Flexible Aggregate Similarity Search

Yang Li¹, Feifei Li², Ke Yi³, Bin Yao², Min Wang⁴

¹Department of Computer Science and Engineering Shanghai Jiao Tong University, China

³Department of Computer Science Hong Kong University of Science and Technology

²Department of Computer Science Florida State University, USA

⁴HP Labs China

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

★ E ► < E ►</p>

• Similarity search (aka nearest neighbor search, NN search) is a fundamental tool in retrieving the most relevant data w.r.t. user input in working with massive data: extensively studied.

(B) < B)</p>

• However, often time, users may be interested at retrieving objects that are *similar* to a group Q of query objects, instead of just one.

(B)

- However, often time, users may be interested at retrieving objects that are *similar* to a group Q of query objects, instead of just one.
- Given an aggregation σ , a similarity/distance function d, a dataset P, and any query group Q:

$$r_p = \sigma\{d(p,Q)\} = \sigma\{d(p,q_1),\ldots,d(p,q_{|Q|})\}, \text{ for any } p$$

aggregate similarity distance of p

(B) < B)</p>

- However, often time, users may be interested at retrieving objects that are *similar* to a group Q of query objects, instead of just one.
- Given an aggregation σ , a similarity/distance function d, a dataset P, and any query group Q:

$$r_p = \sigma\{d(p,Q)\} = \sigma\{d(p,q_1),\ldots,d(p,q_{|Q|})\}, \text{ for any } p$$

aggregate similarity distance of pFind $p^* \in P$ having the smallest r_p value $(r_{p^*} = r^*)$.

(B)

• However, often time, users may be interested at retrieving objects that are *similar* to a group Q of query objects, instead of just one.

- \mathbf{x} : group Q of query points
- \bullet : dataset P

Figure: Aggregate similarity search in Euclidean space: max and sum.

(*) *) *) *)

-

• However, often time, users may be interested at retrieving objects that are *similar* to a group Q of query objects, instead of just one.

agg= max,
$$p^* = p_3$$
, $r^* = d(p_3, q_1)$
 p_1
 p_2
 q_1
 x
 x
 p_2
 p_3
 x
 p_4
 p_5

- \mathbf{x} : group Q of query points
- \bullet : dataset P

Figure: Aggregate similarity search in Euclidean space: max and sum.

A =
 A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• However, often time, users may be interested at retrieving objects that are *similar* to a group Q of query objects, instead of just one.

agg=sum,
$$p^* = p_4$$
, $r^* = \sum_{q \in Q} d(p_4, q)$
 $p_1 \qquad p_2 \qquad x_{----} \qquad x_{----} \qquad p_5$

- \mathbf{x} : group Q of query points
- \bullet : dataset P

Figure: Aggregate similarity search in Euclidean space: max and sum.

A =
 A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- However, often time, users may be interested at retrieving objects that are *similar* to a group Q of query objects, instead of just one.
- Aggregate similarity search (ANN) may need to deal with data in high dimensions.

-

2 Basic Aggregate Similarity Search

(E)

Existing methods for ANN

- R-tree method: branch and bound principle [PSTM04, PTMH05].
- Some other heuristics to further improve the pruning.
- Can be extended to other metric space using M-tree [RBTFT08].
- Limitations:
 - No bound on the query cost.
 - Query cost increases quickly as dataset becomes larger and/or dimension goes higher.
- [PSTM04]: Group Nearest Neighbor Queries. In ICDE, 2004.
- [PTMH05]: Aggregate nearest neighbor queries in spatial databases. In TODS, 2005.
- [RBTFT08]: A Novel Optimization Approach to Efficiently Process Aggregate Similarity Queries in Metric Access Methods. In CIKM, 2008.

• We proposed AMAX1 (TKDE'10):

- \mathbf{x} : group Q of query points
- : dataset P

∃ 990

★ 문 ▶ . ★ 문 ▶ ...

