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Abstract—Embeddings are one of the fundamental building
blocks for data analysis tasks. Embeddings are already essential
tools for large language models and image analysis, and their
use is being extended to many other research domains. The
generation of these distributed representations is often a data-
and computation-expensive process; yet the holistic analysis
and adjustment of them after they have been created is still
a developing area. In this paper, we first propose a very
general quantitatively measure for the presence of features in
the embedding data based on if it can be learned. We then
devise a method to remove or alleviate undesired features in the
embedding while retaining the essential structure of the data.
We use a Domain Adversarial Network (DAN) to generate a
non-affine transformation, but we add constraints to ensure the
essential structure of the embedding is preserved. Our empirical
results demonstrate that the proposed algorithm significantly
outperforms the state-of-art unsupervised algorithm on several
data sets, including novel applications from the industry.

Index Terms—embeddings, alignment

I. INTRODUCTION

An embedding is a moderate-dimensional vector representa-
tion of an entity where many features may be captured. These
embeddings are often distributed representations, meaning
that in most cases the correspondence between features and
vector coordinates is not a one-to-one mapping. This flexibility
allows for better capturing of correlation, the representation of
potentially more features than dimensions, and the emergence
of a more interesting global structure. However, it also eschews
the interpretability and transparency of analysis of this data,
and may result in unwanted associations. Yet, due to its
efficiency and effectiveness in representing data, embedding
learning technology has been an essential part of a wide variety
of data domains. In particular, word embedding methods such
as Word2vec [1] have been widely used in natural language
processing to capture the semantic and synthetic information
about the words. In network management, node embeddings
characterize the structures of network nodes [2]; while graph
embeddings encode rich information of a graph [3]. Image em-
bedding representations capture essential structural informa-
tion about individual features [4] or an aggregate of them [5].
Recent works [6], [7], [8], [9], [10] also showed that these
embedding methods could be applied to even broader ranges
of data types.

Such general embedding schemes have been proven to
capture data characteristics without knowing the feature values
associated with these characteristics. However, it is still a
challenge to recognize when and which features are captured

in these embeddings, and how to explicitly identify them, or
attenuate them if they are undesired. In particular, depending
on the downstream task, there might exist undesired known
features that have a large impact when analyzing the embed-
ding. In this case, we would like to eliminate their influence
in order to improve the performance of downstream tasks.

We provide powerful methods for recognizing and mit-
igating such implicitly captured and undesired embedding
features. We summarize our contributions as follows:
• We provide a new method to evaluate the presence

and significance of a categorical feature captured by an
embedding dataset. Our evaluation is based on how easily
a dataset with multiple labels can be classified.

• We then propose UCAN (Unsupervised Constrained
Alignment that is Non-affine), an effective methodology
for removing or alleviating the impact of such a signif-
icant feature in the embedding. It uses a variant of a
Domain Adversarial Network (DAN) to find a non-affine
alignment that obfuscates that feature, but also includes
constraints to ensure the original meaning and structure
of the embedding is retained. Unlike prior work targeting
this goal, the data transformation we learn is not restricted
to an affine transformation of part of the data, so it
is significantly more powerful, yet the added constraint
prevents data deprecation.

• We demonstrate the effectiveness of this process on sev-
eral embedding datasets representing airports, language,
and merchants. We identify nuisance features, and then
train a generator to dampen their effect while retaining
the core structure of the embedding. The usefulness is
shown on several downstream tasks, outperforming state-
of-the-art methods.

II. RELATED WORK

Several existing works are focusing on transforming ex-
isting embeddings for goals such as attenuating bias. It has
been observed that there exists certain (for instance, gender-
associated) bias inherent in word embeddings [11], [12],
[13], [14], [15]. In these lines of work, they focused on
non-dominating features such as gender, ethnicity, age, and
sentiment. In some cases, they describe simple projection-
based [13] approaches towards removing the impact of these
effects. Another line of work focuses on bilingual and multi-
language embedding alignment. Cross-lingual word embed-
dings are appealing as they can compare the meaning of



words across languages and model transfer between languages
(e.g., between resource-rich and low-resource languages, by
providing a common representation space). However, if the
word embedding is trained directly on merged documents
from multiple languages, words from the same language tend
to cluster due to similar language contexts. As a result, the
language of a word becomes the dominating feature embedded
in the resulting word embedding. To address this issue, several
approaches have been proposed to learn bilingual dictionaries
mapping from the source to the target space and align them
into the same space using lexicon or a sample of lexicon [16],
[17], [18]. In particular, [19] learns an initial linear mapping
in an adversarial way by additionally training a discriminator
to differentiate between projected and actual target language
embeddings. [20] extends this line of work to represent words
from multiple languages in a single distributional vector space.
This line of work also applies a domain adversarial network.
Our work differs from both of these lines in that it is not
restricted to affine transformations and can learn more complex
structures of embeddings.

