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OVERVIEW

= Twitter trends

= Real-time trending (bursty) event detection
= Tells people what’s happening

= Help people react to important uprising events in their
early stages while they are still developing

= Well studied problem

= Historical Bursty Events:

= Not a well studied problem but relevant for data scientists.
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BURSTINESS

Intuition: Examples of bursty and non-bursty events
= Earthquake: discussed frequently in a time range

= Weather: discussed frequently all the time

Insight: Bursty = Surge in incoming rate

Definition: The burstiness of event e at time ¢ is

B (t) = bf(t) = bfe(t — 1)

where bf,(t) is the incoming rate of event e within time
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Figure 1: An example of burst where 7 = 1.
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HISTORICAL BURSTY EVENTS

= Interesting problem:

How to query and analyze bursty events from past
efficiently?

= Query Examples:
1. What are the bursty events in the first week of October
in 20167

2. Is*“Anthem Protest” a bursty event in second week of
September in 20177

= Understand and analyze bursty events by going back and
forth in time.
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Store timeline curves of all
events in the history.

BASELINE

Cost: #events * #timestamps SOLUTION

Infeasible!!!
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PROBLEM

AND DESIGN GOALS

Given a temporal stream of events, design an approach to store the stream with
compact space, and answer the following queries with theoretical bounded error:
1. Bursty Point Query: How bursty is this event at this time?
= Query the burstiness value for event e at time ¢t
2. Bursty Time Range Query: In which time does this event become bursty?
= Query the timestamps that the burstiness value of event e is above threshold 6
3. Bursty Event Query: What events are bursty at this time?
= Query the events that has burstiness value above threashold 6 at time ¢

Focus on Bursty Point Queries, then extend to other queries.
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STAIRCASE CURVE

A single event stream represented as a staircase curve.

A

Cumulative Count of event mentions
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PBE-1 APPROXIMATION:
BUFFERED SOLUTION

= Original data F(t): frequency staircase curve

= Compress data F*(t): a staircase curve that under the
original staircase

= “Distance” between FA(t) to F(t) is defined by the area of
F-FA(t)

= Lemma: The corners of the optimal staircase must contain
only the corners of F(t)

= Select a subset of staircase corner points to form a sub-
staircase

= Dynamic Programming
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Figure 3: An example of PBE-2.

(b) A PLA L for A.

PBE-2 APPROXIMATION:
ONLINE SOLUTION

= Piecewise Linear Approximation

= Use multiple segments to
represent the original staircase
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MULTIPLE EVENT STREAM

= Count-Min (CM) Sketch

= The count-min sketch (CM sketch) is a
probabilistic data structure that serves
as a frequency table of events in a
stream of data

= Combining CM with PBEs
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0THER TYPES OF QUERIES

= Bursty time range query
= Check only the corner points

= Bursty event query

= Log N number of CM-PBE where N is
number of events.
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Figure 6: Binary decomposition of the event id space.
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EXPERIMENT DATASETS

. . = OlympicRio: 50M tweets in August 2016 about
| —o— Swimming | —o— Swimming Olympic Games Rio with 864 events.

T % = Swimming and Soccer
w
E 5
2, “ = USPolitics: 286M tweets from June 2016 to
0 S 30 0 v 20 30 November 2016 on US politics with 1689 events.
Randomly sampled to make it as large as
(a) Incoming rate. (b) Burstiness.

OlympicRio.

Figure 7: Two events in olympicrio. 7 = 86, 400 seconds (1 day).
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Figure 8: PBE-1 parameter study.

301 30 800
® e Spae (soccer) @ —8— Soccer
™y A\ —A— Space (swimming) \.E, 600- —&— Swimming
X 92 \ Time (soccer/swimming) _._)”g -
= AR F 5
3 N\ e £ 400 =
o .. S u
3 10 ®e H105 o
3] 9 = 9 | -
= _*__:_._—:Q_;._x - 200 /
Lo oo S r.,r‘
O )
0 0 0

0 100 200 300 200 400 600
Error Parameter: ~ Error Parameter: »

(a) Space and construction costs. (b) Query accuracy.

Ficure 9: PBE-2 parameter study.

PARAMETER STUDY

= PBE-1 (offline):
= Tradeoff: Error vs Space + Time
= Long construction time (~1min)
= Small space cost
= Low error

= PBE-2 (online):
= Tradeoff: Error vs Space
= Short construction time (~10ms)
= Small space cost

= Relatively high error when compared with
PBE-1
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Error

SINGLE EVENT STREAM

3007 = 300x Space save compared with baseline
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Figure 10: PBE: single event stream.
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Figure 11: CM-PBE: Space vs accuracy.

MULTIPLE EVENTS STREEM

= 100x Space save compared with baseline
= 12 GB raw data to 80 MB meta data.

= