
Flexible Aggregate Similarity Search
Yang Li, Feifei Li, Ke Yi, Bin Yao, Min Wang
Aggregation Nearest Neighbor (ANN)

Given an aggregation σ, a similarity/distance function d, a dataset P , and any query groupQ:

aggregate similarity distance of p: rp = σ{d(p,Q)} = σ{d(p, q1), . . . , d(p, q|Q|)}, for any p

Find p∗ ∈ P having the smallest rp value (rp∗ = r∗).

ANN: σ = max
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agg= max, p∗ = p3, r
∗ = d(p3, q1)

: group Q of query points

ANN: σ = sum
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: group Q of query points

agg=sum, p∗ = p4, r
∗ =

∑
q∈Q d(p4, q)

Our approach for σ = max: AMAX1

: dataset P

: group Q of query points

1. B(c, rc) = MEB(Q)

crc

2. return p = nn(c, P )

Our approach for σ = sum: ASUM1

: dataset P

: group Q of query points

gm

1. gm is the geometric median of Q

2. return nn(gm, P )

Theoretical bounds

Theorem 1: AMAX1 is a
√
2-approximation in any dimension d given (exact) nn(c, P ) and MEB(Q). Given an

α-approximate MEB algorithm and an β-approximate NN algorithm, AMAX1 is an
√
α2 + β2-approximation.

Theorem 2: ASUM1 is a 3-approximation in any dimension d given (exact) geometric median and nn(c, P ). Given
an β-approximate NN algorithm, ASUM1 is an 3β-approximation.

Flexible aggregate similarity search (FANN)

: dataset P

: group Q of query points

σ = sum, φ = 40%, p∗ = p4,
r∗ = d(p4, q3) + d(p4, q4)
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Given support φ ∈ (0, 1], find an object in P that
has the best aggregate similarity to (any) φ|Q| query
objects.

Exact method for FANN

: dataset P

: group Q of query points

Qpφ : top φ|Q| NNs of p in Q

φ = 0.4, |Q| = 5, φ|Q| = 2

p

Qpφ

For ∀p ∈ P , rp = σ(p,Qpφ), where Qpφ is p’s φ|Q|
NNs inQ.
The brute-force-search (BFS) approach in any dimen-
sion: for each p ∈ P , find outQpφ and calculate rp.

Approximate method for σ = sum: ASUM

: dataset P

: group Q of query points

q1

φ = 0.4, |Q| = 5, φ|Q| = 2, σ = sum

Qpφ : top φ|Q| NNs of p in Q

q2

rp2 = d(p2, q1) + d(p2, q2)

p2 = nn(q1, P )

Repeat this for every qi ∈ Q, return the p with the
smallest rp.

Theorem 3: In any dimension d, given an exact NN
algorithm, ASUM is an 3-approximation. Given an
β-approximate NN algorithm, ASUM is an (β + 2)-
approximation.

Improvement for ASUM

Theorem 4: For any 0 < ε, λ < 1, executing ASUM
algorithm only on a random subset of f(φ, ε, λ)
points of Q returns a (3 + ε)-approximate answer to
FANN search in any dimensions with probability at
least 1− λ, where

f(φ, ε, λ) =
log λ

log(1− φε/3) = O(log(1/λ)/φε).

For |Q| = 1000, φ = 0.4, λ = 10%, ε = 0.5, only
needs 33 NNs search in any dimension. (much less
in practice, 1

φ is enough!)

Independent of dimensionality, |P |, and |Q|!

Approximate method for σ = max: AMAX

Similar to ASUM, but instead, find ci = MEB(Q
qi
φ ), then replace nn(qi, P ) with nn(ci, P ) where the rest stays

the same. But the analysis is much more involved, and we can show:

Theorem 5: In any dimension d, given an exact NN algorithm and an MEB, AMAX is an 1 + 2
√
2-approximation.

Given an β-approximate NN algorithm, AMAX is an (1 + 2
√
2)β-approximation.

Improvement:

Theorem 6: A random sample from Q of size O(log(1/λ)/φ) is sufficient to give the same approximation with at

least 1− λ probability. In practice, a sample size of 1
φ is enough (i.e., only needs 1

φ NNs).

Experiments

datasetnumber of points dimensionality
Color 68, 040 32

MNIST 60, 000 50
Cortina 1, 088, 864 74
For more results in low dimensions (up to tens
of millions of points using OpenStreet Map
data), please refer to our paper.
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