There are also similar works from fairness perspective [21],
[22], [23], [24]. They aim to generate fair data using adversar-
ial learning by retaining the ability to predict the label while
reducing the possibility of predicting the sensitive or protective
variables. In these works, the problem setting is different from
ours: the dataset comes with labels; thus, the labels are also
involved in the data generation process, while our algorithm
only deals with the embedding dataset and does not touch the
original label. In addition, this line of work has few discussions
on embedding datasets. Although [24] discusses in their paper
on word embedding dataset, their experiments on this are
limited to only show one specific example of the analogy task
for the word embedding dataset.

III. FEATURE MEASUREMENT IN EMBEDDINGS

Embeddings preserve the information of entities by placing
similar entities close together in the embedding space, as
measured by cosine distance. For example, word embedding
captures the semantic and syntactic properties of words, and
the embeddings of synonyms are close to each other in the
embedding space. However, it is hard to tease apart features
since all the features are entangled together, and there is no
simple mapping between the dimensions and the features.
Certain traits like polarity (e.g. good - bad) are not specifically
encoded by some dimension or direction in a Word2vec
embedding. However, for words with similar polarity, like
‘good’ and ‘great’, we observe that they have short cosine
distances in the embedding space.

We are interested in a scenario where we can access a subset
of features in the original data. In this case, we are looking for
an effective way to measure how significantly an embedding is
affected by a known categorical feature. We first assume that
the feature is a binary function F : D → {0, 1} for dataset D
is with 0, 1 labels. The significance of a feature indicates how
easily we can distinguish the 0 and 1 points. We quantify the
significance using a classifier:

Definition 1. Consider an embedding generator E : D → Rd

and a balanced feature F : D → {0, 1}. For a family of
classifiers C on the embedding space, and a positive value ε
with the following probability:

max
C∈C

Probx∈D[C(E(x)) = F (x)] > 50% + ε

We say that E embeds F with weight ε.

The idea behind this definition is straightforward. If an
embedding generated by E does not contain any information
about feature F , the values of F (x) become random labels
for C(E(x)). Therefore, most classifiers should achieve about
50% accuracy in expectation, on balanced data with half of
each label. Conversely, if the embeddings can be classified
on feature F with accuracy significantly above 50%, the em-
bedding reflects some information of F . The higher accuracy
the classifier can achieve, the more information is encoded in
the embedding. While we typically cannot precisely find the
actual maximum accuracy classifier C ∈ C, we can use the
result of a learning algorithm as a proxy.

This definition can be extended to multi-label features
and classifiers. Suppose the number of labels is M , if the
classification accuracy is above 1/M , then the embedding E
embeds feature F . Numerical features can also be binned to
category features using predefined thresholds.

A. Imbalanced Datasets and AUC

In imbalanced datasets, the “Accuracy Paradox” occurs
when we use the accuracy metric to learn the best model.
Consider when a feature has 10% of the data with value 0,
and 90% of the data with value 1. Then a simple classifier sets
C[E(x)] = 1 for all x and will get the accuracy of 90%, so
accuracy is not the best metric for imbalanced datasets. Thus,
we use average one vs. all AUC as the metric to measure if a
feature is embedded for both balanced and imbalanced data.
For a feature F : D → {0, 1, ...,M −1}, and any classifier C,
if AUC(C(E(x)) = F (x)) > τ , then we say F is embedded
by E with weight τ . We use this measure within this paper.

For fields using numerical values, we can set single or
multiple thresholds to label values into different categories.
Thus, the AUC metric can be applied to numerical features.
The choice of the threshold depends on how much granularity
of details needs to be preserved.

IV. FEATURE ATTENUATION AND RETENTION

Given an undesired binary feature F on dataset D, let
X and Y be subsets of D divided by F , and X,Y ⊂ Rd

be the two sets of corresponding embeddings. For instance,
consider embeddings of various merchants generated by the
similarity of the transaction sequences from their customers
[10]. The subset X can be merchants in New York City (NYC),
and Y can be merchants from Los Angeles (LA). To give
recommendations for a customer from NYC while visiting LA,
based on the embeddings, it would be useful to first remove
the effect of the location feature F before doing so.



The goal of a Domain-Adversarial Network (DAN) [25] is
to find a mapping function G : Rd → Rd (which is also our
generator) for X without knowing the data of X and Y , so
that sets Y and G(X) are indistinguishable. If there was a
pattern among the features of X distinct from those of Y , it
could potentially separate them. So as an added benefit, if an
element x ∈ X is similar to some y ∈ Y after the feature
F has been removed, then the resultant embedding G(x) will
tend to be similar to that of y.

We name embedding X the source domain (e.g., NYC
merchants) and embedding Y the target domain (e.g., LA
merchants). A discriminator D : Rd → [0, 1] is trained to dis-
tinguish between elements randomly sampled from G(X) =
{G(x1), ..., G(xp)} (value closer to 0) and Y = {y1, . . . , yq}
(values closer to 1). Generator G is trained to prevent the
discriminator from making accurate predictions. As a result,
this is a two-player game, where the discriminator aims at
maximizing its ability to identify the origin of an embedding,
and G aims at preventing the discriminator from doing so by
making the distribution of G(X) and Y as similar as possible
on F . After the network converges, G serves as a mapping
function from the source domain (NYC) to the target domain
(LA), implicitly removing the effect of F .

