high dimensions are hashed into randarsing B-Tree. However, they [28] only studied range query
buckets. By carefully designing a family of hash functionalgorithms and they did not use random shifts to generate the
to belocality sensitive objects that are closer to each otheZ-values. To the best of our knowledge, the only prior work on
in high dimensions will have higher probability to end up irkNN queries in relational databases was [3]. However, it has
the same bucket. The drawback of the basic LSH methodagundamentally different focus. Their goal is to exploreysia
that in practice, large number of hash tables may be neededmprove the query optimizer inside the database engine to
to approximate nearest neighbors well [25] and successhandle kNN queries. In contrast, our objective is to design
attempts have been made to improve the performance of 8@L-based algorithms outside the database engine.
LSH-based methods [5], [30]. The LSH-based methods areThe state of the art technique for retrieving the exact

VIIl. RELATED WORKS

nearest neighbors in high dimensions is the iDistance ndeth@] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seegeme R*-
[20]. Data is first partitioned into clusters by any popular tree: an efficient and robust access method for points artdngles. In

lusteri thod. A . . lust . dt SIGMOD, 1990.
clustering method. poinp In a clusterc; Is mapped to [7] C. Bohm and F. Krebs. High performance data mining usirgnearest

a one-dimensional value, which is the distance betweand neighbor join. InICDM, 2002.
¢;'s cluster center. ThenkNN search in the original high [8] C. Bohm and F. Krebs. The k-nearest neighbour join: ducharging

di . | dat t Id be t lated int fthe kdd processKnowl. Inf. Syst.6(6):728-749, 2004.
Imensional data set cou € transiated Into a sequence [@] T. M. Chan. Approximate nearest neighbor queries redsi In SoCG

incremental, recursive range queries, in these one dimealsi 1997.

distance values [201’ that gradually expands its SearcgerarﬁlO] T. M. Chan. Closest-point problems simplified on the raim SODA
. ; . ; 2002.

until kNN 1S guarameed to be ret“eved'_Assummg that tr[?l] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vdakopoulos.

clustering step has been performed outside the database andclosest pair queries in spatial databasesSIBMOD 2000.

the incremental search step is achieved in a stored proged(#2] R. Fagin, R. Kumar, and D. Sivakumar. Efficient simitgrsearch and

. . e classification via rank aggregation. 8iGMOD, 2003.
one can implement a SQL-version of the iDistance methods; “ragin, A. Lotem, and M. Naor. Optimal aggregationcaltams for

However, as it was not designed to be a SQL-based algorithm, middieware. InPODS 2001.
our algorithm outperforms this version of the iDistancemoet [14] dA_- Gionis, P. 'Edylt‘]g an?vbeMnggm' Similarity search high
. . Imensions via hasning.)y .
as ShOWﬂ in Section V”- . [15] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudagyi8thukrishnan,
Finally, the kNN-Join has also been studied [7], [8], [11], and D. Srivastava. Approximate string joins in a databasedgt) for

[31], [32]. The latest results are represented by the iJigin-a free. INVLDB, 2001.

rithm [32] and the Gorder algorithm [31]. The first approach® fr‘{ggt,\;qgg 1':9%?65: a dynamic index structure for ipatearching.

is based on the iDistance, and it extends the iDistance rdethor] G. R. Hjaltason and H. Samet. Incremental distance gigorithms for
to support thetkNN-Join. The extension is non-trivial and it is__ spatial databases. BIGMOD, 1998.

not clear how to extend it into a relational algorithm usimgyo ™8 E'CI\F;'#fr:tsasggtsggsg'ssyggf(té)mlss;ggce browsing in apaatabases.

SQL statements. Gorder is a block nested loop join meth@d] E. H. Jacox and H. Samet. Spatial join techniquegM Trans. Database
that exploits sorting, join scheduling and distance coration Syst, 32(1), 2007.

S - P ; ; 20] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. ZhanBistance:
fllterlng and reduction. Hence, it is an algorlthm to be |mple[An adaptive B -tree based indexing method for nearest neighbor search.

mented inside the database engine, which is different from o AcM Trans. Database Sys80(2):364-397, 2005.
objectives. Other join queries are considered for spatié d [21] D. R. Karger and M. Ruhl. Finding nearest neighbors iovgh-

: s : restricted metrics. '8TOG 2002.
sets as well, such as the distance join [17], [18], muIt|Wa[¥2] M. Kolahdouzan and C. Shahabi. Voronoi-based k neamegjhbor

spatial join [26] and others. Interested readers are et search for spatial network databases.VItDB, 2004.
the article by Jacox et al. [19]. Finally, the distance-lbasé?3] S. Liao, M. A. Lopez, and S. T. Leutenegger. High dimensi

