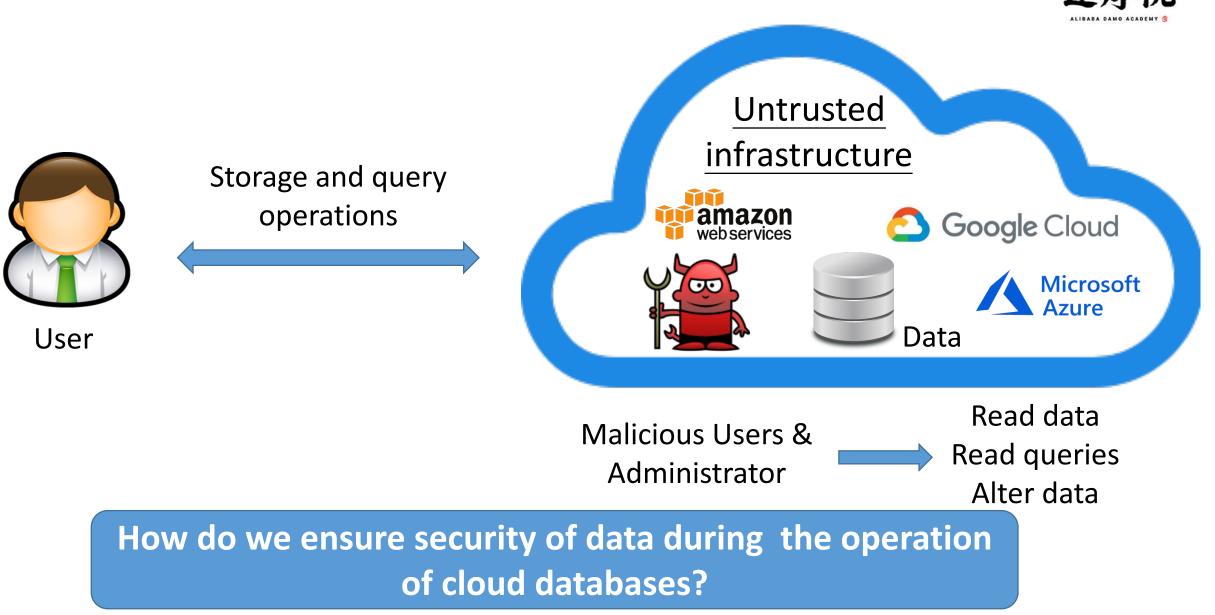


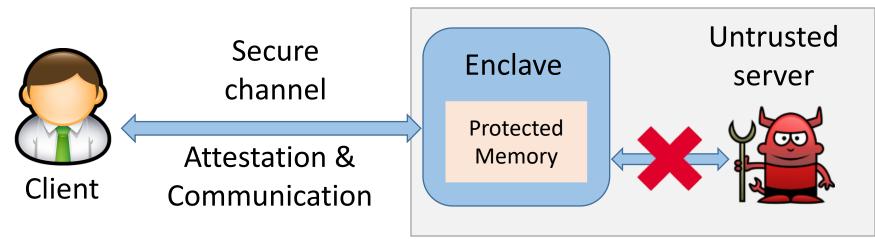
Building Enclave-Native Storage Engines for Practical Encrypted Databases


