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Abstract
In-memory key-value stores (KVSes) are widely used to

cache hot data, in order to solve the hotspot issue in disk-
based storage or distributed systems. The hotspot issue inside
in-memory KVSes is however being overlooked. Due to the
recent trend that hotspot issue becomes more serious, the lack
of hotspot-awareness in existing KVSes make them poorly
performed and unreliable on highly skewed workloads.

In this paper, we explore hotspot-aware designs for in-
memory index structures in KVSes. We first analyze the
potential benefits from ideal hotspot-aware indexes, and dis-
cuss challenges (i.e., hotspot shift and concurrent access is-
sues) in effectively leveraging hotspot-awareness. Based on
these insights, we propose a novel hotspot-aware KVS, named
HotRing1, that is optimized for massively concurrent accesses
to a small portion of items. HotRing is based on an ordered-
ring hash index structure, which provides fast access to hot
items by moving head pointers closer to them. It also ap-
plies a lightweight strategy to detect hotspot shifts at run-time.
HotRing comprehensively adopts lock-free structures in its
design, for both common operations (i.e., read, update) and
HotRing-specific operations (i.e., hotspot shift detection, head
pointer movement and ordered-ring rehash), so that massively
concurrent requests can better leverage multi-core architec-
tures. The extensive experiments show that our approach is
able to achieve 2.58⇥ improvement compared to other in-
memory KVSes on highly skewed workloads.

1 Introduction
The in-memory key-value store (KVS) is an essential compo-
nent in storage infrastructures (e.g. databases, file systems)
that caches frequently accessed data in memory for faster ac-
cess. KVSes help to improve the performance and scalability
of these systems, where billions of requests need be processed
in each single second. Many state-of-the-art KVSes, e.g.,
Memcached [44], Redis [31] and their variants [8, 15, 17, 33],

1 HotRing is a subcomponent of Tair — a NoSQL product extensively
used in Alibaba Group and publicly available on Alibaba Cloud.
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Figure 1: Access ratio of different keys.

are widely developed and deployed in production environ-
ments of enterprises, such as Facebook [42], Amazon [3],
Twitter [49] and LinkedIn [12].

The hotspot issue (i.e., a small portion of items that are
frequently accessed in a highly-skewed workload) is a com-
mon problem in real-world scenarios, and has been studied
extensively in literature [4, 10, 20, 23, 27]. There are many
solutions to address cluster-wide hotspots, such as consis-
tent hash [29], data migration [9, 11, 46] and front-end data
caching [16,26,32,36]. Besides, the single-node hotspot issue
is also well addressed. For example, computer architecture
leverages hierarchical storage layout (e.g., disk, RAM, CPU
cache) to cache frequently accessed data blocks in low-latency
storage medium. Many storage systems, e.g., LevelDB [18]
and RocksDB [14], use in-memory KVSes to manage hot
items.

However, the hotspot issue inside an in-memory KVS is
usually being overlooked. We have collected access distri-
butions in in-memory KVSes from Alibaba’s production en-
vironments, as illustrated in Figure 1. We observe that 50%
(daily cases) to 90% (extreme cases) of accesses only touch
1% of total items, which shows that the hotspot issue becomes
unprecedentedly serious in the Internet era. There are sev-
eral reasons behind this phenomenon. First, the population
of active users in online applications keeps growing. A real-
time event (e.g., online sales promotions, breaking news) is
able to attract billions of accesses to a few items in a short
period of time, where fast access to these hotspots is critical.
It has been reported that every 0.1s of loading delay would
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cost Amazon 1% in sales, and every 0.5s of additional load
delay for Google search results would lead to a 20% drop in
traffic [35]. Second, infrastructures beneath such applications
become complex. It is common that a minor error (e.g., due
to software bugs or configuration mistakes) somewhere in the
pipeline may lead to (unpredictably) repeated accesses to an
item (e.g., read and return an error message endlessly). It is
desired that such unpredicted hotspots shall not crash or block
the entire system. Hence, keeping a KVS performant and
reliable in the existence of hotspots is of great importance.

Many index structures can be used to implement
a KVS, such as skip list [14, 18], balanced/trie trees
(e.g., Masstree [37]), and hashes (e.g., Memcached [44],
MemC3 [15], MICA [33], FASTER [8]), where hashes are
the most popular due to faster lookups. However, we observe
that most approaches are not aware of hotspots, i.e., they in-
distinguishably manage all items via a same policy. In such
case, reading a hot item involves the same number of memory
accesses compared to other items. From a theoretical analysis
(detailed in § 2.2), we find that looking up hotspots in current
hash indexes requires much more effort than from an ideal
strategy. Though there exist mechanisms to reduce memory
accesses, they only render limited efficacy. For example, CPU
cache helps to speedup hotspot accesses, but has only 32MB
of capacity. Rehash operation helps to reduce the length of
each collision chain, but significantly increases the memory
footprint. This situation provides us opportunities to further
optimize hotspot accesses in highly-skewed workloads.

In this paper, we propose HotRing, a hotspot-aware in-
memory KVS that leverages a hash index optimized for mas-
sively concurrent accesses to a small portion of items, i.e.,
hotspots. The initial idea is to make memory accesses required
for looking up an item (negatively) correlated to its hotness,
i.e., the hotter items shall be read faster. To achieve this goal,
two challenges have to be addressed: hotspot shift - the set of
hot items keeps shifting, and we need to detect and adapt to
such shifts in a timely manner; concurrent access - hotspots
are inherently accessed by massively concurrent requests,
and we need to sustain high concurrency for them. For the
hotspot shift issue, we replace the collision chain in the hash
index with an ordered-ring structure, such that bucket headers
can directly re-point to hot items as hotspots shift, without
compromising correctness. In addition, we use a lightweight
mechanism to detect hotspot shift at run-time. For the con-
current access issue, we adopt a lock-free design inspired by
existing lock-free structures [19, 50], and extend it to support
all operations required by HotRing, including hotspot shift
detection, head pointer movement and ordered-ring rehash.

