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Abstract— Immortal DB is a transaction time database system 

that is built into a commercial database system rather than being 

layered on top.  This enables it to have performance that is very 

close to the performance of an unversioned current time 

database system. Achieving such competitive performance is 

essential for wide acceptance of this temporal functionality.  In 

this paper we describe further performance improvements in two 

critical dimensions.  First Immortal DB range search 

performance is improved for current time data via improved 

current version storage utilization, making this performance 

essentially the same as unversioned performance.  Second, 

Immortal DB update performance is increased by further 

reducing the cost for the timestamping of versions.  Finally, we 

show how a simple modification, integrated into the 

timestamping mechanism, can provide a foundation for auditing 

database activity. Our algorithms have been incorporated into a 

commercial database engine and experiments using this database 

engine demonstrate the effectiveness of our approach. 

I. INTRODUCTION 

Transaction time database systems have been widely 

discussed [9, 31].  They provide access to both current and 

previous database states by the mechanism of creating new 

versions of data for every transaction, as opposed to doing 

update in place.   Transaction time databases have many 

important applications and are of increasing interest for 

auditing, legal compliance, trend analysis, etc.  
We have built our Immortal DB transaction time database 

system [12, 13, 14] into the kernel of a commercial database 

management system, SQL Server using the TSB-tree [15, 16] 

to index both current and previous database states.  Our 

objective is to ensure transaction time performance close to 

that of an unversioned current time database.  We also 

introduced additional functionality to the basic transaction 

time functionality to provide a further incentive to providing 

transaction time functionality, e.g., we exploited transaction 

time versioning to provide recovery from bad user 

transactions [20].  This work continues with both these threads, 

i.e. we introduce techniques to further improve Immortal DB 

performance to a level that is almost identical to the 

unversioned databases, and we add additional functionality to 

Immortal DB as a further incentive for providing transaction 

time support. 

A. Performance Improvements 

Reading a record in the current database will usually not differ 

much from reading it in a transaction time database.  An index, 

whether it is a B-tree indexing current (single version) data or 

an MVB-tree [2] or Time-Split B-tree (TSB-tree) [15, 16] 

indexing transaction time (multi-version) data, will access a 

data page in logarithmic time, and, should the multi-version 

tree be a deeper tree because of the multiple versions, the 

higher level root is most likely in main memory in any event 

and no extra I/O access will be required.  So this performance 

measure is already satisfactory. 

More problematical is the performance of updates and 

range reads.  We discuss these briefly below, and highlight 

what we have done to address performance in these areas. 

1) Update Performance:  When a record is updated, one 

obvious difference is that each update creates a new version.  

That eventually means that pages fill up faster, and require 

splitting after fewer updates.  We do version compression [14] 

to reduce this impact, but there is little else that can be done to 

avoid this as versioning is intrinsic to transaction time support.  

However, there are multiple updates between page splits in 

most cases, so this splitting cost is amortized across these 

multiple updates, which greatly reduces the per update cost. 

There is, however, another extra cost in our updating that is 

more controllable.  Each version needs to be timestamped so 

that we can determine, on subsequent reads, whether the 

version is relevant to an “as of” read request.  Because the 

version timestamp is not known until a transaction commits so 

as to keep timestamps consistent with serialization order, this 

timestamping requires a second “touch” of the record.  Doing 

this second touch at very low cost is essential to making 

update cost competitive. 

We have previously described “lazy” timestamping 

techniques with modest overhead [13].  Our “lazy” 

timestamping requires that we retain the mapping from 

transaction id to timestamp in a persistent table.  Here we 
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further reduce the timestamping overhead by leveraging the 

log to temporarily provide persistence for this mapping.   

2) Range Performance: This cost in a B-tree is 

primarily determined by how many pages need to be read to 

process the request.  Thus, range performance for a versioned 

“as of” request, to a first order, depends upon the density of 

the versions on a page that were current at the “as of” time 

(what we refer to as the single version utilization).   Version 

compression substantially improves upon this single version 

utilization (SVU) for any version, historical or current.  

However, even with version compression, there is room for 

further improvement. 

While we would like to improve single version utilization 

for all versions, the utilization for the current version is by far 

the most important; we anticipate that current version reads 

will be much more common than historical reads. To that end, 

a new page splitting strategy is introduced that we call 

deferred splitting. Deferred splitting improves significantly 

the utilization for the current version, what we call the single 

version current utilization (SVCU), so that the combination of 

version compressing and deferred splitting results in single 

version current utilization that comes very close to the 

utilization seen in B-trees supporting only current data.  And 

this represents a significant improvement over prior splitting 

regimes. 

B. Functional Enhancement 

Transaction time databases will retain all versions of the 

data.  Indeed, this is what it means to support transaction time.  

We can exploit this basic versioning capability to provide 

value added services.  Previously we had used the versions as 

a way to recover quickly from user transactions that were 

erroneous [20]. The basic versioning, together with our 

timestamping technique, can also be used to provide the 

underpinnings of database auditing, that is, tracking who is 

responsible for the updates whose versions appear in the 

database.  

With the emergence of Sarbanes-Oxley requirements, the 

ability to audit database activity has assumed greatly increased 

importance [1, 22].  The invaluable thing that a transaction 

time database supporting an audit capability makes possible is 

a direct linkage between a user executing a transaction and the 

version of data records that were updated by the transaction.   

Such a capability greatly enhances the value of the versions 

being retained in the transaction time database.   

C. Our Contributions  

This paper introduces significant improvements to the 

Immortal DB transaction time database system.  Our intent is 

to increase the desirability of transaction time functionality 

versus an unversioned database, paving the way for wide 

acceptance of this transaction time functionality in practice. 

Our contributions in this work are summarized as follows. 