However, merely applying this mechanism to our setting
allows for too much freedom in the space of generators
G. It could be that the generated dataset G(X) loses all
structure associated with X , and thus no longer has a use
in understanding the data in the source domain!

To balance this shortcoming, in addition to adopting the
domain-adversarial approach, we also add a structure preser-
vation component to measure the similarity of the generated
embedding G(X) and the original embedding X by adding
cosine distance to the generator loss. Ideally we would want
to preserve the pairwise cosine distance: so for all x1, x2 ∈ X
that cos(G(x1), G(x2)) ≈ cos(x1, x2). However, this would
induce intractable p2 terms, and the p terms conserving
cos(G(x), x) are a suitable proxy (by triangle inequality).

Our proposed method UCAN (Unsupervised Constrained
Alignment that is Non-Affine) uses the DAN structure shown
in Figure 1, where the D : Rd → [0, 1] and G : Rd → Rd

are multilayer perceptrons. Ultimately, this is formulated so D
and G play the two-player minmax game with value function
V (G,D):

min
G

max
D

V (D,G) =Ey∼pY (y)[log(D(y))] (1)

+ Ex∼pX(x)[log(1−D(G(x)))] (2)
+ α · Ex∼pX(x)[1− cos(x,G(x))] (3)

Since the discriminator tries to separate the target embed-
ding (e.g., LA merchants) and mapped source embedding (e.g.,
NYC merchants), the discriminator loss function LD derived
from Eq. (1) and Eq. (2), and can be written as:

LD = −1

q

q∑
i=1

log(D(yi)))−
1

p

p∑
i=1

log(1−D(G(xi))).

source 
domain

(e.g., NYC)

target 
domain
(e.g., LA)

G

D

X G(X)

Y

S

Fig. 1: DAN structure of UCAN. X represents an embedding in the
source domain, G(X) is the embedding mapped from the source
domain to the target domain, and Y represents an embedding in the
target domain. G is the generator, D is the discriminator, and S is
the structure preservation component.

The generator G has two objectives: one is to fool the
discriminator (e.g., so D cannot distinguish NYC merchants
from LA ones), which makes the discriminator believe that
the mapped embeddings are from the target distribution; the
other is the structure preservation (S), which is to make the
mapped embedding and the original embedding as similar
as possible (e.g., so for an NYC merchant x, its mapped
representation G(x) still retains properties of x). We use
cosine similarity as the similarity measure, as it is the standard
similarity optimized in the creation of embeddings. We use
a loss function LG with two terms coming separately from
Eq. (3) and Eq. (2) which is a proxy for G(X) and Y having
a good alignment. It is written as:

LG = −α · 1
p

p∑
i=1

cos(G(xi), xi)−
1

p

p∑
i=1

log(D(G(xi))).

V. EXPERIMENTS

We run an extensive set of experiments to validate our
methods. To visually demonstrate the idea of our algorithm,
we first show the experiment on synthetic datasets. Then we
further show the effectiveness on three real-world datasets:
two public datasets and one industry dataset. We demonstrate
two real-world applications for the industry dataset, where
removing a location feature by our approach improves the mer-
chant identification accuracy and cross-city restaurant recom-
mendation performance. The proposed algorithm significantly
outperforms the state-of-the-art unsupervised linear methods
on all of the datasets.

We use linear SVM as the classifier to identify the features;
it could be replaced by other classifiers. The model is trained
on 80% of the data, and the one vs. all AUC is calculated from
the remaining 20% of the data. We repeat the experiments 10
times to get the average results. For all the experiments, F1 is
the feature we want to retain, and F2 is the feature we want
to remove.



(a) Raw data (b) α = 5

(c) α = 1 (d) α = 0

Fig. 2: Balanced synthetic data

A. Synthetic Datasets

Synthetic datasets have two dimensions; each corresponds
to one type of binary feature. The x-axis varies with the color
feature, and the y-axis varies with the lightness feature. The
two binary features split the dataset into four parts, and each
part is generated by a Gaussian distribution with the same
covariance matrix. In this experiment, we aim to remove the
color feature (F2) and retain the lightness feature (F1).

1) Balanced Dataset: Based on the color feature, we sep-
arate this dataset into two parts, each of which has 10, 000
points. The original visualization of the dataset is shown in
Figure 2(a). To remove the color feature, we map blue points
to red points. By varying α, which controls how much we
preserve the structure of the original dataset, the results differ
visually and analytically. From Table I, smaller α (α > 0)
emphasizes the generator matching G(X) to Y , making it
more challenging for the discriminator to distinguish the target
data and generated data, and thus the smaller AUC on color
feature. Lightness feature is resilient to α in 0.1 to 5, and
retains high AUC (from 0.98 to 0.97; see Table I). We can
also observe from Figure 2(b)(c) that smaller α (α > 0) can
better align the source to target domain. However, when α
is too small (see α = 0, so no constraint term), we give
too much freedom to the generator without preserving the
original data, and thus F2 is not well preserved in Figure 2(d),
and the AUC of F2 is reduced dramatically. The optimal α
varies by datasets, but the algorithms are generally robust to
this choice. Empirically, α = 1 works well for most datasets
(which balances the matching of G(X) and Y with G(X)
and X), and unless specified, we use α = 1 for the remaining
experiments.