We have conducted extensive experimental evaluations
on benchmarks that simulate real workload, and have com-
pared HotRing with lock-free chain-based hashes and other
baselines. The results show that, in extremely skewed work-
loads, HotRing processes up to 565M read requests per sec-
ond, providing 2.58⇥ improvement over other systems. It

also achieves 2.17⇥ and 1.32⇥ improvement for in-place-
updates and read-copy-updates respectively. This verifies that
HotRing is an effective structure to improve the capability of
hotspot processing on each single node, making it a perfor-
mant and reliable in-memory KVS.

Our main contributions are summarized as follows:

• We identify the hotspot issue in existing in-memory in-
dexes, and demonstrate that hotspot-aware designs have
great potential to improve performance for hot items.

• We propose HotRing, an ordered-ring hash structure,
as the first effort to leverage hotspot-aware designs. It
provides fast access to hot items by moving head pointers
closer to them. It also adopts a lightweight strategy to
detect hotspot shifts at run-time.

• We make HotRing lock-free to support massively con-
current accesses. In particular, we design from scratch
HotRing-specific operations, including hotspot shift de-
tection, head pointer movement and ordered-ring rehash.

• We evaluate our approach on real-workload-based bench-
marks. The results show that HotRing significantly out-
performs other KVSes when the accesses are highly-
skewed.

The rest of this paper is organized as follows. §2 introduces
hash indexes and hotspot issues, and discusses opportunities
and challenges for hotspot-aware hashes. §3 elaborates the
detailed design of HotRing, and §4 evaluates its performance.
Lastly, §5 reviews related work and §6 concludes the paper.

2 Background & Motivation

In this section, we first introduce the hash index and hotspot
issues in existing KVSes. We then show potential benefits
from ideal hotspot-aware hashes theoretically. At last, we
discuss challenges to effectively leverage hotspot-awareness
in practical indexes, as well as our design principles.

2.1 Hash Indexes and Hotspot Issues
Hash index is the most popular in-memory structure used
in KVSes, especially when range queries are not needed by
upper applications. Figure 2 illustrates the typical structure
of a hash index, which contains a global hash table and one
collision chain for each entry in the table. To access a key,
we first calculate its hash value h to locate the corresponding
entry head, and then check items in the collision chain until
that key is found or the end of chain is reached (i.e., key not
exists). A n-bit hash value can be further divided into a hash
table part (e.g., k-bit) and a tag part (e.g., (n� k)-bit). The
tag can be included in each item to avoid comparing long
keys [8, 33]. As can be seen in Figure 2, hash indexes are not
aware of hotspots, i.e., hot items might be distributed evenly
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Figure 2: The conventional hash index structure.

in collision chains, For a hot item placed close to the tail
of the collision chain (e.g., Item3 in the figure), it requires
more memory accesses than other items in front. However, in
highly skewed workloads, slight increase of hot-item access
cost may result in severe decline of overall performance.

There are several ways to reduce hot-item access cost, how-
ever, with only limited effects. First, CPU caches can speedup
accesses to hot data blocks (i.e., in the unit of a 64-byte cache-
line). However, for most commodity servers, the capacity of
CPU cache is around 32 MB, while the entire memory volume
exceeds 256 GB. Only 0.012% of memory can be cached, far
less than observed hotspot ratios in Figure 1. To better utilize
CPU cache, many cache-friendly index structures [8, 33] are
proposed. Second, the hash table can be enlarged (i.e., via
rehash) to reduce lengths of collision chains, so that locating
a hot item needs fewer memory accesses. However, rehash is
no longer advised when the hash table is already huge in size.
For example, for two successive rehash operations, the second
one requires two times the memory space, but only brings in
half of the efficacy (in terms of the chain length reduction).
In summary, all existing approaches only mitigate the hotspot
issue to a small extent.

2.2 Potential Benefits of Hotspot-Awareness
As hotspot issue is getting serious (shown in Figure 1), it
renders a rising opportunity to the design of hotspot-aware
hash indexes. First of all, it is interesting to have a rough
estimation and analysis on how much potential benefits we
can obtain from leveraging hotspot-aware designs.

In conventional chain-based hash indexes, hot items are
randomly placed in the collision chain, so that hot items and
cold items are equivalent in terms of access cost. Suppose
that we have N items (i.e., key-value pairs) stored in a hash
table with B buckets, the average length of each bucket chain
is L = N/B. The number of expected memory accesses to
retrieve an item in the chain Echain is

Echain = 1+
L
2
= 1+

N
2 ·B (1)

where the leading 1 represents the lookup in the hash table.
In an ideal hotspot-aware hash index, memory accesses

required to retrieve an item should be (negatively) correlated
to this hotness, e.g., the hottest item needs the fewest memory
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Figure 3: Expected memory accesses for an index lookup
(total items N = 2.5 ·108).

accesses to retrieve. We model item hotness in a Zipfian
distribution, where the access frequency f of the x-th hottest
item is expressed as:

f (x) =
1
xq

ÂN
n=1

1
nq

(2)

where q is the skewness factor. To simplify the analysis, we
assume that hotspots are evenly distributed in B buckets, i.e.,
each bucket contains exactly one from the top B hottest items,
one from the top B+ 1 to 2B hottest items, and so on. In
this case, if we can sort all items in a chain by their access
frequencies (in descending order), the number of expected
memory accesses to retrieve an item Eideal is

Eideal = 1+ÂL
k=1 F(k) · k

= 1+Â
N
B
k=1[Â

k·B
i=(k�1)·B+1 f (i)] · k

(3)

where F(k) represents the accumulated access frequencies of
the k-th item on each chain.

To estimate the potential benefits from hotspot-aware de-
signs, we calculate the expected number of memory accesses
for both traditional hash and ideal hotspot-aware hash, as
shown in Figure 3. We can observe that, as collision chain
length keeps growing, hotspot-aware hash significantly im-
proves the access efficiency. This result confirms that the con-
sideration of hotspot-awareness in a hash index is a promising
direction for performance improvement.