- We proposed AMAX1 (TKDE'10):
 - $\mathcal{B}(c, r_c)$ is a ball centered at c with radius r_c ;
 - MEB(Q) is the minimum enclosing ball of a set of points Q;

(B)

- We proposed AMAX1 (TKDE'10):
 - $\mathcal{B}(c, r_c)$ is a ball centered at c with radius r_c ;
 - MEB(Q) is the minimum enclosing ball of a set of points Q;
 - nn(c, P) is the nearest neighbor of a point c from the dataset P.

• An algorithm returns (p, r_p) for ANN(Q, P) is an *c*-approximation iff $r^* \leq r_p \leq c \cdot r_p$.

母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → ���

• An algorithm returns (p, r_p) for ANN(Q, P) is an *c*-approximation iff $r^* \leq r_p \leq c \cdot r_p$.

Theorem

AMAX1 is a $\sqrt{2}$ -approximation in any dimension d given (exact) nn(c, P) and MEB(Q).

□ > < E > < E > E - のへで

• An algorithm returns (p, r_p) for ANN(Q, P) is an *c*-approximation iff $r^* \leq r_p \leq c \cdot r_p$.

Theorem

AMAX1 is a $\sqrt{2}$ -approximation in any dimension d given (exact) nn(c, P) and MEB(Q).

Theorem

In any dimension d, given an α -approximate MEB algorithm and an β -approximate NN algorithm, AMAX1 is an $\sqrt{\alpha^2 + \beta^2}$ -approximation.

向下 イヨト イヨト 三日

- An algorithm returns (p, r_p) for ANN(Q, P) is an *c*-approximation iff $r^* \leq r_p \leq c \cdot r_p$.
- In low dimensions, BBD-tree [AMNSW98] gives (1 + ε)-approximate NN search; in high dimensions, LSB-tree [TYSK10] gives (2 + ε)-approximate NN search with high probability; and (1 + ε) – MEB algorithm exists even in high dimensions [KMY03].

Theorem

AMAX1 is a $\sqrt{2}$ -approximation in any dimension d given (exact) nn(c, P) and MEB(Q).

Theorem

In any dimension d, given an α -approximate MEB algorithm and an β -approximate NN algorithm, AMAX1 is an $\sqrt{\alpha^2 + \beta^2}$ -approximation.

- [AMNSW98]: An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions. In JACM, 1998.
- [TYSK10]: Efficient and Accurate Nearest Neighbor and Closest Pair Search in High Dimensional Space. In TODS, 2010.

[KMY03]: Approximate Minimum Enclosing Balls in High Dimensions Using Core-Sets. In JEA, 2003

Our approach for $\sigma = sum$: ASUM1

• We proposed ASUM1 (TKDE'10):

- \mathbf{x} : group Q of query points
- \bullet : dataset P

∃ 990

< 注 → < 注 → ...

Our approach for $\sigma = \text{sum}$: ASUM1

- We proposed ASUM1 (TKDE'10):
 - let g_m be the geometric median of Q;

1. g_m is the geometric median of Q

- \mathbf{x} : group Q of query points
- : dataset P

Our approach for $\sigma = sum$: ASUM1

- We proposed ASUM1 (TKDE'10):
 - let g_m be the geometric median of Q;
 - return $nn(g_m, P)$.

Our approach for $\sigma = sum$: ASUM1

• Using the Weiszfeld algorithm (iteratively re-weighted least squares), g_m can be computed to an arbitrary precision efficiently.

Theorem

ASUM1 is a 3-approximation in any dimension d given (exact) geometric median and nn(c, P).

Our approach for $\sigma = \text{sum}$: ASUM1

• Using the Weiszfeld algorithm (iteratively re-weighted least squares), g_m can be computed to an arbitrary precision efficiently.

Theorem

ASUM1 is a 3-approximation in any dimension d given (exact) geometric median and nn(c, P).

Theorem

In any dimension d, given an β -approximate NN algorithm, Asum1 is an 3β -approximation.