2) Imbalanced Dataset: The second synthetic dataset (see
Figure 3) is generated through a similar process except for
the number of each set of blue points reduces from 10, 000 to
1, 000; the color feature separates the whole dataset into two
imbalanced parts. We still attempt to align the blue points to
the red points. Color feature initially has an AUC of 0.88 and
can be reduced to AUC = 0.5 with α = 0.1 through α = 5.
When α = 0, the Lightness feature’s AUC remains 0.88.

We continue our experiments with the synthetic datasets
which have two classes for the lightness feature (light and

TABLE I: Results on Synthetic Dataset. We report the AUC for
lightness feature (F1) and color feature (F2).

Balanced Data Imbalanced Data
F1 AUC F2 AUC F1 AUC F2 AUC

Raw data 0.98 0.82 0.98 0.82
α = 5 0.97 0.70 0.97 0.50
α = 1 0.97 0.60 0.97 0.50
α = 0.5 0.97 0.57 0.97 0.50
α = 0.3 0.97 0.55 0.97 0.50
α = 0.1 0.97 0.52 0.97 0.50
α = 0 0.59 0.78 0.88 0.50

(a) Raw data (b) α = 5

(c) α = 1 (d) α = 0

Fig. 3: Imbalanced synthetic data

dark), but now three classes for the color feature (green, red
and blue). The visualization of the multi-label dataset is the
same as the binary dataset: the x-axis varies with Feature 1
(F1) which is the color feature, and the y-axis varies with
Feature 2 (F2) which is the lightness feature. To reduce the
color feature, we can fix one color as the target domain and
the other two colors as the source domains. For the balanced
dataset, the choice of color as the target domain does not affect
the results. However, for the imbalanced case where there are
1, 000 green points, 10, 000 red points and 10, 000 blue points
(illustrated in Figure 4(a)), the choice of target domain has a
significant impact on the result. When we choose green as the
target domain and map red and blue points to green points
(Figure 4(b)), although red and blue points are aligned with
green points, they are still not overlapped as desired. This is
because blue or red points tend to align along their boundaries
due to the structure-preserving components. Although smaller
α could solve the issue, the rule of thumb solution is choosing
the domain with the most points as the target domain. For
example, if we choose red points as the target domain and
map green and blue points to the domain of the red points
(Figure 4(c)), the three-color datasets are well overlapped. The
color feature are significantly removed with AUC from 0.77
to 0.64 (Table III).

B. Real Datasets

We use three real-world datasets to demonstrate the effec-
tiveness of the proposed algorithm. Since our goal is to retain
the F1 feature and remove the F2 feature, if AUC score of F1
is not reduced more than 10%, the ratio score (AUC score of
F1)/(AUC score of F2) is being calculated. A higher score



TABLE II: Results on airport embedding dataset. O represents the original result, C is the proposed algorithm (UCAN) result, M is the
MUSE baseline and U is the UMWE baseline. We report the AUC scores for activity feature (F1) and location feature (F2).

O F1 O F2 O F1/O F2 C F1 C F2 C F1/C F2 M F1 M F2 M F1/M F2 U F1 U F2 U F1/U F2
Brazil→Europe 0.80 1 0.80 0.77 0.84 0.92 0.76 0.97 0.78 0.57 0.71 NA
Europe→Brazil 0.80 1 0.80 0.79 0.86 0.92 0.82 0.95 0.86 0.57 0.80 NA
Brazil→USA 0.85 1 0.85 0.85 0.61 1.39 0.83 0.98 0.85 0.5 1 NA
USA→Brazil 0.85 1 0.85 0.88 0.91 0.97 0.87 0.93 0.94 0.52 0.51 NA
USA→Europe 0.84 1 0.84 0.85 0.90 0.94 0.83 0.92 0.90 0.54 0.53 NA
Europe→USA 0.84 1 0.84 0.83 0.62 1.34 0.80 0.99 0.81 0.49 0.97 NA

(a) Raw data with

(b) Green as target domain (c) Red as target domain

Fig. 4: Imbalanced multi-label synthetic dataset.

TABLE III: Results on imbalanced synthetic multi-label dataset. We
report the AUC for lightness (F1) and color (F2).

F1 AUC F2 AUC
Raw data 0.98 0.81
Green Target 0.98 0.77
Red Target 0.98 0.64

means better performance. If AUC score of F1 is reduced
more than 10%, the ratio score is set to NA. O represents
the original result, C is the proposed algorithm result, M
(MUSE [19]) and U (UMWE [20]) are the baseline results.
For MUSE and UMWE, we use the default setting, where
we run 5 million iterations with batch size 32, the number
of refinements is 5 for the airport and merchant embedding
dataset and 0 for the multi-language embedding dataset. For
our algorithm, we set the number of iterations as 1 million,
batch size as 32 for multi-language embedding dataset; the
number of iterations as 30k and batch size as 512 for all the
other experiments.