2.3 Challenges and Design Principles
We have shown that making an index hotspot-aware is bene-
ficial. However, there remains several challenges before we
can leverage this insight in practical designs:

• Hotspot Shift. In real applications, access patterns keep
changing over time. It is prohibitive to order all items ide-
ally by their latest hotness. Hence, we need a lightweight
approach to track the shift of hotness.

• Concurrent Access. Each hotspot is being inherently
accessed by massively concurrent requests. Therefore, it
is critical to support high concurrency for both read/write
operations, in order to sustain satisfactory performance.

For the hotspot shift problem, our design principle is to
avoid re-order items in the chain, but to move head pointers
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Figure 4: The index structure of HotRing.

instead, e.g., point to the hottest item or a globally better po-
sition. To ensure all items in a bucket are always accessible
regardless of head pointer movement, we replace the collision
chain with a ordered-ring structure, called HotRing (§3.1).
Though this design cannot achieve optimal hotspot-awareness
discussed in §2.2, we observe in experiments that it is suffi-
ciently effective and fast. Besides, we apply two lightweight
strategies to detect hotspot shift at run-time (§3.2).

For the concurrent access problem, lock-free structures
are canonical solutions, with which expensive lock and syn-
chronization operations are eliminated. Many works have
demonstrated that lock-free designs can significantly improve
system throughput [2, 5, 21]. Examples include read-copy-
update (RCU) [13] and Hazard Pointers [40], based on atomic
Compare-And-Swap (CAS). In our work, the lock-free design
adopts the existing work [19, 50], which ingeniously solves
the concurrency problem of deletions and insertions (§3.3).
We extend this design to support all basic operations required
by HotRing, including hotspot shift detection, head pointer
movement and rehash (§3.4).

3 Design of HotRing
In this section, we elaborate detailed designs in HotRing
that adopt hotspot-awareness, including the index structure,
hotspot-shift detection strategies, and lock-free operations
(i.e., read/write, insert/delete, head pointer movement, and
rehash).

3.1 Ordered-Ring Hash Index
Figure 4 depicts the index structure of HotRing, which refines
the structure of collision chains in conventional hash indexes.
In our design, the last item in the chain is linked to the first
item, forming a collision ring. In this manner, a head pointer
in the hash table can point to any items in the corresponding
ring, rather than being fixed to the front item in the chain.
The design of collision ring makes it possible for HotRing to
move the head pointer according to the data hotness, and scan
the entire ring from any starting position. Note that if there is
a single item in the ring, its next-item pointer just points to
itself.

However, due to the ring-based design, there exists a serious
problem: if the target item is not found, it may lead to infinite
traverses in the ring. It is important to figure out when we can

!"#$%&'

("%$#)' *")$&)'

+",$#-'

."/$%)'0123343

5")$&,'

6"&$%-'

7"8$/)'09:;0<"=$8-'01233

5")$&,'0>2?3

!"#$%&'("%$#)' *")$&)' +",$#-'5")$&,' 6"&$%-'

5")$&,'0>2?3

."/$%)'$07"8$/)'09:;0<"=$8-'01233

<49;

!"#$%&'

()*%&%&'+)*,)

<49;

!?41"?9@$A4B'

Figure 5: Find operation in HotRing.

safely terminate the lookup process. Note that it is insufficient
to mark the first item pointed by the head pointer as the stop
signal, because it can be modified by concurrent requests (e.g.,
the marked item is deleted). Hence, we propose an ordered-
ring structure to help determine the termination of lookup
processes. Intuitively, we can sort items in the ring by their
keys. In this case, the occurrence of item-not-found can be
determined if we have already encountered two successive
items that are respectively smaller and larger than the target
item. Furthermore, since comparing two long keys might be
costly, we utilize the tag field (introduced in §2.1) first. That
is to say, an item k is ranked by the pair of its tag and key
fields, i.e., orderk = (tagk,keyk).

During a lookup process for item k, suppose that the item i
is being accessed, we can immediately terminate if one of the
following conditions satisfies.
Condition f or Item Found (Hit) :

orderi = orderk (4)

Conditions f or Item Not Found (Miss) :

8
><

>:

orderi�1 < orderk < orderi

or orderk < orderi < orderi�1

or orderi < orderi�1 < orderk

(5)

Figure 5 illustrates all possible situations of looking up an
item in HotRing. We show the dictionary order (tag,key) of
each item in the figure. For example, the item C is behind
item A due to tagA < tagC; and the item D is behind item C
(with the same tag), because of keyC < keyD. The item B is
confirmed to be a miss when compared to the item C, because
of tagA < tagB < tagC; the items G and H are misses when
compared to the item I, because of tagG < tagI < tagF and
tagI < tagF < tagH respectively. Unlike the traditional chain-
based hashes, not all items in the ring have to be accessed
before a miss is concluded. Assume that a ring contains n
items, we only need to compare with (n/2)+1 items in aver-
age for a lookup.
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3.2 Hotspot Shift Identification
In ordered-ring hash index, the lookup process can easily
determine whether there is a hit or miss. The remaining prob-
lem is how to identify hotspots and adjust head pointer when
hotspot shift occurs.

Hotspot items are evenly distributed in all buckets, due
to strongly uniformed distribution of hash values. Here, we
focus on hotspot identification in each bucket independently.
In practice, the number of collision items in each bucket is
relatively small (e.g., 5 to 10 items), so that there is usually
one hotspot in each collision ring (under 10% - 20% hotspot
ratio). We can improve the hotspot access by pointing the
head pointers to the only hotspot, which avoids re-organizing
data and reduces memory overhead. To obtain good perfor-
mance, two metrics have to be concerned, i.e., identification
accuracy and reaction delay. The accuracy of hotspot identi-
fication is measured by the proportion of identified hotspots.
The reaction delay is the time span between the time a new
hotspot occurs and the time we successfully detect it. Con-
sidering both metrics, we first introduce a random movement
strategy that identifies hotspots with extremely low reaction
delay. We then propose a statistical sampling strategy that
provides much higher identification accuracy with relatively
high reaction delay.

