
iBTune: Individualized Buffer Tuning for
Large-scale Cloud Databases

Jian Tan, Tieying Zhang, Feifei Li, Jie Chen, Qixing Zheng, Ping
Zhang, Honglin Qiao, Yue Shi, Wei Cao, Rui Zhang

Alibaba
VLDB 2019

Background and Motivation

Algorithm and System

Deployment and Result

Outline

Background

The memory uses at Alibaba product environment

Buffer pool is the largest memory consumer

Buffer

Tmall Dingding

…
…

Memory is bottleneck
among the resources

Buffer

Hema

Buffer Buffer Buffer Buffer

SDDP: Self-Driving Database Platform

Motivation

- DBA manually uses a small
number of BP sizes (10
configurations in our case).
- Each instance’s BP size might be
different as the query workload is
different.
- Manual tuning is not scalable for
large cloud databases since each
instance has different BP size.

Reduce memory (buffer pool) while guaranteeing SLA (response time).

iBTune: Individualized Buffer Tuning for Largescale Cloud Databases

CDF of individual BP sizes
before and after the iBTune applies

iBTune - Preliminary Attempt
Buffer pool (BP) size is sensitive to miss ratio: BP size is reduced
from 188G to 80G when it’s hit ratio is from 99.968% to 99.950%

Response Time
hit ratio

CPU usage

• Challenge: Heuristic method (such as shrinking 10% each
time) does not work, since we have to try many times,
which makes the system unstable and is unacceptable for
mission-critical applications.

Intuition：

• Calculate BP based on hit ratio (miss ratio) to avoid
restarting system multiple times

• Confirm whether the BP size meets the requirement
of SLA

Background and Motivation

Algorithm and System

Deployment and Result

Outline

tolerate miss ratio
(t_miss_ratio)

F1(t_miss_ratio) = New BP size

F2(t_miss_ratio) = Response time

Practical function

Pairwise DNN

< Safe Response time
(SLA)

Apply new BP size

DB instance

DB instance

Guarantee SLA

iBTune – High level idea

Finding BP=f(miss ratio)

• A number of empirical
measurements on real
systems have shown power
law popularity distributions
and follow that:

• Parameter α is obtained
from the workload, which is
1.2 in our case.

A large class of heavy-tailed requests
with popularities following a power law
distribution fits in our formulation.

Calculating tolerable miss ratio

• K-nearest-neighbors (DB instances)
• Find the nearest neighbors

– Such as 6 in our case
– Neighbor distance is calculated by

similarity
• Calculate tolerable miss ratio

– The weighted mean of the miss
ratios of the k-nearest-neighbors

How to obtain k-nearest-neighbors?

Calculating similarity
• Features

– RT
– QPS
– miss ratio
– CPU usage
– logical read
– io read

Raw

0.055

0.127

0.017

Div By
QPS

0.093

0.394

0.117

The last three metrics are divided by QPS

Pearson correlation coefficients

CPU usage:

Logical read:

IO read:

Till now, we can get the k-nearest-neighbors and tolerable miss ratio
and calculate the new BP size.

Predicting RT

• Training

– Input: two instances’ metrics +
right instance’s RT

– Output: Left instance’s RT

• Predicting

– input: A instance’s metrics X 2
except miss ratio

– Output: RT corresponding to
tolerate miss ratio

• The granularity of metric is a day

Pairwise DNN: Predict the respond time (RT) based on the tolerable miss ratio

Instance 1

Instance 2

miss ratio

miss ratio

The predicted RT is compared with the safe SLA (RT)

Predicting RT

• Training

– Input: two instances’ metrics +
right instance’s RT

– Output: Left instance’s RT

• Predicting

– input: A instance’s metrics X 2
except miss ratio

– Output: RT corresponding to
tolerate miss ratio

• The granularity of metric is a day

Pairwise DNN: Predict the respond time (RT) based on the tolerable miss ratio

Instance 1

Instance 2

miss ratio

tolerate miss ratio

The predicted RT is compared with the safe SLA (RT)

1

Safe SLA（RT）

Determine the safe RT for different applications
Group all the instances into different applications, and find the 95% percentile of the
response times in each group as the corresponding safe limit for that application.

Background and Motivation

Algorithm and System

Deployment and Result

Outline

System halt avoidance

Master

Backup

Backup

Based on X-Paxos: high availability protocol implementation at Alibaba

Switch

Adjust backup node’s BP size1
It leads to 10~20 sec system
halt to backup node, without
affecting system service.

Switch master and backup
after the backup node
recovers

2

If the new master works fine during
the following 24 hours, backup
nodes’ BP will be adjusted.

5

Monitor the new
master for 24 hours

3

Switch

If the new master is abnormal, i.e., the number
of slow SQLs increases, rollback will be trigged.

4

Evaluation

• All results are from our
product environment

• X-Engine: MySQL compatible
database based on LSM-Tree
storage engine

• With high performance Paxos
implementation

• Pairwise DNN: 100K data
samples 1,000 sample instances scattered

across different applications

iBTune has been deployed on 10,000 database instances
Memory saving : ~17%

• Red line is the time when BP
size is adjusted

• Green lines show the holiday
which is 7-days

• Predicted RT: only 3 points
exceeded which is acceptable

The IO read metric is the
real IO, since all our DB
instances turn on direct IO

Single instance
Performance before and after
BP adjustment (45G->21G)
during holidays and workdays:

10 representative instances. The memory saving ranges from 50% to 10%, which strongly supports that a single number
does not fit all. Instance 1 has a large increase in RT after the adjustment. We find that there is one query that consumes
99.97% of the total response time. The lookup value in WHERE condition changes for this query.

Multiple instances

Conclusion & Future Work

• iBTune has been deployed on 10,000 database
instances with memory saving : ~17%

• Future work
– Cache preload

• Backup node needs run SQLs to load data into cache
after BP adjustment

• Perform switching after preload
– Buffer increase

• Currently reply on DBA
• Automatic increase buffer

– Multiple parameters tuning
• DBMS configure file

Thanks

	幻灯片编号 1
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20

