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k Nearest Neighbor Join

k nearest neighbor join (kNN join)

Given two data sets R and S , for every point q in R, kNN join
returns k nearest points of q from S .

q

Point in R Point in S

Numerous applications: knowledge discovery, data mining, spatial
databases, multimedia databases, etc.
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Data Growth

Source: IDC
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Rise of Distributed and Parallel Computing

Data sets are growing at an exponential rate.

A single machine cannot handle large data efficiently.
Parallel and distributed computing is the trend.
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Rise of Distributed and Parallel Computing

Challenges:

Minimize communication and computation.
Achieve good load balance.
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kNN Join

Exact kNN Join

knn(r , S) = set of kNN of r from S .
knnJ(R, S) = {(r , knn(r , S))| for all r ∈ R}.

Approximate kNN Join
aknn(r , S) = approximate kNN of r from S .

p = kth NN of r in knn(r , S).
p′ = kth NN for r in aknn(r , S)
aknn(r , S) is a c-approximation of
knn(r , S) : d(r , p) ≤ d(r , p′) ≤ c · d(r , p).

aknnJ(R,S) = {(r , aknn(r ,S))|∀r ∈ R}.

r

p

Point in R Point in S
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Exact kNN join: Block Nested Loop Join

Block nested loop join (BNLJ) based method

1 Partition R and S , each into n equal-sized disjoint blocks.
2 Perform (BNLJ) for each possible Ri ,Sj pairs of blocks
3 Get global kNN results from n local kNN results for every record in R
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Exact kNN join: Block Nested Loop Join

Two-round MapReduce algorithm: Round 1
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S
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(1) Divide R and S into blocks

(2) Duplicate each blocks into 2 partitions
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Exact kNN join: Block Nested Loop Join

Two-round MapReduce algorithm: Round 1
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Exact kNN join: Block Nested Loop Join

Two-round MapReduce algorithm: Round 2

(r1, s1, d1,1)...

File 1

File 2

(r3, s1, d3,1)

(r1, s7, d1,8)

(r3, s5, d3,5)

Mapper

partition by record ids
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(r1, s1, d1,1)

(r3, s1, d3,1)
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Exact kNN join: Block R-tree Join

Use spatial index (R-tree) to improve performance

Build R-tree index for a block of S in a bucket to speed up kNN
computations.
Similar to BNLJ algorithm, only need to replace BNLJ with block
R-tree join (BRJ) in the first round.
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Approximate kNN join

Problems with exact kNN join solution

Too much communication and computation (n2 buckets required)
Find solution requiring O(n) buckets.

We search for approximate solutions.
Space-filling curve based methods ([YLK10], dubbed zkNN)

DFS

R

S

Mapper

Mapper

(1) Divide R and S into blocks

(2) Duplicate each blocks into 2 partitions

R1

R1

1

3

R2

2

R2

S1

S1

2

1

S2

S2

3

Shuffle

R1

1
S1

R2

2
S1

R1

3
S2

R2

4
S2

Reducer

Reducer

Reducer

Reducer

BNLJ

DFS

DFS

DFS

BRJ

4

4

[YLK10] B. Yao, F. Li, P. Kumar. K nearest neighbor queries and knn-joins in large relational databases (almost) for free. ICDE, 2010.
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Approximate kNN join: Z-order kNN join

The idea of zkNN

Transform d-dimensional points to 1-D values using Z-value.
Map d-dimensional kNN join query to to 1-D range queries.
Multiple random shift copies are used to improve spatial locality.

In practice 2 copies is arleady good enough.
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Approximate kNN join: Z-order kNN join

In our group’s previous work we derive the following guarantee for
the zkNN join:

Theorem

Given a query point q ∈ Rd , a data set P ⊂ Rd , and a small constant
α ∈ Z+. We generate (α− 1) random vectors {v2, . . . , vα}, such that for
any i , vi ∈ Rd , and shift P by these vectors to obtain {P1, . . . ,Pα}
(P1 = P). Then, the zkNN join returns a constant approximation in any
fixed dimension for knn(q,P) in expectation.
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Approximate kNN join: H-zkNNJ