S larihg iAin ; _ similarity search with space filling curves. I€@DE, 2001.
Slmllamy join in GPU with the heIp of:-order curves was [24] M. D. Lieberman, J. Sankaranarayanan, and H. Sametstsfemilarity

investigated in [24]. join algorithm using graphics processing units.IGDE, 2008.
[25] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Nhpitobe
IX. CONCLUSION LSH: efficient indexing for high-dimensional similarityareh. InVLDB,
. 2007.
Th|5 work .I’(.EVISIted th_e classmaislNN-baseq queries. We 26 N. Mamoulis and D. Papadias. Multiway spatial joinACM Trans.
designed efficient algorithms that can be implemented by Database Syst26(4):424-475, 2001.

SQL operators in large relational databases. We presenteld’a D- Papadias, M. L. Yiu, N. Mamoulis, and Y. Tao. Nearesighbor
Q P 9 P queries in network databases. Emcyclopedia of G1S2008.

constant apprOXimation f(_)r tth_N que_ry' with Iogarithmic_ [28] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, and Rayer.
page accesses in any fixed dimension and extended it to Integrating the ub-tree into a database system kerne¥/LIBB, 2000.

the exact solution, both using juél(l) random shifts. Our [29] N. Roussopoulos, S. Kelley, and F. Vincent. Nearesgimeor queries.
In SIGMOD, 1995.

approach naturally supportN-Joins, as well as other.|nter—][3o] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and effiug in high-
esting queries. No changes are required for our algorittoms dimensional nearest neighbor search.SIGMOD, 2009.

different dimensions, and the update is almost trivial.e8aly [311 C. Xia, H. Lu, B. C. Ooi, and J. Hu. Gorder: an efficient e for
int ting directions are open for future research. One is KNN Join processing. InVLDB, 2004.

Interestng - p) : ” : [32] C. Yu, B. Cui, S. Wang, and J. Su. Efficient index-basedNK¢in
study other related, interesting queries in this framewerg., processing for high-dimensional datinf. Softw. Technal.49(4):332—
the reverse nearest neighbor queries. The other is to egamin 344, 2007.

the relational algorithms to the data space other tharithe

. APPENDIX
norms, such as the important road networks [22], [27]. _
REFERENCES A. lllustration of Data Sets

[1] Open street mapht t p: / / ww. openst r eet map. or g. Examples of th&California and theR-Clusterdata sets were
[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and¥AWu. shown in Figure 8.

An optimal algorithm for approximate nearest neighbor ceéiag in

fixed dimensionsJournal of ACM 45(6):891-923, 1998. _ B. Proofs of Lemma 1 and 3
[3] A. W. Ayanso. Efficient processing of k-nearest neighbor queries over . . o

relational databases: A cost-based optimizati®*hD thesis, 2004. To prove Theorem 1 and its associated lemmas, we will first

[4] B. Babcock and S. Chaudhuri. Towards a robust query dpma need the solution to the following game: In a room tiled or

principled and practical approach. 8iGMOD, 2005.
[5] M. Bawa, T. Condie, and P. Ganesan. Lsh forest: selfgrindexes paved with equal square tiles (created using equidistaatiph

for similarity search. INWWW 2005. lines in the plane), a coin is thrown upwards; If the coingest

cleanly (does not intersect any lines), the length of theasgju i RS

tile is noted down and the game is over. Otherwise, the sid¢ . % .'ﬁ;
length of the square tiles in the room are doubled in size ant %ﬁ- ',4{ % ket
the same coin is tossed again. This process is repeatektill t | - ™ o ';“i,-, v -

coin rests cleanly inside a square tile. 2&*» _.g -.{E . "';
Note that in our problem, the square tiles come from &

guadtrees defined by Z-order, and the coin is defined by thi % «

optimal k-nearest neighbor ball af. What we are interested

in, is bounding the size of the smallest quadtree box that ® Ca“fomlé' _ (0 R-Cluster.

containsB(q’,rad(q', A,)). This leads to the next lemma: Fig. 8. Different data sets.
) 9.