1. We improve update performance via batch updates to the 

timestamp table used for ensuring that timestamping the 

record versions can survive a system crash.  This 

consolidates many singleton writes to this table into a 

small number of batch writes and enables us to actually 

reduce the total number of entries posted.  This is 

described in section II. 

2. We improve range query performance by improving 

single version current utilization via deferring the key 

splitting of pages.  This is described in section III. 

3. We add auditing functionality to our transaction time 

database system to enable tracing who was responsible 

for changes to the data.  This is described in section IV. 

The paper describes related work in section V, and ends with a 

short discussion in section VI. 

II. TIMESTAMPING AND UPDATES 

A. The Problem 

Uniquely identifying versions is easy.  One can tag them 

with a transaction identifier at the time of an update, such that 

every update of the transaction receives the same tag.  The 

problem arises that the transaction identifier (usually a 

monotonically increasing transaction sequence number or 

TSN) by itself only differentiates one transaction’s versions 

from another’s.  It does not tell us directly which version an 

“as of” query should see.  For that, one needs to be able to 

relate the “tag” on the version to the serialization order of the 

transaction. When a query is asked “as of” some point in the 

serialization order, the correct version of a record needs to be 

determined. This correct version is the last version in the 

serialization order that is at or earlier than the “as of” request 

time.  One usually wants, in addition, to be able to relate 

points in the serialization order to “wall clock time” so that a 

query can be asked “as of” some user understood time.  When 

viewed this way, version tagging becomes version 

“timestamping”.   Identifying the correct version then involves 

finding the version with the latest timestamp earlier or equal 

to the as of time of the query. 

B. Previous Solutions  

There have been a number of ways proposed for doing 

timestamping in support of transaction time databases.  They 

fall into three broad categories. 

 

1) Timestamp Order Concurrency Control: Choose the 

timestamp for a transaction at the time that a transaction starts 

execution, or when it makes its first update.  Then, one can tag 

the versions created by the transaction’s updates with the 

already chosen timestamp. This is very simple.  Unfortunately, 

when choosing a timestamp this early, the transaction 

serialization order may not agree with timestamp order. When 

an active transaction’s timestamp does not agree with its 

serialization order, the transaction is aborted.  This is called 

timestamp order concurrency control [4].  We know of no 

system that uses this strategy because of concerns about the 

frequency of aborts.  

2) Late Choice Timestamps: The other methods of 

timestamping all involve choosing the timestamp when the 

transaction commits.  When using the common concurrency 

control protocols like strict two phase locking, the commit 

order is consistent with the serialization order.  So choosing 



the time then will result in a timestamp that agrees with 

serialization order.  Note, however, that this is at the end of 

the transaction, after an update of the transaction has created a 

new version of a record.  Thus, we must re-visit the version to 

provide it with a timestamp. The other approaches all involve 

this second visit.   

 

Eager Timestamping: Update all versions of records created 

by the transaction with their timestamp using a normal 

transactional update (one that does not create yet another 

version), and log this as an update of this transaction.  Do this 

while the transaction is active, and then commit as usual.  This 

exploits existing database mechanisms. Timestamping 

becomes simply a subsequent update within the transaction.  It 

is just like any other update that changes the same version of a 

record a number of times.  The logging and recovery are 

entirely conventional.  This was the first Immortal DB 

timestamping technique [13]. 

While simple, and minimizing the need for new 

mechanisms, this approach has undesirable execution, 

bookkeeping, and concurrency control impacts.  Treating 

timestamping as updates can double the number of updates in 

a transaction, doubling also the number of log records for the 

transaction.  It also requires that we maintain a list of all 

records updated by the transaction so that we can later find 

and timestamp them.  Finally, all these actions are within the 

transaction, meaning that when using strict two phase locking, 

the locks are held for an extended time, impeding concurrency.  

Our very first implementation within Immortal DB used eager 

timestamping because of its minimal new mechanism, but we 

found its cost to be unacceptable. 

 

Lazy Timestamping: Instead of doing the timestamping 

within the transaction, we can do it later.  Obviously, we need 

to do the timestamping prior to the record versions being 

needed for a query, or indeed, given the way we maintain the 

historical data, prior to the time that versions are moved to 

historical pages of the database.  But we can wait until that 

subsequent visit to timestamp the version.  We have explored 

a number of lazy techniques in our effort to find the lowest 

cost one [13].   

The lazy techniques all require that versions created by a 

transaction’s updates be initially tagged with a transaction 

identifier (we use a transaction sequence number or TSN).   

The TSN is then associated with a timestamp TS, which is a 

time or a reliable proxy for time, that is chosen when the 

transaction commits.  This association must be made 

persistent as part of the transaction so that the timestamping 

activity can be completed even if the system should crash.  

Then, as versions are accessed, should the system find a 

version with a TSN tag, this tag is translated to a TS that is 

then used to identify whether the version is relevant to a query.   

Thus, one advantage of lazy techniques is that the 

timestamping is piggybacked on a subsequent access to the 

version. 

 

3) Timestamping Issues: There are two primary questions 

that need to be answered for any lazy timestamping technique.  

There are too many variations to fully discuss all 

combinations.  Rather than discussing combinations, we 

discuss possible answers to these questions independently, and 

then present our latest proposal, briefly contrasting it with our 

previous approach.   

1. Mapping Stability: How is the mapping from TSN to TS 

stored stably at least until the timestamping for a 

transaction is complete?   

2. Garbage Collection: Do we make efforts to remove 

mapping information that we no longer need so as to 

minimize the storage, and perhaps the maintenance costs, 

of this information? 

 

Mapping Stability: Two techniques have been previously 

suggested.   

1. Define an ordinary (and hence stable) table that contains 

the mapping information.  Such a table can be made 

accessible by TSN key, hence speeding the translation 

process.  Usually, recent mappings are retained in a main 

memory cache.  This is the approach that we used earlier 

in Immortal DB [13] and in Postgres [30].   It is useful to 

keep the table small so that main memory caching of its 

entries is effective, so garbage collecting entries is useful.  