Apply zkNN for join in MapReduce (H-zkNNJ)

Partition based algorithm

Partitioning policy:

To achieve linear communication and computation costs (to the
number of blocks n in each input data set)

Partitioning by z-values:

Partition input data sets Ri and Si into {Ri,1, ...,Ri,n} and
{Si,1, ..., Si,n} using (n − 1) z-values {zi,1, ..., zi,n}
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number of blocks n in each input data set)

Partitioning by z-values:

Partition input data sets Ri and Si into {Ri,1, ...,Ri,n} and
{Si,1, ..., Si,n} using (n − 1) z-values {zi,1, ..., zi,n}

ZSi

ZRi
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Approximate kNN join: H-zkNNJ

Apply zkNN for join in MapReduce (H-zkNNJ)

Partition based algorithm

Partitioning policy:

To achieve linear communication and computation costs (to the
number of blocks n in each input data set)

Partitioning by z-values:

Partition input data sets Ri and Si into {Ri,1, ...,Ri,n} and
{Si,1, ..., Si,n} using (n − 1) z-values {zi,1, ..., zi,n}
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Approximate kNN join: H-zkNNJ

Choice of partitioning values.

Each block of Ri and Si shares the same boundary so we only search
a small neighborhood and minimize communication.
Goal: load balance.

Evenly partition Ri or Si .

Evenly partition Ri → O( |Ri |
n

log |Si |)
Evenly partition Si → O(|Ri |log |Si |)
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Approximate kNN join: H-zkNNJ

Computation of partitioning values.

Quantiles can be used for evenly partitioning a data set D.
Sort a data set D and retrieve its (n − 1) quantiles (expensive).

We propose sampling based method to estimate quantiles.

We proved that both estimations are close enough (within εN) to the
original ranks with a high probability (1-e−2/ε).
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Approximate kNN join: H-zkNNJ

H−zkNNJ algorithm can be implemented in 3 rounds of MapReduce.

Round 1: construct random shift copies for R and S , Ri and Si , i ∈ [1, α],
and generate partitioning values for Ri and Si

R

S

shift by vi
compute z-value

Ri

Si

ith shift

ith shift

DFS

DFS

sample

sample of ith shift
Ri

sample of ith shift
Si

Map
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Approximate kNN join: H-zkNNJ

H−zkNNJ algorithm can be implemented in 3 rounds of MapReduce.

Round 2: partition Ri and Si into blocks and compute the candidate
points for knn(r , S) for any r ∈ R.

Ri

Si

partition by Si’s ranges

partition by Ri’s ranges

Ri,1 Ri,2 Ri,n. . .

block 1block 2 block n

Si,1 Si,2 Si,n. . .

block 1block 2 block n

Map
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Approximate kNN join: H-zkNNJ

H−zkNNJ algorithm can be implemented in 3 rounds of MapReduce.

Round 3: determine knn(r ,C(r)) of any r ∈ R from the (r ,Ci (r)) emitted
by round 2.
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Experiments: algorithms

We implement the following methods in Hadoop 0.20.2:
Exact Methods:

The baseline solution is denoted H-BNLJ,
The improvement to the baseline solution is denoted H-BRJ.

Approximate Methods:

Our three-round solution is denoted by H-zkNNJ, (meaning ”Hadoop
z-value kNN Join”).
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Experiments: setup

Experiments are performed in a heterogeneous Hadoop cluster with
17 machines:

1 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU
2 6 machines with 4GB of RAM and an Intel Xeon 2GHz CPU

One is reserved for the master (running JobTracker and NameNode).

3 2 machines with 6GB of RAM and an Intel Xeon 2.13GHz CPU

All machines are directly connected to a 1000Mbps switch.

Each slave node has 300GB hard drive space and 1GB of RAM for
Hadoop daemon.

The chunk size of DFS is set to 128MB.
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Experiments: datasets

OpenStreet Map dataset:

the road-networks for 50 states in U.S.
160 million records.
preprocessed to remove duplications
each record consists of a 4 bytes integer id, two 4 bytes real type
coordinates representing latitude and longitude, and a description
information.
the coordinates has a positive real domain (0,100000).
stored in text format, 6.6GB.