Lemma 1 Let M be the smallest box, centered¢tcontain-

ing A, and with side lengti2’ (wherei is assumed w.l.0.g to

be an integer> 0) which is randomly placed in a quadtrge M

(associated with the Z-order). If the evefijtis defined as\/

being contained in a quadtree badxr with side length2i*7, - q

and Mt is the smallest such quadtree box, then 'q M

1\ @t
Pr(&;) < (1 - 5) ¥y (@) M; (b)

Fig. 9. (a)M lands cleanly on the quadtree bdXr twice its size. (b)M
Proof: As shown in Figure 9 the probability that, will lands cleanly on a quadtree b@x times its size. In both figures, if the upper

. - 1vd . iy left corner of M lies in the shaded area, the b@d{¥ does not intersect the
be twice larger thai/ is (5)¢. Let M be of side Iengti?Z 7. boundary ofMr.

The probability thatM is contained inMr is (2’ 57 d . The
probability that none of the boxes smaller thah- contamed

M is given by [[I=} B2 D% The probability of Mz

Then, by substituting and simplifying

AU 1\ [d 1 &
containingM is therefore Pr(&;) < (1 _ 27) {21 (1 + 21+1) _ W}
=1
27—16”1 2l—1) 1\ d d d
Pr(&;) = H < (1= 2 H ol 1+ 221+1 92i+1

=1

[

We now use the foIIowigg inequality: Giveh< z < 1; (1 —
x)? < 1—dx+d(d—1)%:, which can be easily proved using

~

s
Ul
e
|
—

IN
VRS /:\ VRS
|
2| =
N——— N———
ISN
|,

induction or alternating series estimation theorem. Rgtti = < 1 1
< . ——
1/2! we get: 20) o5t
J [|
(1-2x) 1 —dr(1+x/2)+ d*z?/2

<
< 1— & (1+1/2H1) 4 g2 /22041

Lemma 3 My is only constant factor larger than/ in

N . . . expectation.
To simplify the sum, we will use a Taylor series with= % P

) I Proof: Recall from Lemma 1 that is such that the side

(1—2)? < 1—de+d(d- 1)50_' —d(d—1)(d— 2)§ . length of My is 217, The probability for the everd; is

2 a?

S l-de+(d _d)g j dIi=l ol\d ! d

S 1—dl’+T—T J (2j)d —1 (2l)d
x d?z? it

_ hd < - —

< 1 dx(1+2)+ 5 < a 23)2%

< 1- d 1 L —d2

= ol + 9l+1 + 220+1 From this, expected side length &1, follows:

> BF -©-iDistance - z2-kNN-Ax X_kNN-E- Medrank —UN - --R—Cluster

show here the running time experiment for the effect of
dimensionality orkNN queries using th&JN data set in Figure
10(a); and the running time experiment falN-Join queries
for varying k values in Figure 10(b). They are supplemental
results to experiments in Figure 6 and Figure 7 respectively

2 +-BF
10 400, FEZ-KNNI
- 2" >—> =
g 10' 3
o
2 j:’ 300
P
£
£ 10 =
3 2 200f
g
é 10 &
1008 X= = = mm 2y et X
10
6

o 2 8 10 0 20 40 60 80 100
k

7]
Dimensionality

(a) Effect of dimensionality for dif{b) Varying k values forkNN-Join:
ferent algorithms onkNN queries:running time of different algorithms.
running time withUN.

Fig. 10. Additional Experimental Results.

B < Y 2HP(E)
j=1

it 1., &1
1+ d
< 22 J(l_ﬁ) 2-i
j=1 272
< 2 57
J:

Using Taylor’s approximation:
1 d
—j —1—j 26—2j—1
(1—§> <(1—d277 (1427177) 4 d%27%7)

and substituting in the expectation calculation, we get:

E[2i+j]
< 2 i (1—d279 (1427179) 4 q22721) P-19%57
j=1
< 2 /oo (1—d277 (14+27179) 4 4227%1) F-1985E g
j=1
< 2iA*(
sorf (1/4\/5(2 In (d) —1n(2))> 0
In (2)
V2 (31n(2)+21n(d))>
2derf | 1/4 _
! (/ VIn (2)
V2(=51n(2) + 2 In(d))
erf <1/4 o) > +
derf <1/4 V2(-51n(2) +2 ln(d))> +3d-1
In (2)
)

(In(d))?

where A = 2-11/8 /zel/2 Tz 72— and erfz) is the
error functionencountered in integratllrllg the normal distribu-
tion whose value is always upper bounded by 1. Assunding
is O(1), clearly, from the above inequality, we can see that t
expected side length df/; is O(2%). In other words, the size
of My is only a constant times larger than the sizeMfin
expectation. []

C. Additional Experimental Results

We omitted several experimental results in the main text
for brevity. Figure 10 shows these results. In particulag, w