2. Maintain the mapping table in main memory, with the 

information made stable by including it also in log 

records on the recovery log [18].  So long as the table 

does not become too large, this approach can be quite 

efficient, as writing a log record has less overhead than 

updating the table in approach 1.   However, to keep costs 

under control, it is imperative that the table be kept 

modest in size as this approach requires that the table be 

copied forward in the checkpointing process to ensure 

that mapping entries can survive the checkpointing 

induced truncation of the recovery log.  Hence this 

approach must garbage collect entries that are no longer 

needed.   

 

Garbage Collection: It is useful to keep the mapping 

information modest in size in both the above approaches by 

discarding mapping entries that are no longer needed for 

timestamping, i.e. the timestamping for the transaction is 

complete.  Three alternatives have been suggested. 

1. Do not perform garbage collection.  The mapping table 

grows as transactions are committed.  A small active part 

of the table is kept in main memory to speed the 

translation of TSN to TS.  This method can work when 

the mapping table is an ordinary table.  But it is 

inappropriate for the log based table approach, as the 

table quickly becomes too large to maintain in main 

memory, and it becomes too expensive to copy it forward 

in checkpoint information when the log is truncated. 

2. Perform stable reference counting to garbage collect the 

mapping entries for which the timestamping activity is 

complete.  This has been suggested with the log based 

approach, where it is essential to keep the mapping 



information small because of the need to “forward” the 

mapping table across checkpoints. Salzberg proposed 

“stable” reference counting [24].  It requires writing log 

records to document the timestamping so as to be able to 

stably decrement reference counts.  This, of course, adds 

to the cost.   

3. Perform volatile reference counting to garbage collect 

most mapping entries for which the timestamping activity 

is complete. Transactions whose timestamping is 

incomplete when the system crashes will lose their 

reference counts.  We will not be able to garbage collect 

their entries.  However this failure occurs only when the 

system crashes, which is a rare event.  So the mapping 

table grows very slowly.  We used this approach 

previously in Immortal DB [13], together with an 

ordinary table to provide mapping stability. 

C. Prior Immortal DB Approach 

We now provide a more complete description of what we 

did previously with Immortal DB.  We stored the mapping 

information in an ordinary table that we call the persistent 

timestamp table (PTT).  The PTT is updated as part of every 

transaction, so it is guaranteed to be stable.  We performed 

volatile reference counting, the least expensive way we know, 

to provide garbage collection for this information.  Unlike 

Salzberg’s approach [24], no logging of the reference 

counting is done.  Because of this, a system crash will lose 

track of the reference counts and some entries in the PTT will 

not be garbage collected even when their timestamping is 

complete.  But this is a good trade-off.   One gets very low 

cost reference counting and a PTT that grows a bit in size 

when the system crashes.   

Because the reference counting and timestamping is 

volatile (not logged), we need to know that the pages 

containing the timestamps for a transaction are all stable 

before we delete the transaction’s mapping entry from the 

mapping table.  We did that using the checkpointing process.  

This exploits log sequence numbers (LSNs) which order the 

log records.   A checkpoint identifies an LSN (a point on the 

log) as the redo scan start point LSN.  Once this is greater than 

the end-of-log LSN (EOL LSN) at the time that the 

timestamping was completed and the page was marked as 

dirty, the page containing the timestamps has been written to 

disk.  This must be true for the checkpoint to operate correctly 

and only truncate log entries that are no longer required.  At 

that point, we can delete the PTT entry for the transaction.   

We believe the Immortal DB prior approach, exploiting 

volatile timestamping, is more efficient than any competing 

approach.  However, it does raise costs, particularly for short 

transactions that update one or a small number of records. 

Every update transaction requires an insert of the TSN:TS 

mapping entry to the PTT, and eventually its deletion, both 

logged.  We wanted to avoid this overhead. 

 

D. Our New Approach 

To reduce overhead, we focus on removing the need to 

update the PTT in every transaction.  This update always 

requires writing a log record for the update, and eventually 

requires the writing of the page of the PTT containing the 

record.  In our experience, this adds about 60% overhead to 

the cost of executing a transaction that updates exactly one 

record.  (Updating the PTT means that a “one user update” 

transaction is doing two updates.) 

To avoid the PTT update, we combine elements from the 

two schemes described above for making the mapping 

information stable.  We temporarily make a transaction’s 

TSN:TS entry stable by including it in the commit record for 

the transaction, as in [18].  At checkpoint intervals, we 

execute a system transaction that updates the PTT with a batch 

of inserts of mapping items.  Updating the PTT in a batch is 

much more efficient than updating it during each transaction.  

In addition, we exclude from the batch all transactions for 

which the timestamping is complete and the record versions 

with their timestamps are stable.  Thus, for these transactions 

we save both the insert and the delete of the PTT. 

In all cases, the reference counting is kept volatilely 

(volatile RCNT) in a volatile timestamp table (VTT) until it is 

no longer needed.  The VTT acts as a cache for the PTT, and 

so it contains the TSN:TS mapping as well as the count of the 

number of records not yet timestamped (in a way that we will 

explain next), and the end of log LSN (EOL LSN).  Figure 1 

shows the format of the original VTT and our new VTT.  

Orchestrating the transition from having the TSN:TS mapping 

temporarily stored in the commit record and the VTT to being 

persistently stored in the PTT involves subtle considerations 

with respect to the reference counting and when the 

timestamping for versions is known to be stable. 

 

  

 

 

 

 

 

Figure 1: Formats for the Volatile Timestamp Table. 

In earlier Immortal DB implementations, we decremented 

the reference count for a transaction’s VTT entry as soon as 

TS replaced TSN in the record version in the database cache. 

Thus, we tracked the remaining records not yet timestamped 

in volatile memory.  We then used checkpointing information 

to determine when the pages in the database buffer are known 

to be stable.  Unfortunately, this gives us the stability 

information later than we need it for gaining the maximum 

benefit. 