Large synthetic Random-Cluster datasets:

data sets have varying dimensionality (up to 30).
each record has a 4-byte id and float type d-dimensional coordinates.
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each record has a 4-byte id and float type d-dimensional coordinates.
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Experiments: configurations and defaults

Data set configurations

(MXN) represents a data set configuration containing M records of
R and N record of S (in 10s of millions).

Default values for OpenStreet dataset:

Symbol Definition Default
(MXN) data set configuration (4x4)

k # of nearest neighbor 10
α # of shift copies 2
ε the error rate of sampling 0.003
γ the physical number of machines 16

Values for R-Cluster dataset:

(2x2) is set to be the default data set configuration.
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Experiments: Approximation quality

H-zkNNJ: Hadoop z-value kNN Join
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Experiments: Approximation quality
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Experiments: Approximation quality
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Experiments: Running time and communication cost

H-zkNNJ: Hadoop z-value kNN Join
H-BRJ: Hadoop Block R-tree Join
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Experiments: Running time and communication cost

H-zkNNJ: Hadoop z-value kNN Join
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Experiments: Effect of d
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Experiments: Effect of d
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Conclusions

We study efficient methods to perform kNN joins in MapReduce.

Exact (H-BRJ) and approximate (H-zkNNJ) algorithms are proposed.
H-zkNNJ performs orders of magnitude better than other methods
with excellent approximation quality.

We plan to investigate kNN joins on very high dimensions in the
future.

Chi Zhang, Feifei Li, Jeffrey Jestes Efficient Parallel kNN Joins for Large Data in MapReduce



The End

Thank You

Q and A
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Approximate kNN join: Z-order kNN join

zkNN algorithm

Algorithm 1: zkNN(q, P, k , α)

generate {v2, . . . , vα}, v1 =
−→
0 , vi is a random vector in Rd ;1

Pi = P + vi (i ∈ [1, α]; ∀p ∈ P, insert p + vi in Pi );2

for i = 1, . . . , α do3

let qi = q + vi , Ci (q) = ∅, and zqi be qi ’s z-value;4

insert z−(zqi , k,Pi ) into Ci (q);5

insert z+(zqi , k,Pi ) into Ci (q);6

for any p ∈ Ci (q), update p = p − vi ;7

C (q) =
⋃α

i=1 Ci (q) = C1(q) ∪ · · · ∪ Cα(q);8

return knn(q,C (q)).9
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Experiments: Approximation quality

H-zkNNJ: Hadoop z-value kNN Join

 1

 1.2

 1.4

 1.6

 1.8

4x4 6x6 8x8 12x12 16x16

A
p
p
ro

x
im

at
io

n
 r

at
io

|R|×|S|:10
7
×10

7

OpenStreet

Chi Zhang, Feifei Li, Jeffrey Jestes Efficient Parallel kNN Joins for Large Data in MapReduce



Experiments: Approximation quality

H-zkNNJ: Hadoop z-value kNN Join

 1

 1.2

 1.4

 1.6

 10  20  40  60  80

A
p
p
ro

x
im

at
io

n
 r

at
io

k values

OpenStreet

Chi Zhang, Feifei Li, Jeffrey Jestes Efficient Parallel kNN Joins for Large Data in MapReduce



Experiments: Approximation quality

H-zkNNJ: Hadoop z-value kNN Join
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Experiments: Approximation quality
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Experiments: Effect of ε
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Experiments: Effect of ε
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Experiments: Evaluation of H-BNLJ
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Experiments: Evaluation of H-BNLJ

10
0

10
1

10
2

10
3

10
4

H-BNLJ H-BRJ H-zkNNJ

T
im

e 
(s

ec
o
n
d
s)

Algorithms

Phase1
Phase2
Phase3

Chi Zhang, Feifei Li, Jeffrey Jestes Efficient Parallel kNN Joins for Large Data in MapReduce



Experiments: Speedup
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Experiments: Running time and communication cost
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Experiments: Running time and communication cost
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Experiments: Running time and communication cost
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Experiments: Running time and communication cost
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Experiments: Effect of d
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Experiments: Effect of d
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