First of all, we define several terms used throughout this
section. The first item pointed by the head pointer is called the
hot item, and the rest items are cold items. Their accesses to
them are defined as hot access and cold access, respectively.

3.2.1 Random Movement Strategy

Here we introduce a straightforward random movement strat-
egy, which retains less reaction delay but achieves relatively
low accuracy. The basic idea is that the head pointer is period-
ically moved to a potential hotspot from an instant decision,
without recording any historical metadata. In particular, each
thread is assigned a thread-local parameter to record the num-
ber of requests it executes. After every R requests, the thread
determines whether to perform a head pointer movement op-
eration. If the R-th access is a hot access, the position of head
pointer remains unaffected. Otherwise, the pointer is moved
to the item accessed by this cold access, which becomes the
new hot item. The parameter R affects the reaction delay and
identification accuracy. If a small R is used, the reaction delay
to achieve stable performance will be low. However, this may
also adversely cause frequent and ineffective head pointer
movement. In our scenarios, data accesses are highly skewed
and hence the head pointer movement tends to be infrequent.
The parameter R is empirically set to 5 by default, which
has been demonstrated to provide low reaction delay and
negligible performance impact (as shown in Figure 15(b)).

Note that if the workload skewness is not that obvious,
the random movement strategy will become inefficient. More
importantly, this strategy is unable to handle multiple hotspots
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Figure 6: HotRing Index Format.

in a collision ring. In this case, the head pointer tends to move
frequently, which does not help to speedup hotspot accesses
but adversely affects normal operations.

3.2.2 Statistical Sampling Strategy

In order to achieve higher performance, we design a statis-
tical sampling strategy that aims to provide more accurate
hotspot identification with slightly higher reaction delay. We
first introduce the detailed formats of items and pointer in
HotRing and show how to take advantage of existing for-
mats to maintain statistics without additional space overhead.
Then, we elaborate the sampling strategy to estimate access
frequencies. Finally, we propose a way to derive the optimal
head pointer movement when hotspot shifts, considering that
multiple hotspots may exist in a ring.

Index Format. We plan to record access frequencies for all
items in each collision ring. Since the physical address of mod-
ern machines occupies only 48 bits (but can be updated with
64-bit atomic compare-and-swap operations), we can utilize
the remaining 16 bits to record metadata. In HotRing, each
head pointer consists of three parts (as shown in Figure 6(a)):
an Active bit, a Total Counter (15 bits), and the address (48
bits). The Active bit is a flag used to control statistical sam-
pling for hotspot identification. The Total Counter records
the number of accesses to the corresponding ring. Besides,
the structure of an item is shown in Figure 6(b). Rehash is a
flag to control rehash process (discussed in §3.4). Occupied
is used to ensure concurrency correctness (discussed later in
this section). HotRing uses the remaining 14 bits in the Next
Item Address to record access counts for each item. Based
on statistics maintained at both ring level and item level, the
calculation of access frequencies is straightforward.

Statistical Sampling. How to dynamically identify
hotspots with low overhead is a challenging problem. The
hash table is usually large, e.g., contains 227 ⇠ 230 buckets.
The simultaneous and continuous updates of statistics on mas-
sive rings will cause severe performance degradation. It is crit-
ical to minimize the overhead while retain the accuracy, which
is achieved by periodical sampling in HotRing. In particular,
each thread maintains a thread-local counter for processed
requests. After every R requests are finished, we determine
whether to launch a new round of sampling (by turning on the
Active flag in Figure 6(a)). If the R-th access is a hot access,
it means that the current hotspot identification is still accurate,

USENIX Association 18th USENIX Conference on File and Storage Technologies    243



and sampling needs not be triggered. Otherwise, it means the
hotspot has shifted and we start the sampling. The parameter
R is set to 5, following similar considerations as in §3.2.1.
When the Active bit is set, the subsequent accesses to the ring
are to be recorded in both Total Counter and corresponding
items’ counters. This sampling process requires additional
CAS operations, and results in temporary access deficiency.
To shorten this period, we set the number of samples the same
as the number of items in each ring, which we believe already
provides enough information to derive new hotspots.

Hotspot Adjustment. Based on collected statistics, we are
able to determine new hot item and move the head pointer
according to the access frequencies of items. After sampling
process is done, the last accessing thread is responsible for
frequency calculation and hotspot adjustment. First, the thread
atomically resets the Active bit using a CAS primitive, which
ensures that only one thread will perform subsequent tasks.
Then, this thread calculates the access frequency of each item
in the ring. The access frequency of item k is nk/N, where
N is Total Counter of the ring and nk is the counter of the
k-th item. Next, we calculate the income of the head pointer
to each item. When the item t (0 < t < k) is pointed by the
head pointer, the corresponding income Wt is calculated by
the following formula:

Wt = Âk
i=1

ni

N
⇤ [(i� t)mod k] (6)

The income Wt measures the average number of memory
accesses for the ring when item t is selected to be pointed
by the head pointer. Therefore, selecting the item with the
min(Wt) as the hot item ensures that hotspots can be accessed
faster. If the calculated position is different from the previous
head, the head pointer should be moved using a CAS primitive.
Note that the strategy not only deals with single hotspot, but
also works for multiple hotspots. It helps to figure out the
optimal position (e.g., may not necessarily be the hottest item)
that avoids frequent movement between hotspots. After the
hotspot adjustment is done, the responsible thread resets all
counters to prepare for the next round of sampling in future.

Write-Intensive Hotspot with RCU. For update opera-
tions, HotRing provides an in-place update method for those
values less than 8 bytes (i.e., modern machines support atomic
operations for up to 8 bytes). In this case, reading and updating
an item is treated the same in terms of hotness. However, the
situation is completely different for larger values, as shown in
Figure 7. The read-copy-update (RCU) protocol has to be ap-
plied for high performance. In this case, the preceding item’s
pointer needs to be modified to point to the new item during
an update. If the write-intensive hotspot in the head is modi-
fied, the entire collision ring has to be traversed to reach its
preceding item. That is to say, a write-intensive hot item also
makes its preceding item hot. Taking this insight, we modify
the statistical sampling strategy slightly. For a RCU update,
the counter of its preceding item is incremented instead. This
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Figure 7: Updating hot item A with RCU makes item F hot.

helps to point the head to the precedent of a write-intensive
hotspot, making the entire RCU update operation fast.