The problem with this former technique is that we know the 

timestamping to be stable only AFTER the checkpoint, which 

is too late for a strategy that can entirely avoid posting the 

TSN:TS mapping to the PTT if it is known that the 

timestamping is stable prior to the checkpoint completion.  

We need to have a “seamless” story in which the TSN:TS 

mapping is always stable before all timestamping is stable for 

the versions in database pages.  That is, the TSN:TS mapping 

for a transaction must be either (1) in one or both of the stable 

(and accessible) part of the log or the PTT, or (2) stable in all 

Original VTT 

TSN    TS      (volatile RCNT)       (EOL LSN) 

_______________________________ 

New VTT 

TSN     TS     (stable RCNT) 



pages updated by the transaction.   Thus, we need to know the 

updated pages are stable as soon as they are stable, i.e. before 

the checkpoint process truncates the log.  Otherwise, we have 

to insert the TSN:TS mapping entry into the PTT.   

To know that timestamping information is stable as early as 

possible, we maintain our reference count in the VTT based 

on timestamping that we know is already stable (stable 

RCNT).  To do this, we keep track of timestamping 

information on a per page basis.  With each page in the 

database buffer, we maintain the timestamping activity in the 

page since the last time the page was written to disk.  When 

we write the page back to disk, we complete timestamping for 

all committed transactions with records on the page.  Once the 

disk write has been confirmed as having completed, we know 

that this timestamping is now stable.  At that point, we update 

the VTT reference count field (stable RCNT), now tracking 

the stably timestamped records, in particular, the number of 

records for which the timestamping is not yet stable. This 

count reflects the number of versions either untimestamped or 

timestamped but not yet written to disk. 

Thus, as soon as a page is written to disk, we know the 

impact on the reference counting for the transaction.  Pages 

written as part of an effort to enable a checkpoint to be taken 

are now known to be stable before the checkpoint.  We expect 

that the vast majority of transactions have their timestamping 

completed prior to their log records being truncated. 

Now, before we complete a checkpoint, which involves 

truncating the log, we know precisely the transactions whose 

timestamping is both complete and stable.  Those transactions 

entries can be dropped from our volatile timestamp table.  We 

now form the group of TSN to TS mapping items that are then 

batch inserted into the persistent timestamp table.  And most 

transactions are not included in this batch because their 

timestamping is known to be complete and stable. 

E. Experimental Results 

We ran experiments to determine the effect of our new 

strategy on the performance of single update transactions, 

which is a worst case in terms of impact because the 

incremental cost of updating the TSN to TS mapping table is 

highest as a percent of execution time.  The results of our 

experiments are shown in Figure 2.  The top line (highest cost) 

is our previous timestamping technique.  The next line 

(second highest cost) is when all transaction mappings 

(equivalent to no transactions with completed timestamping) 

are added in batch to the mapping table.  This shows that 

simply batching the updates substantially improves 

performance.  The next line (third highest cost) is when 50% 

of the transactions have not completed timestamping prior to a 

checkpoint and still need to be added to the table, which 

means that 50% have timestamping completed.  Then we 

show the cost when 80% of the transactions do not need to be 

included in the batch because their timestamping is complete, 

leaving only 20% to be added to the PTT.  And finally, we 

show the performance of an unversioned database executing 

the same updates.   

Figure 2 demonstrates that the cost of timestamping has 

been reduced dramatically, and even when 20% of the 

transactions still need to be timestamped at a checkpoint 

(which we believe to be much higher than what will be 

encountered under real load), the cost of updating a versioned 

database is only 10% higher than the update cost in an 

unversioned database. 

 

 

Figure 2: Performance of single update transactions under varying 

timestamping methods, compared with no versioning. 

III. DEFERRED SPLITTING AND “CURRENT” RANGE READS  

As with update efficiency, we have made strenuous efforts 

to make range search performance for transaction time data as 

close as possible to the corresponding performance in an 

unversioned (current time) database.  Certainly, version 

compression substantially improved range search performance, 

as we showed in [14].  However, this performance continues 

to be up to 20% worse than unversioned performance on a 

large part of the experimental space.  This is truly unfortunate 

for range queries on current versions of data in a versioned 

database, as it imposes on users interested only in current 

versions the negative performance impact of versioning. 

A. The TSB-tree 

The TSB-tree [15, 16], which we use as an integrated index 

for both current and historical versions, splits pages both by 

key and by time.  Each page of the tree indexes a rectangular 

key-time region of the search space.  To ensure that all 

versions in the key-time rectangle are present on the page, we 

replicate versions whose lifetimes cross any time boundary.  

Thus time splits add copies of versions to each page when the 

version lifetimes cross the time boundary of the split.  This 

increases the total space required for the data being indexed. 

We control whether a page is split by key or by time via a 

utilization threshold Th.   Only pages containing current data 

are ever split as only current data can be updated, and hence 

only current pages can become over full.  We time split a page 

when it fills whenever the current versions in the page occupy 

less than Th of the page.   Thus, Th acts as a lower bound on 

the utilization seen by current data.  We cannot be sure that 

the maximum utilization for current data will exceed Th.  

Average utilization is max(utilization)*ln(2).  Thus, we 

50% PTT  

batch inserts 

20% PTT  

batch inserts 

Unversioned 

Prior TS method 

unbatched 

100% PTT 
batch inserts 
 



guarantee that utilization for current versions will be at least 

Th*ln(2).  Only by increasing Th, bringing it closer to 100%, 

can we guarantee to improve current utilization.  But 

increasing Th increases the number of time splits that we do 

prior to performing a key split.  Hence it increases the number 

of pages needed to store the multi-versioned data. 