1) Airport Embedding Dataset: The air-traffic networks
dataset includes three air-traffic networks [26]: Brazil, Europe
and the USA: each node is an airport, and each edge shows the
existence of commercial flights between airports. We consider
two features: the level of activity (F1) with 4 classes, and
country location (F2) with 3 classes. We apply the DEMO-
net [27], which is a degree-specific graph neural network
for node and graph classification, to train the model and
get embeddings of all the nodes. Since the three networks
are trained separately, if we view all the embeddings as one
dataset, the location feature (F2) is definitely embedded. With
the level of activity as the label used during the whole training
process, the level of activity (F1) is also strongly represented
in the embeddings. We use pairwise classification henceforth.

From Table II, the original features are labeled as O F1 and
O F2, for all pairs, the AUC for location feature is 1 and AUC
for the activity feature is around 0.8. Our approach (labeled as
C F1 and C F2) can reduce the weight of the location feature
(F2) by about 9% − 39% for different pairs with minimal
degradation of activity (F1). The result of the baseline methods
MUSE, UMWE are labeled as M F1 and M F2 & U F1 and
U F2. Compared with our algorithm, MUSE and UMWE do
not perform well. The F1/F2 score only marginally increases
for MUSE and not at all for UMWE, whereas our algorithm’s
ratio score increases about 15% to 63%. We mark U F1/U F2
as NA since U F1 is degraded so much that this measure is
not useful.

2) Multi-language Embedding: For multi-language embed-
ding, our goal is to remove the “language” feature, and retain
meanings of the words from different languages. We use unsu-
pervised word vectors that were trained using fastText1 [28].
These correspond to monolingual embeddings of dimension
300 trained on Wikipedia corpora. The languages focused on
in our experiments are English (en), Spanish (es), French (fr),
German (de), Russian (ru) and Italian (it). English is the source
domain when translating English to other languages, while
other languages are target domains. When we translate other
languages into English, English is the target domain, and other
languages are the source domains. We use the standard K-
nearest neighbor (NN) and Cross-Lingual Similarity Scaling
(CSLS) [19] as the evaluation approaches. We measure how
many times one of the correct translations of a source word
are retrieved, and report the precisions for K = 1, 5, 10 in
Table IV. Our algorithm outperforms MUSE and UWME in
most language pairs, except for MUSE on English to Spanish,
and UWME on English to Russian. Our algorithm achieves
the best result in the other 8 pairs and is nearly best on the 2
exceptions.

We also demonstrate the results on languages which are
less similar to English, including Greek (el), Vietnamese (vi),
Arabic (ar), Czech (cs) and Dutch (nl). As shown in Table
V, our model can outperform MUSE and UMWE on all the
language pairs. For language pair el-en, en-vi, vi-en, ar-en,
MUSE cannot find a valid mapping. Thus both NN and CSLS
results are close to 0. This is probably because el, vi and ar are
from different language families as en. UMWE can overcome
this issue by mapping them at the same time, but both NN
and CSLS are not as good as our model. In conclusion, our
model UCAN is very robust and can extend to any language

1https://github.com/facebookresearch/fastText



TABLE IV: Results on multi-Language embedding for word translation. NN and CSLS are two evaluation approaches. We use precision as
metric for K = 1, 5, 10. C is the proposed algorithm (UCAN) result, and M is the MUSE baseline method and U is the UMWE baseline
method.

en-es es-en en-fr fr-en en-de de-en en-ru ru-en en-it it-en

M NN
K@1 69.07 64.40 53.96 61.6 61.02 51.40 24.20 32.00 56.45 59.33
K@5 82.93 78.40 65.08 75.93 71.19 66.60 44.20 50.00 66.13 73.73
K@10 86.87 81.8 68.25 80.60 72.88 71.93 51.40 56.20 69.35 81.13

U NN
K@1 64.13 61.73 62.47 61.27 52.40 51.73 27.47 39.13 56.73 57.27
K@5 76.20 75.80 75.73 75.67 74.27 67.33 52.33 57.67 71.67 71.27
K@10 79.47 79.60 79.60 79.47 79.13 71.87 60.87 63.53 76.33 75.33

C NN
K@1 68.93 72.00 69.60 69.00 60.27 61.80 25.73 46.60 61.33 63.07
K@5 81.26 84.60 82.93 83.13 79.33 76.26 51.33 65.73 77.93 79.07
K@10 85.00 88.40 85.80 87.20 83.27 80.80 59.80 70.26 82.87 82.53

M CSLS
K@1 76.00 71.93 68.25 69.87 71.19 57.20 27.80 37.00 66.13 66.53
K@5 86.86 83.20 79.37 82.47 79.66 72.87 49.93 57.67 79.03 79.20
K@10 89.60 85.87 80.95 85.40 81.36 77.07 56.60 63.53 82.26 82.33

U CSLS
K@1 70.07 68.67 69.00 68.93 59.47 58.80 32.33 45.80 63.53 65.13
K@5 81.20 81.27 82.20 81.67 78.60 73.47 58.33 64.33 77.27 77.07
K@10 84.60 84.20 84.87 84.93 83.20 76.93 66.27 69.93 82.00 80.33

C CSLS
K@1 72.00 77.60 74.93 75.73 64.47 65.33 30.00 50.20 66.93 69.20
K@5 84.46 87.60 86.40 87.47 81.27 78.60 57.20 70.20 81.80 82.73
K@10 87.13 90.00 88.46 90.33 85.60 83.33 64.26 74.40 85.47 86.07

family, while MUSE is limited to work on languages similar
to English.