→ ∃ → → ∃ →

Our approach for $\sigma = \text{sum}$: ASUM1

- Using the Weiszfeld algorithm (iteratively re-weighted least squares), g_m can be computed to an arbitrary precision efficiently.
- Both AMAX1 and ASUM1 can be easily extended to work for *k*ANN search while the bounds are maintained.

Theorem

ASUM1 is a 3-approximation in any dimension d given (exact) geometric median and nn(c, P).

Theorem

In any dimension d, given an β -approximate NN algorithm, Asum1 is an 3β -approximation.

(< Ξ) < Ξ)</p>

3 Flexible Aggregate Similarity Search

(E)

Definition of flexible aggregate similarity search

Flexible aggregate similarity search (FANN): given support φ ∈ (0,1] and find an object in P that has the best aggregate similarity to (any) φ|Q| query objects (our work in SIGMOD'11).

A B > A B >

Definition of flexible aggregate similarity search

Flexible aggregate similarity search (FANN): given support φ ∈ (0,1] and find an object in P that has the best aggregate similarity to (any) φ|Q| query objects (our work in SIGMOD'11).

$$\sigma = \max, \phi = 40\%, p^* = p_4, r^* = d(p_4, q_3)$$

$$P_1 \qquad P_2 \qquad P_3 \qquad P_6 \qquad P_6 \\ P_2 \qquad P_4 \qquad P_6 \\ P_5 \qquad P_6 \qquad P_5 \qquad P_6 \qquad$$

Figure: FANN in Euclidean space: max, $\phi = 0.4$.

Exact methods for FANN

• For
$$\forall p \in P$$
, $r_p = \sigma(p, Q_{\phi}^p)$, where Q_{ϕ}^p is p's $\phi|Q|$ NNs in Q.

□ > < E > < E > E - のへで

Exact methods for FANN

• For $\forall p \in P$, $r_p = \sigma(p, Q_{\phi}^p)$, where Q_{ϕ}^p is p's $\phi|Q|$ NNs in Q.

- \mathbf{x} : group Q of query points
- \bullet : dataset P

$$\phi = 0.4$$
, $|Q| = 5$, $\phi |Q| = 2$

■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → � � �

Exact methods for FANN

- For $\forall p \in P$, $r_p = \sigma(p, Q_{\phi}^p)$, where Q_{ϕ}^p is p's $\phi|Q|$ NNs in Q.
- R-tree method, with the branch and bound principle, can still be applied based on this observation.
- In high dimensions, take the brute-force-search (BFS) approach:
 - For each $p \in P$, find out Q_{ϕ}^{p} and calculate r_{p} .

Approximate methods for $\sigma = \text{sum}$: ASUM

 \mathbf{x} : group Q of query points

• : dataset P $\phi = 0.4, |Q| = 5, \phi |Q| = 2, \sigma = \text{sum}$

▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ● � � � �

Approximate methods for $\sigma = sum$: ASUM

 \mathbf{x} : group Q of query points

• : dataset P $\phi = 0.4, |Q| = 5, \phi |Q| = 2, \sigma = \text{sum}$

▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ▶ � � � �

Approximate methods for $\sigma = sum$: ASUM

 \mathbf{x} : group Q of query points

I dataset P

 $\phi =$ 0.4, |Q| = 5, $\phi |Q| =$ 2, $\sigma =$ sum

▶ ★ 差 ▶ ★ 差 ▶ . 差 . • • ○ < ○</p>

Approximate methods for $\sigma = sum$: ASUM

 $Q_{\phi}^{p}: \operatorname{top} \phi |Q| \text{ NNs of } p \text{ in } Q$ $p_{2} = \operatorname{nn}(q_{1}, P) \times q_{2} \times q_{1} - q_{2} \times q_{2} \times q_{2} \times q_{1} - q_{2} + q_{2} +$

• Repeat this for every $q_i \in Q$, return the p with the smallest r_p .