3.2.3 Hotspot Inheritance
When performing RCU update or deletion on the head item,
we need to move the head pointer to another item. However,
if the head pointer is moved randomly, it may point to a cold
item with a high probability, which will cause the hotspot iden-
tification strategies to be triggered frequently. Furthermore,
the performance of the system will be seriously degrades due
to frequent triggering of identification strategies.

First of all, if the collision ring has only one item (i.e., the
Next Item Address has the same position as the head pointer),
the head pointer is modified by CAS to complete the update
or deletion. If there are multiple items, HotRing uses existing
hotspot information (i.e., head pointer position) to inherit the
hotness. We design different head pointer movement strate-
gies for both RCU update and delete operations to ensure the
validity of hotspot adjustment: For the RCU update of the
head item, the most recently updated item has a high prob-
ability of being accessed immediately due to the temporal
locality of accesses. Hence, the head pointer is moved to the
new version of the head item. For the deletion of the head
item, the head pointer is simply moved to the next item, which
is a straightforward and effective solution.

3.3 Concurrent Operations
The head pointer movement makes the lock-free design more
complicated. This is mainly reflected in the following aspects:
On one hand, the head pointer movement may be concurrent
with other threads. Hence, we need to consider the concur-
rency of head pointer movement and other modification oper-
ations, preventing the pointer from pointing to invalid items.
On the other hand, when we delete or update an item, we
need to check if the head pointer is pointing to the item. If so,
we need to move the head pointer correctly and smartly. In
this section, we mainly introduce the control method of con-
current access to solve the concurrency problem in HotRing.
In order to achieve high access concurrency and ensure high
throughput, we have implemented a complete set of lock-free
designs, which has been rigorously introduced by previous
work [19, 50]. The atomic CAS operation is used to ensure
that two threads will not modify the same Next Item Address
simultaneously. If multiple threads are trying to update the
same Next Item Address, only one thread succeeds and others
fail. Failed threads have to re-execute their operations.
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Figure 8: Different concurrency issues that involve RCU operations.

Read. HotRing scans the collision ring to search for an item
with the target key as described in Sec. 3.1. No additional op-
erations are required to ensure correctness of read operations.
Therefore, the read operations are completely lock-free.

Insertion. The insertion create a new item (e.g., item C
in Figure 8(a)), and modify the preceding item’s Next Item
Address . Two concurrent insertions may compete for the same
Next Item Address. The CAS ensures that only one succeeds
and the other has to retry.

Update. We design two update strategies for different value
sizes. The in-place-update operation (for 8-byte values) does
not affect other operations, which is guaranteed through CAS.
However, the RCU operation (for longer values) needs to cre-
ate a new item, which challenges the concurrency of other
operations. Taking the RCU update & Insert as an example in
Figure 8(a): one thread is trying to insert the item C by modi-
fying the Next Item Address of the item B, and another thread
is trying to update the B with B0 concurrently. Operations of
both threads will succeed since they modify different pointers
with CAS. However, since item B is not visible to the ring,
even though the insert operation for item C has succeeded,
it cannot be accessed subsequently and lead to incorrectness.
The same problem exists in Figure 8(b). In order to solve
the problem, HotRing uses the Occupied bit (as shown in
Figure 6(b)) to ensure correctness. We perform the update
operation in two steps. For example, in the case of Update
& Insert: Firstly, the Next Item Address of item B that to be
updated is atomically set as occupied. Once the Occupied bit
is set, the insertion of Item C will fail and have to retry. Sec-
ondly, the Next Item Address of item A is atomically changed
to item B0 and the Occupied bit for B0 is reset.

Deletion. The deletion is achieved by modifying the
pointer to the deleted item to its next item. Therefore, it
must be ensured that Next Item Address of the deleted item
is not changed during the operation. Similarly, we utilize the
Occupied bit to ensure correctness of concurrent operations.
For the case of RCU update & Delete as shown in Figure 8(c),
the update for item D is processed by updating the forward
item B’s pointer, while item B is currently being deleted. The
updated item D0 cannot be traversed correctly, resulting in
data miss. If the Occupied bit of item B is set for deletion,
the update for item D will fail to modify item B’s Next Item
Address and have to retry. Once the deletion of item B is com-
pleted, the update operation can be successfully executed.

Head Pointer Movement. The movement of the head
pointer is a special action in HotRing. In order to ensure
the correctness of the head pointer movement with other oper-

ations (especially for update and deletion), we need additional
management. There are two major problems that need to be
addressed: (1) how to handle the concurrency of normal opera-
tions and the head pointer movement caused by identification
strategies? (2) how to handle the head pointer movement,
caused by updating or deleting of the head item?

For the head pointer movement caused by the identification
strategies, we also use the Occupied bit to ensure correct-
ness. When moving the head pointer to a new item, we set its
Occupied bit to ensure that the item will not be updated or
deleted during the movement. For head item update, HotRing
moves the head pointer to new version of this item. Before
moving the head pointer, we need to ensure that the new ver-
sion item will not be changed (i.e., updated or deleted) by
other threads. Therefore, when updating the item, HotRing
sets the Occupied bit of the new version item first, until the
movement is completed. For head item deletion, HotRing
needs to occupy not only the item that is ready to be deleted,
but also its next item. Because if the next item is not occupied
during the deletion operation, the next node may have been
changed, which makes the head pointer points to an invalid
item.