3) Merchant Embedding Dataset: This embedding dataset
is generated from a real-world transaction dataset from a
well-known global payment company involving 70 million
merchants and 260 million customers from December 1, 2017
to June 30, 2019. The merchant embedding is generated by
Word2vec [1], [10], where each merchant is treated as a word
and each customer as a document. The embedding is trained
on all available US transaction data. For this experiment,
we focus on the merchant embedding dataset in four areas:
Los Angeles (LA), San Francisco (SF), Chicago (CHI), and
Manhattan (MAN). We detect three prominent features in
this dataset: location, frequency, and merchant category code
(MCC), where the location is the feature to be removed,
and the other features are retained. Similar to the airport
dataset, we use pair-wise mapping to demonstrate the results.
In Table VI, F1 is the MCC feature, and F2 is the location
feature. Both our algorithm and baseline methods can reduce
the location feature while retaining the MCC feature; our
algorithm significantly outperforms MUSE and UMWE across
all the location pairs. By observing the F1/F2 ratio score, our
method clearly outperforms MUSE and UMWE.

Apart from MCC feature, we can also retain the frequency
feature (F3) when removing the location feature. We show the
results in Table VII. Both UCAN (our algorithm) and MUSE
can significantly reduce the location feature while retaining
the frequency feature; UCAN significantly outperforms MUSE
across all the location pairs. F3/F2 is increased from 10% to
50% under the MUSE algorithm, while UCAN increases from
43% to 78%.

C. Downstream Task: On Merchant Data Set

1) False Merchant Identity Detection: In this section, we
use a real-world application as a downstream task to evaluate
the effectiveness of the embedding mapping algorithm for
the merchant embedding dataset. Credit/debit card payment

volume has proliferated in recent years with the rapid growth
of small businesses and online shops. When processing these
payment transactions, recognizing each merchant’s real iden-
tity (i.e., merchant category) is vital to ensure the integrity
of payment processing systems. For example, a high-risk
merchant may pretend to be in a low-risk merchant category by
reporting a fake merchant category to avoid higher processing
fees associated with risky categories. Specific business type
(i.e., gambling) is only permitted in some regions and terri-
tories. A merchant could report a false merchant category to
avoid scrutiny from banks and regulators.

Accurate embeddings are an essential part of our merchant
false identity detection [29]. The merchant category identifi-
cation system monitors the transactions of each merchant and
notifies the investigation team whenever the identified mer-
chant mismatches with the merchant’s self-reported category.
As shown in the architecture design of our classification model
(Figure 5), the two types of features we used for the classi-
fication model are each merchant’s embedding (i.e., learned
through Word2vec based on [10], [30]) and the time series
capturing each merchant’s transaction behavior. However, the
major information captured by the Word2vec-based merchant
embedding is the geological location of the merchant. Thus,
attenuating the dominant geolocation component should en-
hance the classification performance from the embeddings.

To test the performance of different embedding mapping
algorithms, we train our model with Los Angeles’s merchants
and test the model on San Francisco’s merchants. This way,
we can directly examine the difference between merchant
embeddings contaminated with geological location informa-
tion and merchant embeddings free of geological location
information. The number of merchant categories in our dataset
is 50. Table VIII shows result of classification experiment.
We use conventional classification performance measurements
like micro f1, macro f1, hit rate at 3, and hit rate at 5.
As expected, attenuating the geological location information
is crucial for learning a more accurate classifier. The raw



TABLE V: Results on multi-Language embedding for word translation. NN and CSLS are two evaluation approaches. We use precision as
metric for K = 1, 5, 10. C is the proposed algorithm (UCAN) result, and M is the MUSE baseline method and U is the UMWE baseline
method.

en-el el-en en-vi vi-en en-ar ar-en en-cs cs-en en-nl nl-en

M NN
K@1 13.87 0.00 0.00 0.07 12.47 0.00 24.73 41.67 49.07 45.53
K@5 31.13 0.00 0.13 0.07 26.33 0.07 42.00 58.33 67.80 61.87

K@10 38.33 0.00 0.33 0.07 32.27 0.07 49.67 64.40 73.33 67.00

U NN
K@1 18.73 26.27 3.27 1.87 14.60 22.49 26.87 31.13 43.07 33.67
K@5 36.47 44.80 8.40 5.60 32.00 38.35 46.53 48.00 60.20 48.93

K@10 43.27 50.53 10.73 8.53 38.87 44.51 53.20 53.07 66.07 54.13

C NN
K@1 28.20 41.47 12.13 31.93 19.97 34.80 28.33 49.73 60.00 61.67
K@5 46.60 59.93 23.27 45.33 41.45 51.74 50.27 67.73 76.40 75.60