Yuanyuan Sun, Sheng Wang, Huorong Li, Feifei Li Alibaba Group

01 Introduction

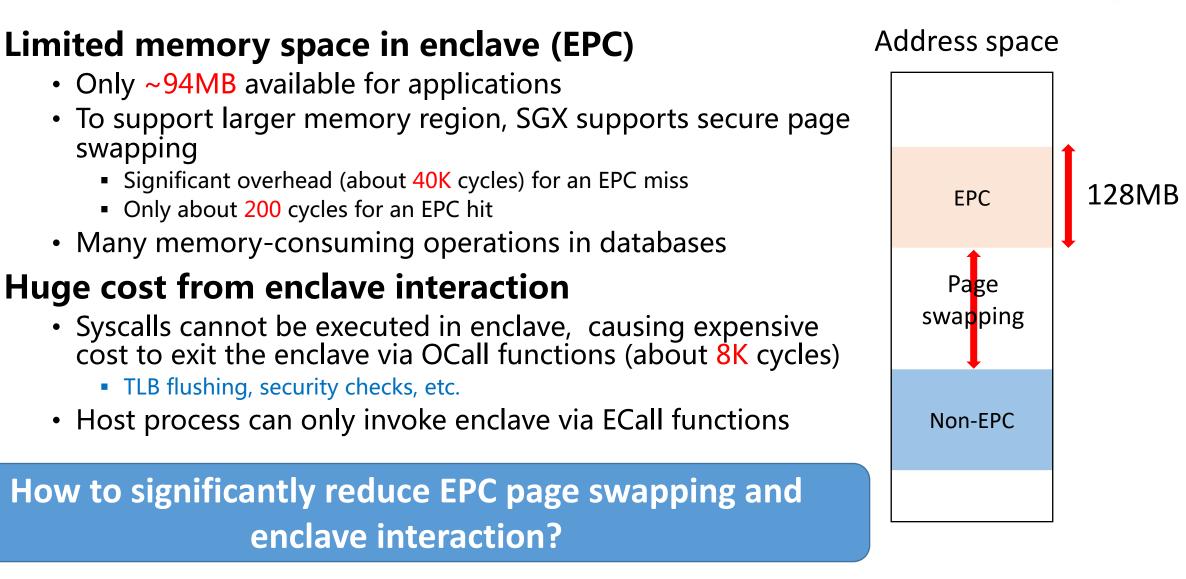
Security in the Cloud

Confidential Computing



Trusted execution environments (TEEs)

- Hardware extensions for trusted computing
 - E.g., Intel SGX and AMD SEV
- Guarantees confidentiality and integrity
 - Computation and data in it

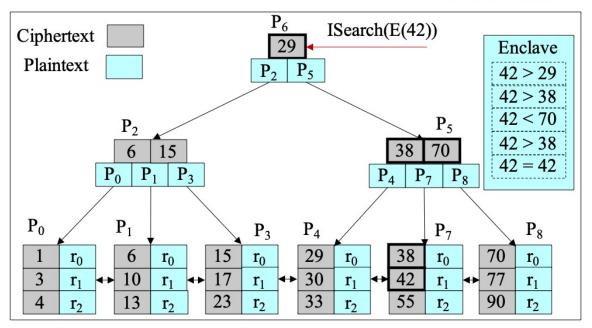

Hardware enclaves of Intel SGX

- A trusted component in an untrusted system
 - Uses protected memory to isolate shielded execution from compromised OS
 - Proves that it is an authentic enclave running the desired code with attestation

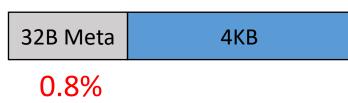
Challenges for SGX-based Databases

02 Exploration to a Broader Design Space

Strawman: B⁺-tree with Encrypted Keys



Structure overview


- Unchanged logical semantics
- Most index processing logic remains unaffected
 - E.g., node split and merge
- Decrypt keys and return *cmp* results in plaintext
 - E.g., ISearch(E(42))

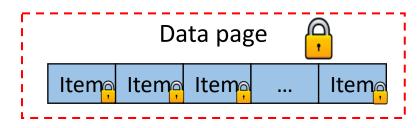
Limitations

- Frequent enclave interaction
 - E.g., 5 ECalls are required for ISearch(E(42))
- High overheads on storage
 - Huge storage amplification for smaller encryption granularity
- Severe information leakage
 - Key orders, parent-child relationships, etc.

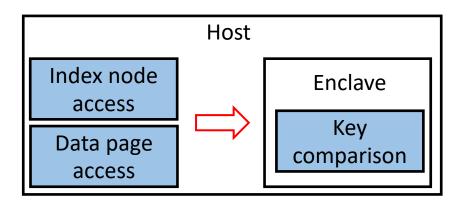
8X 32B Meta 4B

Exploration to a Broader Design Space

Table 1: Possible design choices for encrypted storage cr bolded and the choices for *Enclage Store* are tagged wi


rized in five dimensions. The choices made for *Enclage Index* are erisk mark (*).

