

iBTune: Individualized Buffer Tuning for Large-scale Cloud Databases

Jian Tan, Tieying Zhang, Feifei Li, Jie Chen, Qixing Zheng, Ping Zhang, Honglin Qiao, Yue Shi, Wei Cao, Rui Zhang Alibaba

VLDB 2019

Outline

Background and Motivation

Algorithm and System

Deployment and Result

Background

Table 1: Usage of different memory pools

Memory	7	buffer	$\overline{\ }$	insert	log	join	key	read	sort
Pool	[pool		buffer	buffer	buffer	buffer	buffer	buffer
Avg. Size	2	9609.98N	1	8.00M	$200.00 \mathrm{M}$	0.13M	8.00M	0.13M	$1.25 \mathrm{M}$
Percent		99.27%	/	0.03%	0.67%	0.00%	0.03%	0.00%	0.00%

The memory uses at Alibaba product environment

Buffer pool is the largest memory consumer

Motivation

Reduce memory (buffer pool) while guaranteeing SLA (response time).

- DBA manually uses a small number of BP sizes (10 configurations in our case).

- Each instance's BP size might be different as the query workload is different.

- Manual tuning is not scalable for large cloud databases since each instance has different BP size.

iBTune: Individualized Buffer Tuning for Largescale Cloud Databases

iBTune - Preliminary Attempt

Buffer pool (BP) size is sensitive to miss ratio: BP size is reduced from 188G to 80G when it's hit ratio is from 99.968% to 99.950%

Intuition:

- Challenge: Heuristic method (such as shrinking 10% each time) does not work, since we have to try many times, which makes the system unstable and is unacceptable for mission-critical applications.
 - Calculate BP based on hit ratio (miss ratio) to avoid restarting system multiple times
 - Confirm whether the BP size meets the requirement of SLA

Outline

Background and Motivation

Algorithm and System

Deployment and Result

Finding BP=f(miss ratio)

 A number of empirical measurements on real systems have shown power law popularity distributions and follow that:

 $\frac{\log\left(mr_{target}\right) - \log\left(mr_{cur}\right)}{\log\left(bp_{bp_{target}}\right) - \log\left(bp_{cur}\right)} \approx -\alpha_i.$

 Parameter α is obtained from the workload, which is 1.2 in our case. A large class of heavy-tailed requests with popularities following a power law distribution fits in our formulation.

Calculating tolerable miss ratio

- K-nearest-neighbors (DB instances)
- Find the nearest neighbors
 - Such as 6 in our case
 - Neighbor distance is calculated by similarity
- Calculate tolerable miss ratio
 - The weighted mean of the miss ratios of the k-nearest-neighbors

How to obtain k-nearest-neighbors?

 $N(i) \leftarrow \text{connected nodes of } i \text{ on } G;$ for each instance j in N(i) do $\begin{vmatrix} \text{ if } \underline{mr_{(cur,j)} > mr_{(cur,i)}} \text{ then} \\ | w_{ij} = \exp((E_j - E_i)^2/(2\sigma^2)); \\ \text{else} \\ | w_{ij} = 0; \\ \text{end} \\ \end{vmatrix}$ end $mr_{(tolerable,i)} \leftarrow \frac{\sum_{j \in N(i)} w_{ij}mr_{(cur,j)}}{\sum_{i \in N(i)} w_{ii}};$

達摩院

Calculating similarity

- Features
 - RT
 - QPS
 - miss ratio
 - CPU usage
 - logical read
 - io read

The last three metrics are divided by QPS

Pearson correlation coefficients

Till now, we can get the k-nearest-neighbors and tolerable miss ratio and calculate the new BP size

Predicting RT

Pairwise DNN: Predict the respond time (RT) based on the tolerable miss ratio

• Training

The predicted RT is compared with the safe SLA (RT)

Predicting RT

Pairwise DNN: Predict the respond time (RT) based on the tolerable miss ratio

• Training

•

• The granularity of metric is a day

The predicted RT is compared with the safe SLA (RT)

Safe SLA (RT)

Response Time Distribution

Determine the safe RT for different applications

Group all the instances into different applications, and find the 95% percentile of the response times in each group as the corresponding safe limit for that application.

Outline

Background and Motivation

Algorithm and System

Deployment and Result

System halt avoidance

Based on X-Paxos: high availability protocol implementation at Alibaba

Evaluation

- All results are from our product environment
- X-Engine: MySQL compatible database based on LSM-Tree storage engine
- With high performance Paxos implementation
- Pairwise DNN: 100K data samples

	Taobao	Tmall	Youku	Fliggy	Others
Select	5245/s	2815/s	1017/s	22930/s	120/s
Insert	4222/s	0	1/s	1520/s	10/s
Update	0	30/s	315/s	4/s	980/s
Delete	2708/s	0	10/s	0	0

1,000 sample instances scattered across different applications

iBTune has been deployed on 10,000 database instances Memory saving : ~17%

Single instance

Performance before and after BP adjustment (45G->21G) during holidays and workdays:

- Red line is the time when BP size is adjusted
- Green lines show the holiday which is 7-days
- Predicted RT: only 3 points exceeded which is acceptable

The IO read metric is the real IO, since all our DB instances turn on direct IO

Multiple instances

10 representative instances. The memory saving ranges from 50% to 10%, which strongly supports that a single number does not fit all. Instance 1 has a large increase in RT after the adjustment. We find that there is one query that consumes 99.97% of the total response time. The lookup value in WHERE condition changes for this query.

Conclusion & Future Work

- iBTune has been deployed on 10,000 database instances with memory saving : ~17%
- Future work
 - Cache preload
 - Backup node needs run SQLs to load data into cache after BP adjustment
 - Perform switching after preload
 - Buffer increase
 - Currently reply on DBA
 - Automatic increase buffer
 - Multiple parameters tuning
 - DBMS configure file

Thanks