Flexible Aggregate Similarity Search Yang Li, Feifei Li, Ke Yi, Bin Yao, Min Wang

Aggregation Nearest Neighbor (ANN)

Given an aggregation σ , a similarity/distance function d, a dataset P, and any query group Q:

aggregate similarity distance of p: $r_p = \sigma\{d(p, Q)\} = \sigma\{d(p, q_1), \ldots, d(p, q_{|Q|})\}$, for any p

Find $p^* \in P$ having the smallest r_p value $(r_{p^*} = r^*)$.

Theoretical bounds

Theorem 1: AMAX1 is a $\sqrt{2}$ -approximation in any dimension d given (exact) nn(c, P) and MEB(Q). Given an α -approximate MEB algorithm and an β -approximate NN algorithm, AMAX1 is an $\sqrt{\alpha^2 + \beta^2}$ -approximation.

Theorem 2: ASUM1 is a 3-approximation in any dimension d given (exact) geometric median and nn(c, P). Given an β -approximate NN algorithm, ASUM1 is an 3β -approximation.

Experiments

dataset	number of points	dimensionality	1.8
Color	68,040	32	1.6-
MNIST	60,000	50	*
Cortina	1,088,864	74	<u> </u>
For more results in low dimensions (up to tens			1.2
of millions of points using OpenStreet Map			1
data), please refer to our paper.			I

Flexible aggregate similarity search (FANN)

 \mathbf{x} : group Q of query points

 \bullet : dataset P

Given support $\phi \in (0, 1]$, find an object in P that has the best aggregate similarity to (*any*) $\phi |Q|$ query objects.

Approximate method for $\sigma = \text{sum}$: ASUM

 Q^p_{ϕ} : top $\phi |Q|$ NNs of p in Q $p_2 = \operatorname{nn}(q_1, P)$ $r_{p_2} = d(p_2, q_1) + d(p_2, q_2)$

 \mathbf{x} : group Q of query points

 \bullet : dataset P

 $\phi = 0.4, |Q| = 5, \phi |Q| = 2, \sigma = \text{sum}$ Repeat this for every $q_i \in Q$, return the p with the smallest r_p .

Theorem 3: In any dimension *d*, given an exact NN algorithm, ASUM is an 3-approximation. Given an β -approximate NN algorithm, ASUM is an $(\beta + 2)$ approximation.

Approximate method for $\sigma = \max$: AMAX

the same. But the analysis is much more involved, and we can show:

Theorem 5: In any dimension d, given an exact NN algorithm and an MEB, AMAX is an $1 + 2\sqrt{2}$ -approximation. Given an β -approximate NN algorithm, AMAX is an $(1 + 2\sqrt{2})\beta$ -approximation.

Improvement:

Similar to ASUM, but instead, find $c_i = \text{MEB}(Q_{\phi}^{q_i})$, then replace $nn(q_i, P)$ with $nn(c_i, P)$ where the rest stays

Theorem 6: A random sample from Q of size $O(\log(1/\lambda)/\phi)$ is sufficient to give the same approximation with at least $1 - \lambda$ probability. In practice, a sample size of $\frac{1}{\phi}$ is enough (i.e., only needs $\frac{1}{\phi}$ NNs).