3.4 Lock-free Rehash
As new data arrives from insertions, the number of collision
items in a ring continues to increase, resulting in traversing
more items per access. In this case, the performance of KVSes
will be seriously degraded. We propose in HotRing a lock-free
rehash strategy that allows for flexible rehash as data volumes
increase. The conventional rehash strategy is triggered by the
load factor (i.e., average length of chain) of the hash table.
However, this fails to consider the effect of hotspots, and
hence is unsuitable for HotRing. In order to make the index
adapt to the growth of hotspot items, HotRing uses the access
overhead (i.e., average number of memory accesses to retrieve
an item) to trigger the rehash. Our lock-free rehash strategy
includes three steps:

Initialization. First of all, HotRing creates a backend re-
hash thread. The thread initializes the new hash table that
is twice the size of the old one, by sharing the highest bit
of the tag. As shown in Figure 9(a), There is an old head
pointer in an Old Table’s bucket, and there are two new head
pointers in the New Table’ correspondingly. The number of
bits required for hash is expanded from k to k+1. HotRing
divides data based on the tag range. Assuming that the hash
value has n bits, and the tag range is [0,T ) (T = 2(n�k)), two
new head pointers manage items from [0,T/2) and [T/2,T )
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Figure 9: The lock-free rehash strategy (The dotted line between (c) and (d) represents a transition period before deletion).

respectively. Meanwhile, the rehash thread creates a rehash
node consisting of two child rehash items, which correspond
to two new head pointers respectively. Each rehash item has
the same format as data item, except that no valid KV pair
is stored. HotRing identifies rehash items by the Rehash bit
in each item. In the initialization phase, the tags of two child
rehash items are set differently. As shown in Figure 9(b), the
corresponding rehash items set the tags to 0 and T/2, respec-
tively.

Split. In the split phase, The rehash thread splits the ring
by inserting two rehash items into it. As shown in Figure 9(c),
rehash items are inserted before item B and item E respec-
tively, becoming the boundaries of the tag range to divide
the ring. When two insertion operations complete, the New
Table is made active. After that, subsequent accesses (from
New Table) need to select the corresponding head pointer
by comparing the tags, while previous accesses (from Old
Table) proceed by identifying the rehash node. All data can
be accessed correctly without effecting concurrent reads and
writes. Until now, accesses to items are logically divided into
two paths. When we look up a target item, at most half of the
ring needs to be scanned. For example, the traversal path for
accessing item F is Head1 ! E ! F.

Deletion. In this phase, the rehash thread delete the rehash
nodes (as shown in Figure 9(d)). Before that, the rehash thread
have to maintain a transition period to ensure that all accesses
initiated from the Old Table have finished, such as the grace
period for read-copy-update synchronization primitive [13].
When all accesses end, the rehash thread can safely delete
the Old Table and then rehash nodes. Note that the transition
period only blocks the rehash thread, but not access threads.

4 Evaluation
In this section, we evaluate the performance of HotRing us-
ing real-workload-based benchmarks. In particular, we com-
pare the throughput and scalability of HotRing with lock-free
chain-based hash and other baseline systems. We also provide
detailed evaluations to demonstrate the effectiveness of major
designs adopted by HotRing.

4.1 Experimental Setup
Environment. We run experiments on a machine consisting
of two Intel(R) Xeon(R) CPU E5-2682 v4 with 2.50GHz

Table 1: Experimental environment.

CPU 2.50GHz Intel Xeon(R) E5-2682 v4 * 2

L2 cache 256KB (512 * 8 way)

L3 cache 40MB (32768 * 20 way)

Cache Alignment 64B

Main Memory 32GB 2133MHz DDR4 DRAM * 8

Table 2: Hotspot access ratio with different hotspot definition
(i.e., top a of hottest items) and zipfian parameter (q).

q
a 1% 10% 20% 30% 40% 50%

0.5 9.9% 31.6% 44.7% 57.7% 63.2% 70.7%
0.7 24.9% 50.0% 61.6% 71.9% 75.9% 81.2%
0.9 57.3% 76.2% 82.2% 86.9% 89.9% 92.2%
0.99 75.1% 87.4% 91.2% 93.4% 94.9% 96.2%
1.11 91.7% 96.4% 97.6% 98.2% 98.7% 99.0%
1.22 97.8% 99.2% 99.5% 99.6% 99.7% 99.8%

processors. They have 2 sockets, each with 16 cores (64 hy-
perthreads in total). The machine has 256GB RAM capacity,
and runs CentOS 7.4 OS with Linux 3.10 kernel. To achieve
better performance, we bind each thread to the corresponding
core. Table 1 summarizes the detailed hardware configuration
of the machine.

Workloads. We conduct experiments using the YCSB core
workloads [10], except workload E that involves scan opera-
tions. For each item (i.e., key-value pair), we set the key size
to be 8 bytes, and the value size to be 8 and 100 bytes for
in-place-update and read-copy-update (RCU) respectively. In
each test, the number of loaded keys is fixed to 250 millions,
and the key-bucket ratio (i.e., the number of keys divided by
the number of buckets) varies to control average length of
collision chains. In addition, we tune the zipfian distribution
parameter q in YCSB to generate workloads that simulate
daily and extreme hotspot scenarios. Table 2 shows the ra-
tio of hotspot accesses with different hotspot definitions and
skewness. Recall that Figure 1 shows the workload distribu-
tions in our production environments. We observe that q falls
in [0.9, 0.99] for daily scenarios, and in [1, 1.22] for extreme
cases. Hence, we choose 0.99 and 1.22 for q as representa-
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Figure 10: Throughput of HotRing and other systems.

tives.
Baselines. In order to better demonstrate the advantage of

hotspot-aware designs in HotRing, we implement a lock-free
chain-based hash index as a baseline (Chaining Hash). It is
modified from the hash structure in Memcached, and uses the
CAS primitive to insert new items to the head of collision
chains. We also compare to other KVS systems: the C++
version of FASTER [7], in which we ensure all data resides in
memory; Masstree [30], a high-performance in-memory range
index that is a representative KVS with non-hash indexes. In
addition, the lock-based Memcached [44] is also included as
a reference.

Note that the memory footprint of an index structure greatly
affects system performance. In order to have fair comparisons,
we strictly make the memory consumption of indexes the
same for all approaches. In each test, if not otherwise specified,
we use following default settings: 64 threads, 8-byte value
payloads, workload B of YCSB, q set to 1.22, and key-bucket
ratio set to 8 (for HotRing).