-

Approximation quality of A_{SUM}

Theorem

In any dimension d, given an exact NN algorithm, ASUM is an 3-approximation.

Theorem

In any dimension d, given an β -approximate NN algorithm, Asum is an $(\beta+2)$ -approximation.

A B M A B M
Approximation quality of A_{SUM}

Theorem

In any dimension d, given an exact NN algorithm, ASUM is an 3-approximation.

Theorem

In any dimension d, given an β -approximate NN algorithm, ASUM is an $(\beta + 2)$ -approximation.

• ASUM only needs |Q| times of NN search in P...

A B M A B M

Approximation quality of A_{SUM}

Theorem

In any dimension d, given an exact NN algorithm, ${\rm ASUM}$ is an 3-approximation.

Theorem

In any dimension d, given an β -approximate NN algorithm, Asum is an $(\beta+2)$ -approximation.

- ASUM only needs |Q| times of NN search in P...
- ASUM still needs |Q| times of NN search in P!

* E > * E >

randomly select a subset of Q!

- \mathbf{x} : group Q of query points
- : dataset P

< 注→ < 注→ -

randomly select a subset of Q!

- \mathbf{x} : group Q of query points
- : dataset P

Theorem

For any $0 < \varepsilon, \lambda < 1$, executing ASUM algorithm only on a random subset of $f(\phi, \varepsilon, \lambda)$ points of Q returns a $(3 + \varepsilon)$ -approximate answer to FANN search in any dimensions with probability at least $1 - \lambda$, where

$$f(\phi, arepsilon, \lambda) = rac{\log \lambda}{\log(1 - \phi arepsilon/3)} = O(\log(1/\lambda)/\phi arepsilon).$$

randomly select a subset of Q!

- \mathbf{x} : group Q of query points
- \bullet : dataset P

Theorem

For any $0 < \varepsilon, \lambda < 1$, executing ASUM algorithm only on a random subset of $f(\phi, \varepsilon, \lambda)$ points of Q returns a $(3 + \varepsilon)$ -approximate answer to FANN search in any dimensions with probability at least $1 - \lambda$, where

$$f(\phi, \varepsilon, \lambda) = rac{\log \lambda}{\log(1 - \phi \varepsilon/3)} = O(\log(1/\lambda)/\phi \varepsilon).$$

• For |Q| = 1000, $\phi = 0.4$, $\lambda = 10\%$, $\varepsilon = 0.5$, only needs 33 NN search in any dimension.

randomly select a subset of Q!

- \mathbf{x} : group Q of query points
- \bullet : dataset P

Theorem

For any $0 < \varepsilon, \lambda < 1$, executing ASUM algorithm only on a random subset of $f(\phi, \varepsilon, \lambda)$ points of Q returns a $(3 + \varepsilon)$ -approximate answer to FANN search in any dimensions with probability at least $1 - \lambda$, where

$$f(\phi, arepsilon, \lambda) = rac{\log \lambda}{\log(1 - \phi arepsilon/3)} = O(\log(1/\lambda)/\phi arepsilon).$$

• For |Q| = 1000, $\phi = 0.4$, $\lambda = 10\%$, $\varepsilon = 0.5$, only needs 33 NN search in any dimension. (much less in practice, $\frac{1}{\phi}$ is enough!)

向き くまき くます

An improvement to A_{SUM}

randomly select a subset of Q!

- \mathbf{x} : group Q of query points
- \bullet : dataset P

Theorem

For any $0 < \varepsilon, \lambda < 1$, executing ASUM algorithm only on a random subset of $f(\phi, \varepsilon, \lambda)$ points of Q returns a $(3 + \varepsilon)$ -approximate answer to FANN search in any dimensions with probability at least $1 - \lambda$, where

$$f(\phi, \varepsilon, \lambda) = rac{\log \lambda}{\log(1 - \phi \varepsilon/3)} = O(\log(1/\lambda)/\phi \varepsilon).$$

• For |Q| = 1000, $\phi = 0.4$, $\lambda = 10\%$, $\varepsilon = 0.5$, only needs 33 NN search in any dimension. (much less in practice, $\frac{1}{\phi}$ is enough!)