K@10 52.53 65.27 27.67 49.60 48.67 57.50 58.93 71.60 80.60 79.27

M CSLS
K@1 22.67 0.00 0.00 0.00 15.00 0.00 31.07 47.53 59.67 55.33
K@5 42.93 0.00 0.07 0.07 32.60 0.07 52.80 65.53 77.27 70.93

K@10 50.80 0.00 0.07 0.07 39.00 0.07 60.07 70.67 82.73 75.00

U CSLS
K@1 25.20 34.47 6.27 4.20 18.47 28.45 32.93 38.53 50.67 43.67
K@5 44.00 54.33 13.07 10.93 37.20 46.92 53.67 55.67 67.60 57.93

K@10 50.33 59.07 16.27 14.93 44.07 52.95 61.07 60.20 72.67 63.33

C CSLS
K@1 32.40 45.80 21.80 38.33 23.93 36.81 34.13 53.60 67.47 68.67
K@5 51.53 64.27 33.93 50.26 45.60 54.75 57.20 69.80 82.07 80.60

K@10 57.87 69.47 38.33 54.86 52.28 59.71 64.27 74.47 85.53 83.20

TABLE VI: Results on Merchant Embedding Dataset. O represents the original result, C is the proposed algorithm (UCAN) result, M is
the MUSE baseline and U is the UMWE baseline method. We report the AUC scores for MCC feature (F1) and location feature (F2).

O F1 O F2 O F1/O F2 C F1 C F2 C F1/C F2 M F1 M F2 M F1/M F2 U F1 U F2 U F1/U F2
LA→SF 0.64 0.88 0.73 0.62 0.59 1.05 0.62 0.63 0.98 0.62 0.77 0.81
SF→LA 0.64 0.88 0.73 0.62 0.61 1.02 0.61 0.78 0.78 0.62 0.75 0.83
LA→CHI 0.58 0.95 0.61 0.57 0.57 1.00 0.58 0.71 0.82 0.57 0.79 0.72
CHI→LA 0.58 0.95 0.61 0.56 0.57 0.98 0.57 0.63 0.90 0.57 0.75 0.76
SF→CHI 0.65 0.93 0.70 0.63 0.59 1.07 0.61 0.79 0.77 0.64 0.82 0.78
CHI→SF 0.65 0.93 0.70 0.63 0.56 1.13 0.63 0.66 0.95 0.64 0.76 0.84
MAN→LA 0.61 0.90 0.68 0.59 0.54 1.09 0.59 0.82 0.72 0.60 0.75 0.80
LA→MAN 0.61 0.90 0.68 0.59 0.54 1.09 0.59 0.60 0.98 0.59 0.73 0.81
MAN→SF 0.66 0.88 0.75 0.64 0.53 1.21 0.64 0.62 1.03 0.64 0.71 0.90
SF→MAN 0.66 0.88 0.75 0.64 0.53 1.21 0.64 0.62 1.03 0.65 0.68 0.96
MAN→CHI 0.62 0.93 0.67 0.60 0.52 1.15 0.59 0.80 0.74 0.61 0.80 0.76
CHI→MAN 0.62 0.93 0.67 0.60 0.52 1.15 0.61 0.61 1.00 0.62 0.75 0.83

TABLE VII: Results on Merchant Embedding Dataset. O represents the original result, C is the proposed algorithm (UCAN) result, and
M is the MUSE baseline. We report the AUC scores for frequency feature (F3) and location feature (F2).

O F3 O F2 O F3/O F2 C F3 C F2 C F3/C F2 M F3 M F2 M F3/M F2 U F3 U F2 U F3/U F2
LA→SF 0.57 0.88 0.65 0.58 0.59 0.98 0.57 0.63 0.90 0.6 0.77 0.89
SF→LA 0.57 0.88 0.65 0.57 0.61 0.93 0.57 0.78 0.73 0.61 0.75 0.81
LA→CHI 0.59 0.95 0.62 0.59 0.57 1.04 0.59 0.71 0.83 0.59 0.79 0.75
CHI→LA 0.57 0.95 0.60 0.57 0.57 1.00 0.56 0.63 0.89 0.57 0.75 0.76
SF→CHI 0.57 0.93 0.61 0.57 0.59 0.97 0.57 0.79 0.72 0.62 0.82 0.76
CHI→SF 0.59 0.93 0.63 0.59 0.56 1.05 0.59 0.66 0.89 0.59 0.76 0.78
MAN→LA 0.57 0.9 0.63 0.56 0.54 1.04 0.57 0.82 0.70 0.59 0.75 0.79
LA→MAN 0.57 0.9 0.63 0.57 0.54 1.06 0.56 0.6 0.93 0.58 0.73 0.79
MAN→SF 0.58 0.88 0.66 0.59 0.53 1.11 0.58 0.62 0.94 0.6 0.71 0.85
SF→MAN 0.59 0.88 0.67 0.58 0.53 1.09 0.59 0.62 0.95 0.6 0.68 0.88
MAN→CHI 0.59 0.93 0.63 0.58 0.52 1.12 0.59 0.8 0.74 0.59 0.80 0.74
CHI→MAN 0.59 0.93 0.63 0.58 0.52 1.12 0.58 0.61 0.95 0.56 0.75 0.75

TABLE VIII: Performance of the merchant category classification
model.