Design Dimension	Design Choice	Influence			
Design Dimension		Security (Inform	Performance	Functionality	
Encryption Granularity	item-level encryption	leak structura	high storage overhead; fast for a single read	can fetch data w/o enclave	
	page-level encryption *	leak data vg	v storage overhead; fast for batched small reads	all data access must be in enclave	
Execution Logic in Enclave	index: key comparison	leak key g	performance from massive ECalls	can split or merge node w/o enclave	
	index: index node access	leak nor	erformance from a few ECalls	all index access must be in enclave	
	table: none	leak r	formance from no ECall	can fetch or scan record(s) w/o enclave	
	table: data page access *	leak	erformance from a few ECalls	all record access must be in enclave	
Memory Access Granularity	item-level access *	F Trade-of	nance from on-demand read	require small footprint in enclave	
	page-level access		formance from page copy	require large footprint in enclave	
	minimum usage *	7	e from active data fetching	no EPC capacity requirement	
Enclave Memory Usage	fixed usage	nce from data caching		low EPC capacity requirement	
Enclave Memory Usage	proportional usage	re from data caching		high EPC capacity requirement	
	unlimited usage	m data caching		high EPC capacity requirement	
Record Identity Protection	no action			no influence	
	rid encryption *			only useful in some settings	
	ciphertext re-encr	nctionality Pe	rformance	only useful in some settings	
N		······			


Design Space

Encryption granularity

Execution logic in enclave

Memory access granularity EPC Item ... Item Address space

Enclave memory usage

- min usage
- Fixed usage
- Proportional usage
- Unlimited usage

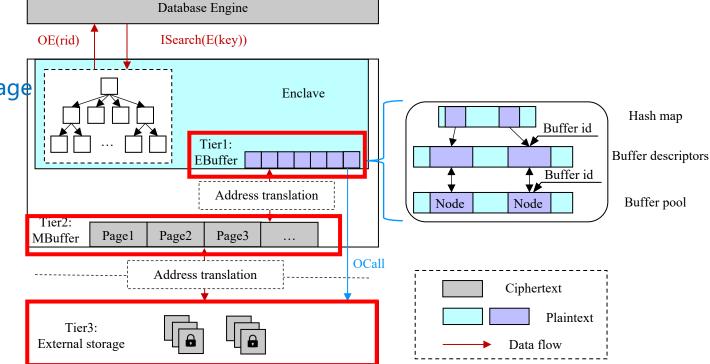
Record identity protection

- No action
- Rid encryption
- Ciphertext re-encryption

Enclage - An enclave-native encrypted storage engine

- Enclage Index: a B⁺-tree-like index
- Enclage Store: a heap-file-like table store

Design choices made in Enclage


	Enclage Index	Enclage Store
Encryption Granularity	Page-level encryption	Page-level encryption
Execution logic in enclave	Index node access	Data page access
Memory access granularity	Page-level access	Item-level access
Enclave memory usage	Fix usage	Minimum usage
Record identity protection	Rid encryption/ciphertext re-encryption	Rid encryption/ciphertext re-encryption

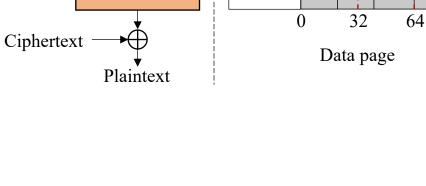
Overview of Enclage Index

Hierarchical architecture

- Tier1: EBuffer
 - trusted buffer in enclave
 - An unencrypted index node per page
- Tier2: Mbuffer
 - untrusted buffer in memory
 - Several encrypted nodes per page
- Tier3: External storage

Optimizations

- Reduction of EPC page swapping
- Mitigation of enc/dec costs
- Avoidance of unnecessary OCalls


Enclage Store & Delta Decryption

Enclage Store

- A heap-file-like table store
- Adopts append-only strategy
 - The active page: holds recently arrived records
 - Lower data locality
- Retrieves a record
 - Loads
 - Decryp
 Time consuming!
 target record

Delta decryption protocol

- Built on top of AES-CTR mode
 - Allows a small block within a large cipher be solely decrypted
- Executing a TGet operation
 - Locates the page in MBuffer and loads it to enclave
 - Calculates the counter for the record and construct the IV
 - Only decrypts the target record