As pointed out in [2], the only way to guarantee the storage 

utilization seen by every version in a multi-version tree like 

the TSB-tree is to perform a time split whenever there is a key 

split.  Doing this ensures that the maximum current version 

utilization is actually captured in the historical page, before it 

is halved by the key splitting of the page.   This also makes 

the key split very similar to the B-tree key split since only 

current versions are in the page when the key split is done. 

This form of key splitting (never do a “naked” key split) 

has been an aspect of many multi-version indexing techniques 

beginning with the write-once B-tree (WOB-tree) [5].  The 

WOB-tree was designed to work on write-once media.  Hence, 

a time split was “built into” the very nature of the splitting 

process.  The original page became the historical page, and 

only the current data from the original page was then re-

written to one or more new pages.  For a pure time split, the 

current data was written to a single new page.  For a key and 

time split, it was written to two new pages.  Thus, a key split 

could not be performed in any other way, since it was 

impossible to remove data previously written in a page. 

B. Exploiting Re-writable Media    

While a write-once medium permits only the WOB-tree 

splitting strategy, other splitting strategies have been explored 

when a re-writeable medium such as a hard disk is used [16].  

These strategies improve certain aspects of the TSB-tree index, 

e.g. reducing total space consumed.  But, other splitting 

techniques do not guarantee that each version has a lower 

bound on storage utilization [2].  Hence, it is not possible to 

guarantee range performance, either for current or for 

historical versions.    

C. A New Splitting Strategy 

We want to “have our cake and eat it too.”  That is, we 

wanted improved storage utilization without having to 

increase the value of Th.  And, when using re-writable media 

like magnetic disks, this turns out to be possible.  The new 

splitting strategy works as follows.  When the utilization of 

the current version in a full current page (called single version 

current utilization or SVCU) is less than Th, the page is time 

split as before.  When SVCU >= Th, then instead of doing a 

time split followed by a key split, we only do a time split.  But, 

we remember that we have exceeded Th by marking the page.  

When the page fills again, we then do a key split without 

doing an immediately preceding time split.  Rather, the earlier 

time split substitutes for this.  Thus, we have not changed the 

time of the time split, but we have deferred its associated key 

split until the current page fills again. 

What has this new strategy accomplished?  Historical pages 

are unchanged by this.  The time splits and when the time 

splits occur happen exactly as they did when using the WOB-

tree splitting strategy.  What have changed are the current 

pages and the utilization seen on these pages.  During the time 

between the preceding time split and the eventual key split, 

the current pages in this situation have twice the storage 

utilization of the pages had the key split been done 

immediately.  Thus, we get one more opportunity to fill up the 

current page before we finally do this key split.  And this is 

done without (1) increasing the number of time splits and 

hence the number of versions that are replicated and (2) 

without changing the single version utilization (SVU) seen for 

any historical version.  But because of the one extra time the 

current page is filled before it is key split, we increase SVCU.  

D. Deferred Splitting and Current Versions 

Here we derive the deferred splitting impact analytically 

and confirm this via experiments.  In [14], we derived SVCU.  

We repeat part of that analysis for completeness and because 

it extends naturally to deal with deferred splitting.  This is an 

asymptotic analysis, not a probabilistic one.  Our results are 

presented in terms of the mix of inserts (resulting in new 

records) and updates (resulting in new versions of existing 

records), where, for example a “percent of update” of 0.20 

indicates 20% of database modifications are updates while 

80% of them are inserts.  We use “percent of update” in the 

presentation to be consistent with the results presented in [16], 

which served as a sanity check for our results. We compute 

SVCU as a function of the fraction of updates that are inserts, 

called the insert ratio In.   Thus “percent of updates” is 1.0 – 

In.  We use In because it makes the equations simpler.   

We also include the impact of compressing all versions of a 

record except the latest version on the page.  Compression 

ratio is denoted as CR in the analysis, where CR is compressed 

version size divided by uncompressed version size.  The 

format for a database page is shown in Figure 3.  It is 

important to note that the current versions (more generally, the 

most recent versions) on the page are not compressed.  All 

older versions of existing records are delta compressed; i.e. 

only the difference between the version and its predecessor is 

retained, along with the timestamping information associated 

with the version and the version chain pointers.  CR denotes 

the full size in bytes of a delta version divided by the full size 

in bytes of the uncompressed version. 
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Figure 3: Data page layout showing how uncompressed latest versions are 
chained to earlier delta compressed versions. 



When a data page is split by time, it is always split as of the 

current time.  Its entire contents are moved to the resulting 

historical page.  The original current page is then updated by 

removing all historical records (the deltas) from the page.  The 

following analysis is based on this form of time splitting. 

We compute the maximum value for SVCU iteratively until 

it reaches a fixed point.  Consider a page split at iteration i’s 

maximum value SVCUi. We iterate through multiple splitting 

steps until this maximum converges.  Once we have 

determined the maximum value for SVCU, we then compute 

SVCUavg as SVCU*ln(2). 

A newly key split page at the (i+1)
th

 step has utilization 

SVCU(i+1)min = 0.5*SVCUi.   That is, we have removed all 

historical delta records during the preceding time split, and we 

have divided the remaining current records in half, allotting 

each half to one of the resulting pages.  We then fill the page 

with entries divided between updates and inserts as given by 

the update ratio.  The current entries when the page next fills 

are represented by these initial entries plus the inserts (but not 

the updates).  We need to capture the impact of compression 

and hence we want to know how the space in the page is 

divided.  This results in the following iteration formula.  We 

start calculating this using Th as SVCU0.  The value converges 

rapidly (five iterations).  At iteration i+1, we fill the unused 

space (1 -0.5*SVCUi) with insertions in their ratio of insertion 

space over the total space for new versions, taking into 

account that updates lead to compression of the supplanted 

version.  Once the value of SVCUi are “clipped” by threshold 

Th, guaranteeing that Th is the minimum value for the 

maximum utilization that is permitted.  Thus: 

SVCU0 = Th   

SVCUi+1= 

Max(Th,0.5*SVCUi+(1- 0.5*SVCUi)*(In/(In+C*Up))) 

These values are SVCUmax, the maximum value reached by 

SVCU before the page is key split.  For average, we then get: 

SVCUavg = SVCUmax * ln(2). 