< 3 > 3

• Independent of dimensionality, |P|, and |Q|!

 \mathbf{x} : group Q of query points

• : dataset P

 $\phi=$ 0.4, |Q|= 5, $\phi|Q|=$ 2, $\sigma=\max$

▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ▶ � � � �

 \mathbf{x} : group Q of query points

 \bullet : dataset P

 $\phi =$ 0.4, |Q| = 5, $\phi |Q| =$ 2, $\sigma = \max$

母▶ ▲目▶ ▲目▶ 三目 - ∽۹ペ

 $Q_{\phi}^{q} : \text{top } \phi |Q| \text{ NNs of } q \text{ in } Q, \text{ including } q$ $MEB(Q_{\phi}^{q_{1}}) = MEB(\{q_{1}, q_{2}\})$ $Q_{\phi}^{q} = X$ $Q_{1}^{q_{2}} = X$

 \mathbf{x} : group Q of query points

• : dataset P

 $\phi =$ 0.4, |Q| = 5, $\phi |Q| =$ 2, $\sigma = \max$

A B > A B >

∋ na

 \mathbf{x} : group Q of query points

• : dataset P

 $\phi =$ 0.4, |Q| = 5, $\phi |Q| =$ 2, $\sigma = \max$

A B > A B >

∋ na

 $Q_{\phi}^{p_3} : \text{top } \phi |Q| \text{ NNs of } p_3 \text{ in } Q$ $p_3 = nn(c_1, P)$ $q_1 \qquad q_2 \qquad q_5$ $q_1 \qquad q_2 \qquad q_4$

 \mathbf{x} : group Q of query points

• : dataset P

 $\phi=$ 0.4, |Q|= 5, $\phi|Q|=$ 2, $\sigma=\max$

▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● � � � � �

 $Q_{\phi}^{p_{3}}: \text{ top } \phi |Q| \text{ NNs of } p_{3} \text{ in } Q$ $p_{3} = nn(c_{1}, P)$ $r_{p_{3}} \neq q_{5}$ $q_{1} q_{2} q_{2}$

 \mathbf{x} : group Q of query points

• : dataset P

 $\phi=$ 0.4, |Q|= 5, $\phi|Q|=$ 2, $\sigma=\max$

• • = • • = •

∋ na

 $Q_{\phi}^{p_3}: \text{ top } \phi |Q| \text{ NNs of } p_3 \text{ in } Q$ $p_3 = nn(c_1, P)$ $r_{p_3} \neq q_5$ $q_1 = q_2$

 \mathbf{x} : group Q of query points

• : dataset P $\phi = 0.4, |Q| = 5, \phi |Q| = 2, \sigma = \max$

• Repeat this for every $q_i \in Q$, return the p with the smallest r_p .

 $Q_{\phi}^{p_3}: \text{ top } \phi |Q| \text{ NNs of } p_3 \text{ in } Q$ $p_3 = nn(c_1, P)$ $r_{p_3} = x^{q_5}$ $q_1 = q_2$

 \mathbf{x} : group Q of query points

• : dataset P
$$\phi = 0.4, |Q| = 5, \phi |Q| = 2, \sigma = \max$$

- Repeat this for every $q_i \in Q$, return the p with the smallest r_p .
- Identical to ASUM, except using $p = nn(c_i, P)$ instead of $p = nn(q_i, P)$, where c_i is the center of MEB $(q_i, Q_{\phi}^{q_i})$.

(*) * (*) *)

Approximation quality of AMAX

Theorem

In any dimension d, given an exact NN algorithm, AMAX is an $(1+2\sqrt{2})$ -approximation.