4.2 Comparison to Existing Systems
We evaluate HotRing against four baselines introduced above,
i.e., Chaining Hash, FASTER, Masstree and Memcached,
which are all high-performance KVS implementations.

Overall performance. Figure 10 shows the overall system
throughput of all approaches on different YCSB workloads.
We run two HotRing variants with distinct hotspot identifica-
tion strategies: HotRing-r adopts random movement strategy,
and HotRing-s adopts sampling statistics strategy. Compared
to other systems, HotRing achieves better performance in
throughput under all workloads, especially for workloads B
and C. HotRing-s outperforms other approaches by 2.10⇥ -
7.75⇥. It achieves 12.90M ops/sec with a single thread and
565.36M ops/sec with 64 threads, which implies promising
scalability. Besides, HotRing also keeps advantages for in-
sertion operations. For workloads D and F of YCSB (with
massive insertions), HotRing-s outperforms other approaches
by 1.81⇥ - 6.46⇥. This is because the ordered-ring structure
speeds up item location by early termination, while the tag
field reduces the cost of sorting. Though the hotspot identifi-
cation of HotRing-r is less accurate than HotRing-s (about 7%
worse), its overall performance is still significantly improved
compared to other systems.

Collision chaining length. Figure 11(a) shows the
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Figure 11: Performance impact of collision chain length and
access skewness.

throughput of different approaches when we vary the length
of collision chains. We tune the key-bucket ratio from 2 to 16,
which means that the conflicts in the hash table become more
intense. We can see that Chaining Hash and FASTER have
good performance when key-bucket ratio is 2. This is because
when the collision chain is short, the memory access over-
head for hotspot items is relatively minor, making the effect of
cache more significant (especially for FASTER). However, as
the length of the collision chain increases, frequent accesses
to hotspot items drop the performance of Chaining Hash and
FASTER seriously. In contrast, HotRing retains satisfactory
performance even for long chains. In particular, when the
key-bucket ratio is 2, its read throughput is 1.93⇥ and 1.31⇥
compared to that of Chaining Hash and FASTER. When the
ratio becomes 16, the performance gap increases to 4.02⇥
and 3.91⇥ respectively. This is because HotRing puts hot
items close to the head, so that less memory accesses are
required. This design is more cache-friendly, where only head
pointers and hotspot items need be cached, rendering higher
performance. Therefore, we conclude that HotRing has better
performance and scalability due to its hotspot-aware designs.

Access skewness. Figure 11(b) shows the throughput of
different approaches when the zipfian parameter q varies. We
tune q from 0.5 to 1.22, which means that the hotspot issue in
workloads become more severe. As can be seen, the perfor-
mance improvement in both Chaining Hash and FASTER is
not obvious as q increases, since they lack hot-aware consider-
ations. In contrast, the performance of HotRing significantly
improves as q increases, especially when q is greater than
0.8. Even when q is in [0.5,0.8] range, where hotspot issue
is minor, HotRing-s still achieves better performance than
others. This is because HotRing-s is able to handle the case of
multiple hotspots in the collision ring. When there are multi-
ple items with similar access frequencies, HotRing-s can find
the best head pointer position to achieve optimal performance
(§3.2.2). However in this case, HotRing-r fails to choose the
optimal head pointer position, leading to frequently-triggered
pointer movements.

RCU operation. In order to show the performance of RCU
more prominently, we use YCSB to generate write-intensive
workloads with 100-byte value payloads (both 50% write and
write only). Figure 12 shows the throughput of different ap-
proaches when RCU operations are involved. In this test, we
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Figure 12: Performance of RCU operations.

HotRing-r HotRing-s   Chaining Hash
0

100

200

300

400

O
ve

rh
e
a
d
 (

n
s)

HeadPointer HeadItem
Non-HeadItems HashValue
Benchmark Other

(a) q = 1.22

HotRing-r HotRing-s    Chaining Hash
0

300

600

900

1200

O
ve

rh
e
a
d
 (

n
s)

HeadPointer HeadItem
Non-HeadItems HashValue
Benchmark Other

(b) q = 0.99

Figure 13: Break-down cost.

demonstrate the need for special processing of RCU operation
in HotRing (§3.2.2). In particular, HotRing-s indicates that
the sampling statistics strategy will increase the forward item
counter instead when an item is updated by RCU. HotRing-
s(w/o) represents the strategy without distinguishing RCU
operations. Firstly, HotRing-s(w/o) has poor performance
in all cases, even worse than Chaining Hash and FASTER.
This is because HotRing-s(w/o) needs to traverse the entire
collision ring for completing an RCU operation on the hot
item. However in HotRing-s, the optimized hotspot counting
strategy significantly improves RCU performance. Note that
when key-bucket ratio equals 2, the performance of HotRing-
s is slightly slower than that of FASTER. This is because
the hotspot item requires RCU operation at the second slot
pointed by the header point, where one additional memory
access is needed. Furthermore, it involves one extra CAS op-
eration (on Occupied bit) to complete the RCU operation. As
the number of collision items keeps increasing, above issues
will be greatly mitigated. For example, when key-bucket ratio
reaches 8, the throughput of HotRing-s is 1.32⇥ better than
Chaining Hash and FASTER.

4.3 Investigation of Detailed Designs
In this section, we compare HotRing with the conventional
chaining hash, in order to investigate the advantages of
hotspot-aware designs.

Break-down cost. We collects the break-down cost of
different functions involved during workload execution. Fig-
ure 13 shows the average break-down cost for a single read
access in HotRing and Chaining Hash (where key-bucket
ratio is 8). In this figure, HeadPointer is the cost to locate
the head pointer of the corresponding collision ring or chain;
HeadItem is the cost to access the head item; Non-HeadItem
is the cost to access other items; HashValue is the cost due
to the hash calculation; Benchmark is the cost to read and
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Figure 14: Reaction delay.
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Figure 15: Performance impact of read miss and R.

interpret the workload command; and Other is the cost from
the system kernel. As can be observed, the cost in Chaining
Hash is mainly dominated by Non-HeadItem accesses, which
is about 193ns/660ns when q = 1.22/0.99. This indicates
that hotspot items in chain-based hash tend to be evenly dis-
tributed in the chain, increasing the access cost significantly.
In contrast, HotRing-r and HotRing-s significantly reduce
the Non-HeadItem cost. Especially for HotRing-s, the Non-
HeadItem cost is about 10ns/136ns when q = 1.22/0.99. Since
the proportion of Non-HeadItem is negatively related to the
hotspot identification accuracy, this implies that HotRing-s
has higher hotspot identification accuracy where more hotspot
items are detected and placed at the head.