Micro F1 Macro F1 Hit@3 Hit@5
Raw data 0.2884 0.2352 0.4453 0.5154
MUSE 0.3142 0.1836 0.4952 0.5931
UCAN (ours) 0.3338 0.2742 0.5592 0.6543

embedding performs the worst in almost all performance
measurements compared to both MUSE and UCAN. MUSE
general performs better than the raw embedding, but the macro
f1 is much worse compared to the raw embedding. Lastly, our

proposed UCAN embedding mapping algorithm overall has
the best performance across all performance measurements
compared to the baseline method.

Since our goal is to detect merchants with false merchant
categories instead of classification, we further evaluate the
accuracy of the complete detection system. In our system,
the particular detection rule we used is: if a merchant’s self-
reported merchant category is not within the top-kth most
likely merchant category, the merchant will be reported as
a suspicious merchant where k is an adjustable threshold for
our detection system. To perform the evaluation, we randomly
select 10% of the test merchant and randomly change their



…

Merchant Category 
Identify System

Merchant

Transactions

Investigation Team
AlertInvestigation

Transaction
Database

Merchant
Database

Classification
ModelFeature

Detection 
Rule

Predicted
Category

Reported
Category

AlertTransaction

merchant embedding 
0 5 0 1 0 3 1

…

merchant time series 

1D Conv Net

MLP

Softmax

predicted merchant 
category 
0.1 0.2 0 0.6 0 0.1

MLP Global 
Pooling

Fig. 5: Overall system design and architecture design for our mer-
chant category classifier. MLP stand for multilayer perceptron and
the 1D convolutional net uses a design similar to the temporal
convolutional network.

0 5 10 15 20 25 30

0.05

0.43

F1

0 5 10 15 20 25 30
Threshold

0

1600

Fl
ag

ge
d

M
er

ch
an

t Raw
Muse
Our

Fig. 6: The performance of the merchant category identification
system.

self-reported merchant category to emulate the process of
one merchant faking its merchant identity. As we vary the
detection threshold, we report the f1 score and the number
of suspicious flagged merchants. The experiment result is
shown in Figure 6. Our attenuating method can generate better
quality embeddings comparing to other methods. The resulting
merchant category identification system can capture suspicious
merchants more accurately and also report less suspicious
merchants to the investigation team than the system using raw
or MUSE processed embeddings.

2) Cross-City Restaurant Recommendations: Another ap-
plication under merchant embeddings is to recommend restau-

TABLE IX: Performance of the cross-city restaurant recommenda-
tions of UCAN with different α.

Score
Raw data 60.36
MUSE 60.33
α = 5 63.51
α = 2 64.11
α = 1 63.60
α = 0.5 63.51

rants to a customer across different cities based on the cus-
tomer’s historical transactions in the home city. We evaluate
the effectiveness of removing the location feature using a real-
world restaurant recommendation system [31]. For this eval-
uation, we choose the recommendation system’s collaborative
filtering model, as its performance is heavily dependent on
the quality of the embedding. Figure 7 shows how different
components of the recommendation system interact with each
other during inference time. For a specified area (zip code), the
recommendation model ranks the restaurants on how similar
they are to the restaurants visited by a customer previously
and uses the similarity score to rank the restaurants. For
this experiment, we sample around 10K customers having
restaurant transactions from May 2019 to Oct 2019 in SF and
travel to LA from Nov 2019 to Dec 2019. Our goal is to recom-
mend LA restaurants for the sampled customers. For historical
transactions, we use customers’ SF transactions from May
2019 to Oct 2019. Utilizing the recommendation model for
a customer, we obtain the top 15 restaurants from the ranked
list of LA restaurants and compute the score as a percentage
of recommended restaurants in the real restaurant transactions
made by the customer in LA from Nov 2019 to Dec 2019.
For this test case, our original Word2Vec embeddings give a
score of 60.36%. After removing the location feature between
SF and LA, the score increases to 63.60%, while MUSE does
not improve the score.

To test the effectiveness of UCAN under a large range of α,
we vary α from 0.5 to 5. All the alphas can work consistently
well and α = 2 gives the best results. Using α = 1 as the rule
of thumb can generally give good results. Table IX shows that
our algorithm outperforms the original Word2Vec embeddings
on this task regardless of the value of α (beyond our default
α = 1).

VI. CONCLUSION

We provide new and very general methods to measure
and attenuate features from embeddings, and demonstrate
effectiveness on four data sets and two novel downstream
tasks. Our key contribution is UCAN, an alignment algorithm
which using the DAN framework to learn an unrestricted
mapping from data with one feature label to data with the
other, but adding a simple cosine similarity constraint to retain
the structure. We demonstrate that UCAN is a simple and
effective method to refine embeddings.
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