We plot SVCUavg against update ratio in Figure 4 based on 

our prior experiments (the “no defer” results). Our analysis 

suggests that Th limits SVCUmax at lower update ratios more 

than found in the experiments, but has less of an impact at 

mid-range update ratios before Th limits are strong.   

To derive the improvement in SVCU resulting from our 

delayed splitting strategy, we continue our analysis by 

determining the impact on SVCU of one extra filling of the 

page prior to performance of a key split.  Let us call the new 

single version current utilization SVCU
d
 indicating it is for the 

deferred split case.  Then, because of the deferred split, we 

have one more opportunity to fill the page, starting at the 

maximum fill (utilization) reached for the original case.  Thus 

SVCU
d
max= SVCUmax +(1-SVCUmax)* [In/(In +C*Up)] 

To get the new average SVCU
d

avg, we multiply the maximum 

utilization by ln(2), which is now quite standard.  Thus 

SVCU
d
avg= SVCU

d
max*ln(2) 

We plot the result of our analysis for the deferred case in 

Figure 4 comparing our analytic results with both deferred and 

non-deferred (WOB-tree) experimental results, both with and 

without version compression.  Figure 4’s experimental results 

are produced from experiments that we ran using Immortal 

DB as the test vehicle. The difference between analysis and 

experiment are minor, never differing by more than a few 

percent, and usually less. 

 
Figure 4: Single version utilization: deferred and non-deferred splitting results. 

What we see in looking at Figure 4 is that our analysis 

matches our experimental results for the deferred case very 

closely.  Deferred splitting improves SVCU substantially in 

the middle of the update ratio range, but the effect is reduced 

at both end points.  When we have almost all inserts (percent 

of updates below say 0.2), then regardless of the threshold Th, 

the page is almost full without deferred splitting since there 

are very few historical versions to prevent this. Hence there is 

very little room for improvement.  The resulting SVCU is 

already comparable to B-tree utilization.  At the high end of 

the percent of updates, almost all updates modify records, 

producing more historical versions.  Even though there is 

space in the page to fill after the final time split (which 

removes all historical versions), filling it with almost all 

historical versions does not improve SVCU much.  It is in the 

middle of the update range where deferred splitting has most 

impact.  And it is this part of the update ratio range that we 

expect to encounter in real system deployments.  What we see, 

especially when we have decent compression (a compression 

ratio of C =.162 that might be produced when one or two 

fields of a multi-field record are updated) is that deferred 

splitting keeps SVCU within 10% of B-tree utilization out to 

around an update ratio of 0.8.  Experiments confirm the 

analysis.   

E. Deferred Splitting and Historical Versions 

Delayed splitting also has an impact on what we have 

called multi-version utilization (MVU).  Here we want to 

determine the effective storage utilization, where each version 

is counted only once, regardless of how often it might be 

duplicated during a time split of an overfull page.  We also 

want to calculate it assuming that each version is 



uncompressed, so that we can clearly see the benefit of 

compression as well as deferred splitting.   

As with SVCU, we adapt our results for MVU to determine 

the impact of deferred splitting.  Our analysis for MVU did 

not determine its value at all points.  We will not repeat the 

analysis from [14] here.  Deferred splitting changes only the 

amount of space taken by data pages containing current data.  

Even for update percent of zero, current pages make up only 

1/2 of the pages.  So the number of current pages is always 

smaller than the number of historical pages.  Over most of the 

range of update percent, the number of current pages is small.  

What we see then is that deferred splitting has only a very 

modest impact on multi-version utilization.  This is because it 

only impacts single version current utilization, and the pages 

containing the current versions can be a very modest fraction 

of the total pages.  Most of the impact of deferred splitting is 

in the significant increase in current version utilization, and 

hence current version range read performance.   

At the end points of the update percent range, the deferred 

splitting has no impact.  That is because at the end points, it 

has no impact on SVCU.  The biggest impact, evident from the 

graph in Figure 5, occurs between 0.5 and 0.9.  This is the 

range that we expect most applications to operate in.  

However, even here, the impact is not large.   Hence, the 

primary justification for deferred splitting lies in its 

improvement in current version range search.    On the other 

hand, we see that delta compression makes a very large 

difference in MVU over most of the update percent range.  It 

is especially helpful when there are a large percentage of 

updates, and hence a large number of historical versions.  The 

space savings are very substantial at percent of updates. 

 

 
Figure 5: Multi-version utilization: deferred and non-deferred splitting results. 

IV. AUDITING WHO DID WHAT 

Auditing, e.g. to track company finances, is a complex 

subject with many esoteric tests that are performed on a 

company’s data.  A database platform cannot hope to provide 

built-in support for these tests.  Rather, the role of a platform 

is to provide the underlying information that enables the tests 

to be made.  Note that a transaction time database, because it 

retains the entire history of the database, already helps 

substantially with this.   

Part of auditing is tracing responsibility.  Transaction time 

databases do not, with their basic functionality, address this.  

However, we have found it straightforward to add the ability 

to track which user (actually user id) is responsible for each 

change made to the database.  And the impact on system 

performance is modest. 

To support timestamping of versions, Immortal DB 

maintains the PTT table.  This permits the system to replace 

TSNs by timestamps lazily after commit.  We have been 

garbage collecting the PTT’s entries once the timestamping 

activity is completed for the corresponding transactions.   

However, garbage collection is discretionary, and is purely a 

space optimization.  If we retain the time table entries, the 

system continues to operate correctly. 