Reaction delay. Reaction delay is one of important metrics
for measuring hotspot identification strategies. Figure 14
shows the throughput trends over time after hotspots have
shifted (workload C). We can observe that HotRing-r has
faster reaction than HotRing-s, which only takes less than 2
seconds to reach stable state. However, its peak throughput
is much lower due to its inaccurate hotspot detection. The
throughput of Chaining hash is not affected since it lacks
hotspot-awareness.

Read miss. We evaluate the throughput of both approaches
for handling read misses as shown in Figure 15(a). As can be
seen, the performance gap between HotRing and Chaining
Hash expands with the increase of chain length. In particular,
HotRing achieves 1.17⇥ improvement when the key-bucket
ratio is 2, and 1.80⇥ when the ratio reaches 16. This is
because that HotRing only needs to compare with half of
items in average for a lookup (as shown in Figure 5), while
Chaining Hash accesses all items in the chain.

Parameter R. Recall that the choice of parameter R affects
the frequency of head pointer movement (§3.2). When R is
small, the hotspot identification has less reaction delay, but re-
sults in more frequent (and invalid) head pointer movements.
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Figure 16: Tail latency.

Figure 15(b) shows the impact of R on overall throughput in
different scenarios. It can be observed that the performance
get slightly worse when R is either too small (due to overheads
from hotspot identification) or too large (due to delayed han-
dles of hotspot shifts). In practice, we set R to 5 for balanced
consideration and better throughput.

Tail latency. HotRing-s requires statistical sampling and
the last thread during a sampling process needs to calcu-
late access frequencies to find the best position for the head
pointer. Hence, there might exist long-tail accesses due to
such additional computations. Figure 16 shows the latency
distribution of 100 thousands accesses. When q = 1.22, the 99-
percentile response time is about 2µs, but there are long-tail
accesses requiring 8.8µs. It is similar when q = 0.99, where
99-percentile response time is 3µs and long-tail access time
is 9.6µs. Note that the long-tail access is partially related to
the simplification of our implementation choices, and can
be further mitigated by moving additional computations to
dedicated backend threads.

Lock-free rehash. Rehash is an important mechanism to
ensure stable performance of growing hash tables. We con-
struct following scenario to evaluate our lock-free rehash
operation: in the initial state, the number of loaded keys is
250 millions and the key-bucket ratio is 8; then, we use a
YCSB workload with 50% read (q =1.22) and 50% insertion
to simulate the continuous growth of hash tables. Figure 17
shows HotRing’ performance over time when rehashes are
conducted. In particular, I,T, and S represent the initialization,
transition, and splitting phases of rehash, respectively. It can
be observed that two consecutive rehash operations help to
retain the throughput as data volume continuously grows. The
short-term drops during rehash are attributed to the temporary
lack of hotspot awareness when the new hash table starts to
work.

5 Related Work
Many existing works focus on the design of index structures
for key-value stores. Memcached [17] is a widely-used dis-
tributed key-value store, which is used by a large number
of companies. However, its multi-threading performance is
unsatisfactory, due to frequent competition of locks. Based on
Memcached, there is plenty of work with outstanding contri-
butions in the literature. By implementing lock-free designs
and cache-friendly optimizations, they achieve higher con-
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Figure 17: Rehash performance.

currency and throughput [8, 15, 17, 24, 33, 43]. In particular,
FASTER [8] is one of the state-of-the-art implementations
with lock-free designs. For hotspot awareness, Splay trees [47]
is an inspiring work that adapts its structure to optimize for re-
cently accessed items. However, its lock-based design makes
it unsuitable for highly concurrent scenarios.

Besides, there are many works on the better integration
of system designs with emerging hardwares, such as FP-
GAs [6,34], RDMA-enabled NICs [28,41,45], GPU [22], low-
overhead user-level implementations for TCP [25], and In-
finiBand with hardware-level reliable datagrams [41]. Mean-
while, in order to provide fast memory allocation (for insertion
and deletion), many protocols also leverage lock-free memory
management methods [38, 39], which can be used to prevent
the ABA problem [48]. Note that these optimization for hard-
ware and memory management are orthogonal to the design of
index structures, and we can also adopt these ideas to further
improve HotRing’s performance.

6 Conclusion and Future Work
In real-world deployment of KVSes, the hotspot issue is com-
mon and becomes more serious recently. For example, in
order to provide a highly-available service, Alibaba’s NoSQL
product Tair [1] has to allocate more machines than neces-
sary to handle sudden occurrences of hotspots. Hence, we
explore opportunities and challenges for designing hotspot-
aware in-memory KVS. Based on discovered insights, we
propose a hash index called HotRing that is optimized for
massively concurrent accesses to a small portion of items.
It dynamically adapts to the shift of hotspots by pointing
bucket heads to frequently accessed items. In most cases, hot
items can be retrieved within two memory accesses. HotRing
comprehensively adopts lock-free structures in its design, for
both common hash operations and HotRing-specific opera-
tions. The extensive experiments show that our approach is
able to achieve 2.58⇥ throughput improvement compared to
other in-memory KVSes on highly skewed workloads. Now
HotRing has become a subcomponent of Tair, extensively
used in Alibaba Group.

At present, HotRing-r is designed for single hotspot on
each chain, while HotRing-s also handles multiple hotspots.
In most cases, we can mitigate the multiple hotspot issue by
reducing chaining length via rehash. For some extreme cases
where it fails to handle, we leave the exploration of a suitable
solution as future work.
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