Theorem

In any dimension d, given an β -approximate NN algorithm, AMAX is an $((1 + 2\sqrt{2})\beta)$ -approximation.

* E > * E >

Approximation quality of AMAX

Theorem

In any dimension d, given an exact NN algorithm, AMAX is an $(1+2\sqrt{2})$ -approximation.

Theorem

In any dimension d, given an β -approximate NN algorithm, AMAX is an $((1 + 2\sqrt{2})\beta)$ -approximation.

• AMAX only needs |Q| times of MEB and |Q| NN search in P...

(七日) (七日)

Approximation quality of AMAX

Theorem

In any dimension d, given an exact NN algorithm, AMAX is an $(1+2\sqrt{2})$ -approximation.

Theorem

In any dimension d, given an β -approximate NN algorithm, AMAX is an $((1 + 2\sqrt{2})\beta)$ -approximation.

- AMAX only needs |Q| times of MEB and |Q| NN search in P...
- AMAX still needs |Q| times of MEB and |Q| NN search in P!

* E > * E >

randomly select a subset of Q!

- \mathbf{x} : group Q of query points
- : dataset P

< 注→ < 注→ -

∃ 990

randomly select a subset of Q!

- \mathbf{x} : group Q of query points
- \bullet : dataset P

Theorem

For any $0 < \lambda < 1$, executing AMAX algorithm only on a random subset of $f(\phi, \lambda)$ points of Q returns a $(1 + 2\sqrt{2})$ -approximate answer to the FANN query with probability at least $1 - \lambda$ in any dimensions, where

$$f(\phi,\lambda) = rac{\log\lambda}{\log(1-\phi)} = O(\log(1/\lambda)/\phi).$$

(B) < B)</p>

randomly select a subset of Q!

- \mathbf{x} : group Q of query points
- \bullet : dataset P

Theorem

For any $0 < \lambda < 1$, executing AMAX algorithm only on a random subset of $f(\phi, \lambda)$ points of Q returns a $(1 + 2\sqrt{2})$ -approximate answer to the FANN query with probability at least $1 - \lambda$ in any dimensions, where

$$f(\phi,\lambda) = rac{\log\lambda}{\log(1-\phi)} = O(\log(1/\lambda)/\phi).$$

• For |Q| = 1000, $\phi = 0.4$, $\lambda = 10\%$, only needs 5 MEB and NN search in any dimension.

randomly select a subset of Q!

- \mathbf{x} : group Q of query points
- \bullet : dataset P

Theorem

For any $0 < \lambda < 1$, executing AMAX algorithm only on a random subset of $f(\phi, \lambda)$ points of Q returns a $(1 + 2\sqrt{2})$ -approximate answer to the FANN query with probability at least $1 - \lambda$ in any dimensions, where

$$f(\phi,\lambda) = rac{\log\lambda}{\log(1-\phi)} = O(\log(1/\lambda)/\phi).$$

• For |Q| = 1000, $\phi = 0.4$, $\lambda = 10\%$, only needs 5 MEB and NN search in any dimension. (even less in practice, $\frac{1}{\phi}$ is enough!)

向 ト イヨ ト イヨ ト

randomly select a subset of Q!

- \mathbf{x} : group Q of query points
- \bullet : dataset P

Theorem

For any $0 < \lambda < 1$, executing AMAX algorithm only on a random subset of $f(\phi, \lambda)$ points of Q returns a $(1 + 2\sqrt{2})$ -approximate answer to the FANN query with probability at least $1 - \lambda$ in any dimensions, where

$$f(\phi,\lambda) = rac{\log\lambda}{\log(1-\phi)} = O(\log(1/\lambda)/\phi).$$

• For |Q| = 1000, $\phi = 0.4$, $\lambda = 10\%$, only needs 5 MEB and NN search in any dimension. (even less in practice, $\frac{1}{\phi}$ is enough!)

3 N 3

• Independent of dimensionality, |P|, and |Q|!

• All algorithms for FANN can be extended to work for top-k FANN.