Cipher

 \mathbf{r}_0

Nonce + Counter

AES-CTR

Key →

Offset₂ Offset₃

 \mathbf{r}_2

r₃

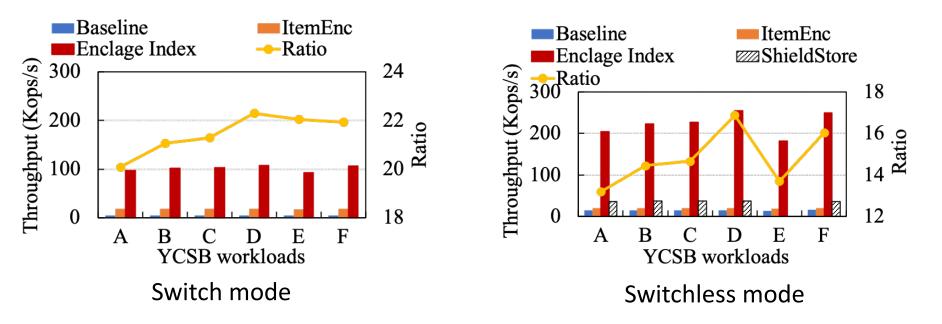
03 Evaluation

Experimental Setup

Hardware platform

Server Node	Intel SGX (<mark>~94MB EPC</mark>), Intel Core E7-1270 (<mark>4 cores</mark>), 64GB DRAM
System	Red Hat 6.4.0 with Linux 4.9.135 kernel, SGX driver and SGX SDK 2.6

Compared Systems

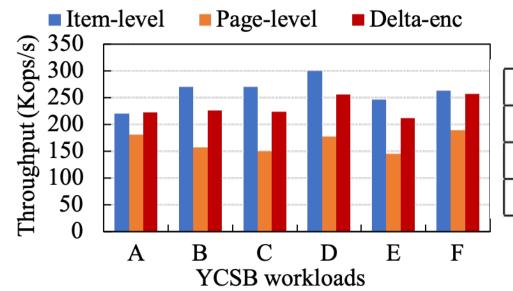

• Enclage Index

	Encryption Granularity	Location of execution logic	
Baseline	Item	Outside of the enclave (Untrusted)	
ItemEnc	Item	With the enclave (Trusted)	
ShieldStore (hash-based)	Item	Outside of the enclave (Untrusted)	
Enclage Index	Page	With the enclave (Trusted)	

• Enclage Store

Item-level	Heap file containing encrypted records		
Page-level	Heap file containing encrypted pages		
Delta-enc On top of Page-level, adopts the delta decryption protocol (AES-C			

Overall Performance



 Enclage Index achieves about 100Kops/s, and outperforms Baseline (20.04x) and ItemEnc (5.34x).

✓ Only 1 ECall during each operation, and each accessed node is decrypted at most once

- □Enclage Index also achieves better performance, compared to Baseline (13.19x), ItemEnc (9.69x) and ShieldStore (7-12x).
 - ✓ The more frequent the ECall is invoked, the greater the performance gain from the mode
 ✓ Frequent decryption in ShieldStore

Different Decryption Protocols

	16B	32B	64B	128B	256B
Item-level(GB)	0.67	0.89	1.36	2.29	4.09
Page-level (GB)	0.23	0.45	0.91	1.85	3.81
Ratio	2.99	1.98	1.50	1.24	1.07

When a access miss occurs,

✓ Page-level: load and decrypt the entire desired page

- \checkmark Delta-enc: extract and decrypt the desired record (1.40x)
- \checkmark Item-level: directly extract the encrypted record (1.57x)

More experiments: Please check our paper

04 Summary & Conclusion

Summary & Conclusion

✓ Data confidentiality is one of the biggest concerns that hinders enterprise customers from moving their workloads to the cloud.

✓Though TEEs provide a powerful building block, practical designs of TEE-based encrypted databases have not been well explored.

✓ Our contributions:

- Provides a comprehensive exploration of possible design choices for building an enclave-based encrypted database storage
- Proposes Enclage, an enclave-native storage engine that makes practical tradeoffs

✓Enclage improves the throughput by 13x and the storage efficiency by 5x.

Thanks

Email: yuanyuan.sun@alibaba-inc.com