Based on the preceding observation, our support for the 

audit function adds a user id field (UID) to the PTT.  The UID 

permits us to remember who executed the transaction.  To be 

consistent with our timestamping approach, we also add the 

UID to the information stored in each transaction’s commit 

record and to the VTT, the volatile timestamp table that we 

cache in main memory to speed up the timestamping process.  

Coupled with a no delete policy for the PTT, we can now 

remember not only the “what” of a transaction but also the 

“who”.  That is, every record contains a timestamp.  This 

timestamp can be used to search the PTT to find the UID of 

the user on whose behalf the transaction executed.   

We have already measured the performance impact of 

providing this audit support.  We measured it in our 

experiment to determine timestamping overhead (see Figure 

2).  Recall that in the timestamp information is added in 

“batches” to the PTT.  Because it is added in a batch, the 

overhead of doing this is modest.   The correct result to use in 

determining the auditing cost is the 50% batch inserts line.  

This line denotes the cost of adding only 50% of the 

transaction entries to the PTT.  However, it also includes the 

cost of deleting those entries as well, hence being 

approximately equivalent to a pure insert of all transactions to 

the PTT.  Recall that what Figure 2 gives is the overhead 

when executing single record update transactions, which is a 

worst case.  Auditing thus adds (from Figure 2) about 25% 

overhead in this case.   Remember, however, that what is 

being measured here is response time, not throughput.  The 

throughput impact will be less as there are fewer page writes 

per transaction when the system is more heavily loaded, and 

multiple users are updating a transaction time database.   

V. RELATED WORK 

Many database applications require that multiple versions 

of records be stored and retrieved.  The effort to satisfy the 

diverse needs of these applications has led to a number of 

versioning solutions.  A more complete history of related 

work is given in [14].  There have been a number of papers 

discussing aspects of timestamping [10, 19, 32].  Further, 

there are a large number of proposed indexing techniques used 



for temporal data, e.g. [2, 7, 25, 26]. Temporal database 

bibliographies are in [11, 26, 33].  Here we focus on multi-

version support in general purpose database systems.  

A. Postgres 

There was some conceptual temporal database work in the 

early 1980’s ([28] is an example and contains citations to even 

earlier work).  However, the first database system offering 

temporal functionality was Postgres [30], which provided 

reasonably complete transaction time functionality.  R-trees [6] 

are used in Postgres to index historical data, with recent data 

residing in a B+tree.   This separation is important as R-trees, 

a general multi-attribute index, have difficulty supporting, in a 

straightforward way, data that is current and hence does not 

yet have an end time. 

The movement of data from the B+tree to the R-tree occurs 

at a later time, after transaction commit.  Versions that had not 

yet been timestamped, can be timestamped during this process, 

called “vacuuming”, i.e. committed versions whose “end 

times” are sufficiently old are moved from the current part of 

the database to the historical part.  This means that the 

Postgres version of our PTT can be garbage collected after 

each vacuuming scan completes, as all transactions committed 

prior to the time specified for the vacuuming can be 

guaranteed to be timestamped. 

The Postgres approach does mean, however, that queries 

accessing historical “as of” record versions need to access 

both B+tree and R-tree.  A record version valid at a given time 

may either (1) be in the B+tree if it has not been subsequently 

updated or (2) be in the R-tree if it has been subsequently 

updated.   Range search performance in either of these trees is 

limited by the lack of time splitting support.  Thus, the B+tree 

only splits by key.  The R-tree splits in both dimensions, but is 

forced to index intervals, resulting in a reduction in the single 

version utilization and hence as of query performance. 

In [23], a time-travel service is implemented for a 

replication DBMS. The time-travel semantics is defined using 

snapshot isolation in PostgreSQL and allows retrieval of older 

snapshots in replication systems.  

B. DEC Rdb 

DEC Rdb [8] (now owned by Oracle and called Oracle Rdb) 

provides support for read-only transactions without impeding 

update transactions via a transient versioning technique in 

which the transient versions are accessed by being linked to 

the current data.  Transient versioning methods are also 

described in [29] for the same purpose.   Rdb uses a technique 

called “commit lists” to identify the versions that should be 

seen in an “as of” query.  General “as of” queries are not 

supported.  Rather, a user can issue a query within a read only 

transaction.  As in snapshot isolation, the version that is 

current as of the time that a read only transaction begins is 

selected as the version to be read.  The system keeps track of 

transaction identities via TSNs.  When a read only transaction 

starts, the system points the transaction to the set of 

transactions that have already been committed, together with 

their commit sequence numbers (CSN). The CSN is assigned 

at transaction commit in the order that transactions have 

committed, and hence in their serialization order.    

This “commit list” permits the read only transaction to 

identify which version of a record it should read, i.e. the 

version with the highest CSN that is earlier than the last CSN 

that it is permitted to see.  TSNs are stored with the updated 

record versions.  Finding the correct version entails translating 

the TSN to its associated CSN. 

The “commit list” approach avoids storing all transaction 

TSNs over all of history by truncating the list at an active 

transaction “low water mark”, a TSN that is smaller than any 

active transaction.  All earlier TSNs encountered when 

reading versions are assumed to be readable by the read only 

transaction.  Further, all versions with TSNs greater than the 

TSN associated with the last CSN the read only transaction is 

permitted to see are bypassed in a backward scan to find the 

correct version.  Thus a “commit list” can be easily 

represented by a list of limited size.  

Rdb chains back to a separate version store for its recent 

versions.  This works fine when only recent versions are read.  

Microsoft SQL Server borrows from DEC Rdb both the 

commit list approach for handling “timestamping” and the 

backward chaining to recent versions  for its support of 

snapshot isolation concurrency control [29] which is a form of 

multi-version concurrency control that improves concurrency 

and reduces locking.   