< 注→ < 注→

- All algorithms for FANN can be extended to work for top-k FANN.
- Most algorithms work for any metric space, except AMAX which works for metric space when MEB is properly defined.

(B)

< 注→ < 注→

Experiments: setup and datasets

- Experiments are performed in a Linux machine with 4GB of RAM and an Intel Xeon 2GHz CPU.
- Datasets:
 - 2-dimension: Texas (*TX*) points of interest and road-network dataset from the Open Street Map project: 14 million points (we have other 49 states as well).

-

Experiments: setup and datasets

- Experiments are performed in a Linux machine with 4GB of RAM and an Intel Xeon 2GHz CPU.
- Datasets:
 - 2-dimension: Texas (*TX*) points of interest and road-network dataset from the Open Street Map project: 14 million points (we have other 49 states as well).
 - 2-6 dimensions: synthetic datasets of random clusters (RC).

Experiments: setup and datasets

- Experiments are performed in a Linux machine with 4GB of RAM and an Intel Xeon 2GHz CPU.
- Datasets:
 - 2-dimension: Texas (*TX*) points of interest and road-network dataset from the Open Street Map project: 14 million points (we have other 49 states as well).
 - 2-6 dimensions: synthetic datasets of random clusters (RC).
 - High dimensions: datasets from http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.data.html, http://yann.lecun.com/exdb/mnist/,

and http://www.scl.ece.ucsb.edu/datasets/index.htm

dataset	number of points	dimensionality
ΤX	14,000,000	2
RC	synthetic	2 - 6
Color	68,040	32
MNIST	60,000	50
Cortina	1,088,864	74

- report the average of 40 independent queries, as well as the 5%-95% interval.
- sampling rate of $\frac{1}{\phi}$ is enough for both ASUM and AMAX!

High dimensions: query cost, all datasets

< 注→ < 注→ -

-2

High dimensions: query cost, all datasets

★ 문 ► ★ 문 ►

-2

Thank You

$\ensuremath{\mathbb{Q}}$ and $\ensuremath{\mathbb{A}}$

Yang Li, Feifei Li, Ke Yi, Bin Yao, Min Wang Flexible Aggregate Similarity Search

白 と く ヨ と く ヨ と

∃ 990

• R-tree method: brunch and bound principle [PSTM04, PTMH05].

- PSTM04]: Group Nearest Neighbor Queries. In ICDE, 2004.
- [PTMH05]: Aggregate nearest neighbor queries in spatial databases. In TODS, 2005.

3

A 10

R-tree method: brunch and bound principle [PSTM04, PTMH05].
For a query point *q* and a MBR node N_i:

 $\forall p \in N_i, \mathsf{mindist}(q, N_i) \leq d(p, q) \leq \mathsf{maxdist}(q, N_i).$

PSTM04]: Group Nearest Neighbor Queries. In ICDE, 2004.

PTMH05]: Aggregate nearest neighbor queries in spatial databases. In TODS, 2005.

* E > * E >

- R-tree method: brunch and bound principle [PSTM04, PTMH05].
 - For a query group Q and $\sigma = \max$,

- PSTM04]: Group Nearest Neighbor Queries. In ICDE, 2004.
- PTMH05]: Aggregate nearest neighbor queries in spatial databases. In TODS, 2005.

- R-tree method: brunch and bound principle [PSTM04, PTMH05].
 - For a query group Q and $\sigma = \operatorname{sum}$,

- PSTM04]: Group Nearest Neighbor Queries. In ICDE, 2004.
- PTMH05]: Aggregate nearest neighbor queries in spatial databases. In TODS, 2005.

伺 と く ヨ と く ヨ と
• The List algorithm for any dimensions:

For $\forall p \in P$, $a_i = d(p, q_i)$

• The List algorithm for any dimensions:

For
$$\forall p \in P$$
, $a_i = d(p, q_i)$
 $r_p = \sigma(p, Q_{\phi}^p)$ is monotone w.r.t. a_i 's

-2

• The List algorithm for any dimensions:

[FLN01]: Optimal Aggregation Algorithms for Middleware. In PODS, 2001.

