
Adaptive Log Compression for Massive Log Data

Robert Christensen Feifei Li

robertc@eng.utah.edu, lifeifei@cs.utah.edu, School of Computing, University of Utah

ABSTRACT

We present a novel adaptive log compression scheme. Results show

30% improvement on compression ratios over existing approaches.

Categories and Subject Descriptors

H.2.4 [Information Systems]: Database Management – Systems

Keywords

Log compression, adaptive log compression, log data management

1. PROBLEM STATEMENT
Log data is ubiquitous and humongous. The standard log com-

pression method is to compress the entire log data together.

But in practice log entries are often heterogeneous, with varying

patterns over time. They also have strong temporal locality. Thus, a

better approach is to adaptively distribute entries to different buck-

ets, and compress buckets separately in parallel. Formally,

Definition 1 (Adaptive Log Compression) For a log data D with

n log entries e1, . . . , en (sorted on arrival timestamps) , a budget g,

produce g disjoint log buckets B1, . . . , Bg , such that ∀i ∈ [1, n],
∃j ∈ [1, g], ei ∈ Bj , and ∀x, y ∈ [1, g], Bx∩By = ∅. Each bucket

also stores sorted log entries. Given any compression method Z,

Z(D) is the compressed output with size (in bytes) |Z(D)|. The

objective is to maximize |Z(D)| −
∑g

j=1 |Z(Bj)|.

2. TECHNICAL APPROACH
Consider a snippet from a real log data in Figure 1. To minimize

heterogeneity in a log bucket, ideally, log entries in green solid box

should be partitioned into one log bucket, and entries in red dashed

box will be in another bucket. The challenge is to achieve adaptive

distribution online to get homogeneous buckets.

We impose a sliding window wi of size m on bucket Bi, that

keeps track of most recent m entries in Bi. The jth entry in wi is

ei,j (ei,1 being the most recent). For each entry, we construct a sig-

nature with a mapping function σ, i.e., σi,j = σ(ei,j). Assume a

similarity function sim : (σ1, σ2) → [0, 1] which gives a similarity

score for any two signatures. For an incoming log entry enext, we

define the score of enext on the ith bucket Bi as follows:

s(enext, i) = avg{sim(σ(enext), σi,j), for j ∈ [1,m]}, (1)

i.e., the average similarity between enext’s signature and any sig-

nature of the m entries in wi. Our adaptive scheme sends enext to

bucketBj with the maximum score, i.e, j = argmaxi∈[1,g] s(enext, i).

Copyright is held by the author/owner(s).
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
ACM 978-1-4503-2037-5/13/06.

Figure 1: Snippet from the Red Storm HPC server log.
When all entries have been processed, we compress B1, . . . , Bg

independently in parallel. We base our construction of σ by view-

ing each log entry as a set of elements (e.g., q-grams). We then

develop a log signature σ based on the k-minimum value syn-

opses [1]. Different similarity functions sim can be used; we report

only the one that is a variant of the Jaccard similarity.

3. MAIN RESULTS
Compressing the entire log together is dubbed centralized. Two

naive bucketization methods, round robin and segmentation, were

also tested. The former distributes entries to different buckets in

a round robin fashion; the latter divides D into g disjoint but con-

tiguous segments with same number of entries.

We show the results using gzip on an Apache web server log.

It has 26 million entries, totaled 8GB. Other compression methods

and datasets were also tested, giving similar results.

We use centralized as a reference point which has a compressed

size of 533MB using gzip. The output size of any method is shown

as a ratio to the output size of centralized in Figure 2. For adaptive,

round robin, and segmentation methods, the default bucket budget

g is 32; for adaptive, the default sliding window size m is 10.

Figure 2 shows up to 30% improvement in compression ratios

achieved by adaptive over centralized, using small g and m values.

It also shows the ineffectiveness of naive bucketizations. Lastly, be-

cause adaptive is a streaming algorithm, and can distribute entries

and compress buckets independently in parallel, its overall running

time is comparable to that in centralized (omitted for space).

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5
round robin-g=32

segmentation-g=32

centralized

adaptive-g=4, m=10

adaptive-g=8, m=10

adaptive-g=16, m=10

adaptive-g=32, m=10

adaptive-g=64, m=10

(a) Vary bucket budget g.
 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4 round robin-g=32

segmentation-g=32

centralized

adaptive-m=1, g=32

adaptive-m=5, g=32

adaptive-m=10, g=32

adaptive-m=15, g=32

adaptive-m=20, g=32

(b) Vary sliding window size m.

Figure 2: Effect of bucket budget and history depth.

4. CONCLUDING REMARKS
An interesting challenge is to improve adaptive to learn the best

values for g and m online and adjust them dynamically over time.

5. REFERENCES
[1] K. S. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and R. Gemulla. On synopses

for distinct-value estimation under multiset operations. In SIGMOD, 2007.