C. Oracle 

Oracle has long supported a form of versioned data.  Its 

undo recovery method keeps prior committed versions 

available in database pages, where a transaction abort removes 

the uncommitted version, restoring the prior version to its 

status as current version.  It exploits this versioning in 

concurrency control, being a very early supporter of multi-

version concurrency control.  It calls the most stringent of its 

isolation levels “serializable”, but this has been more precisely 

identified as “snapshot isolation” [3], with its own set of 

slightly weaker guarantees.  Oracle has, over time, enhanced 

its versioning capability to support transaction time 

functionality.  

With Oracle 9i, Oracle announced support for transaction 

time functionality [21], which it called “FlashBack”.  

FlashBack queries allow the application to access prior 

transaction time states of their database. Oracle 10g extended 

FlashBack queries to retrieve all the versions of a row 

between two transaction times (a key-transaction time-range 

query) and allowed tables and databases to be rolled back to a 

previous transaction time, discarding all changes after that 

time.  This is equivalent to “point in time” recovery and is 

used to deal with removing the effects of bad user transactions.  

The Oracle 10g Workspace Manager includes the time period 

data type, valid-time support, transaction time support, 

support for bitemporal tables, and support for sequenced 

primary keys, sequenced uniqueness, sequenced referential 

integrity, and sequenced selection and projection.  They do 

not index historical versions, however, so historical version 

queries must go through current time versions and then search 

backward “linearly” in time.   



More recently, Oracle has announced the “Total Recall” 

feature for Oracle 11g [22].  Building on FlashBack, Total 

Recall supports the long time archiving of transaction time 

versions, supporting the migration of the versions to archival 

media.   “As of” queries, supported with FlashBack, execute 

“seamlessly” on the archive maintained by Total Recall.  Built 

in security enforces that the Total Recall archive is strictly 

read-only.  A form of compression is supported to reduce the 

storage cost of retaining the more extensive database history.  

Centralized management supports a deletion policy that can 

“age out” old versions, based on business policy.  Total Recall 

is promoted as supporting Sarbanes-Oxley compliance. 

D. Comparing with Our Work 

In none of this related work on implemented systems were 

versions indexed using a multi-version temporal access 

method.   Since such an access method was not used, it is not 

surprising that deferred splitting was not an aspect of the work. 

Aside from Postgres, the other system implementations do 

not replace transaction sequence numbers with timestamps.  

We have worked hard to make this process as efficient as 

possible.  This has a large payoff as soon as significant 

numbers of queries to past database states are executed, 

making our system a much better fit for the actual exercise of 

transaction-time functionality than prior work. 

Our auditing approach is a very simple, effective, and high 

performance way of supporting audit functionality.  Oracle 

“Total Recall” also provides an auditing capability, but we 

have not found an explanation that is sufficiently detailed to 

provide a meaningful discussion.   

VI. DISCUSSION 

A. Performance 

We have stressed throughout this paper the importance of 

temporal support having performance that is close to the 

performance of a non-versioned (non-temporal) database.   

This is important even when only supporting versioning for 

snapshot isolation.  If versioning performance is not 

comparable to unversioned performance, few users will run 

their database code using the versioning technology.  Without 

competitive performance, users will not be inclined to exploit 

any more general database temporal functionality.  This is at 

the heart of our rationale for building multi-version support 

into the database kernel. 

In this paper we have shown how to make performance 

noticeably better than we had achieved in the past.   

1. For transaction timestamping, we exploited (1) the better 

performance of batch updating, enabled by storing 

mapping information in a transaction’s commit record; 

and (2) a more timely reference counting method to 

reduce the number of entries needing insertion into our 

PTT table.    

2. We improved the range search performance for current 

data by exploiting re-writable media.  Delaying key 

splitting in the way that we have may seem an obvious 

thing to do.  But there is a long history of multi-versioned 

indexing in which this opportunity was not noticed or 

exploited.  And it has a noticeable impact on range query 

performance for current data.  

Both of these performance improvements together narrow the 

performance gap with unversioned data.  It can truly be 

claimed that this gap is now no longer a serious impediment to 

supporting applications that require transaction time temporal 

support. 

B. Functionality 

 Reducing the performance impact is one way of making 

temporal functionality more attractive.  Increasing the 

functionality supported is another way, where both together 

improve the cost/benefit ratio seen by database users.  Already 

suggested has been high performance media recovery [17] as 

well as the Immortal DB fast recovery from bad user 

transactions [20]. 

In this paper, we have added a foundation for audit support.  

Auditing database systems (and their data) has always been 

important for businesses.  And with the passing of the 

Sarbanes-Oxley legislation, auditing has assumed even greater 

importance.   

It is important to understand that we have added a 

foundational element of audit functionality.   We have added 

only the tracking of who was responsible for the execution of 

a transaction.  This, together with the versioning already 

supported by Immortal DB, permits special purpose 

application programs to be written that can trace every change 

made in the database, and assign the change to the responsible 

user id.   Further, the performance impact of this is quite 

modest.  

Adding audit support is very much in the same spirit as our 

previous functional additions to versioning databases.  Like 

the audit support, they exploit the existence of versioned data 

to accomplish in a simple and high performance way, a highly 

useful capability.  For bad user transaction recovery, earlier 

versions are used to replace subsequently corrupted later 

versions.  This is done with much higher performance and 

much greater selectivity than is done by the classical “point in 

time” recovery, which has to install a database backup and 

then roll forward changes from the media recovery log to a 

point just earlier than the bad transaction.  And then, finally, 

“point in time” recovery removes the effects of all later 

transactions, hence “de-committing” them.  Using multiple 

versions, we avoid installing a backup, need no roll forward 

step, and selectively de-commit only directly impacted 

transactions. 

C. Conclusion 

Immortal DB in its current state has demonstrated that 

supporting multiple versions does not incur any serious 

performance degradation.  And it provides the foundation for 

useful additional functionality exploiting multiple versions. 

This provides a strong incentive for the adoption of database 

systems that support transaction time functionality.  
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