• The List algorithm for any dimensions:

[FLN01]: Optimal Aggregation Algorithms for Middleware. In PODS, 2001.

• The List algorithm for any dimensions:

For $\forall p \in P$, $a_i = d(p, q_i)$ $r_p = \sigma(p, Q_{\phi}^p)$ is monotone w.r.t. a_i 's apply the *TA algorithm* [FLN01] $a_{2,j}$ is the *j*th NN of q_2 in *P*!

3

[FLN01]: Optimal Aggregation Algorithms for Middleware. In PODS, 2001.

Experiments: defaults

Default values:

Symbol	Definition	Default
М	Q	200
ϕ	support	0.5
\mathcal{A}	query group volume	5% (of the entire data space)
	points in a query group	random cluster distribution

□ > < E > < E > -

∃ 900

• Default values:

Symbol	Definition	Default
М	Q	200
ϕ	support	0.5
\mathcal{A}	query group volume	5% (of the entire data space)
	points in a query group	random cluster distribution

• Default values for low dimensions:

Symbol	Definition	Default
Ν	P	2,000,000
d	dimensionality	2
	dataset	TX, when $d = 2$
	dataset	RC, when vary d from 2 to 6

★ Ξ → < Ξ → </p>

∃ 990

• Default values:

Symbol	Definition	Default
М	Q	200
ϕ	support	0.5
\mathcal{A}	query group volume	5% (of the entire data space)
	points in a query group	random cluster distribution

• Default values for low dimensions:

Symbol	Definition	Default
Ν	P	2,000,000
d	dimensionality	2
	dataset	TX, when $d = 2$
	dataset	<i>RC</i> , when vary <i>d</i> from 2 to 6

• Values for high dimensions:

Symbol	Definition	Default
N	P	200,000
d	dimensionality	30
	default dataset	Cortina

-

• Default values:

Symbol	Definition	Default
М	Q	200
ϕ	support	0.5
\mathcal{A}	query group volume	5% (of the entire data space)
	points in a query group	random cluster distribution

• Default values for low dimensions:

Symbol	Definition	Default
Ν	P	2,000,000
d	dimensionality	2
	dataset	TX, when $d = 2$
	dataset	<i>RC</i> , when vary <i>d</i> from 2 to 6

• Values for high dimensions:

Symbol	Definition	Default
Ν	P	200,000
d	dimensionality	30
	default dataset	Cortina

- report the average of 40 independent, randomly generated queries, as well as the 5%-95% interval.
- sampling rate of $\frac{1}{\phi}$ is enough for both ASUM and AMAX!

Low dimensions: approximation quality

-2

Low dimensions: approximation quality

- ◆ 臣 ▶ ◆ 臣 ▶ ◆ 臣 → � � � � �

47 ▶

Low dimensions: query cost, vary M

......

Low dimensions: query cost, vary M

Low dimensions: query cost, vary N

Low dimensions: query cost, vary N

三 つく

Low dimensions: query cost, vary ϕ

......

Low dimensions: query cost, vary ϕ

Low dimensions: query cost, vary d

3

High dimensions: approximation quality

<u> </u>= १९०

() <) <)
 () <)
 () <)
</p>

High dimensions: approximation quality

(七日) (七日)

47 ▶

High dimensions: approximation quality

★ E ► < E ►</p>

____ ▶

High dimensions: query cost, vary M

∃ >

High dimensions: query cost, vary M

High dimensions: query cost, vary N

3

High dimensions: query cost, vary N

三 つく

-

High dimensions: query cost, vary ϕ

.⊒ . ►

High dimensions: query cost, vary ϕ

High dimensions: query cost, vary d

3

3 🕨 🖌 3

High dimensions: query cost, vary d

B> _ B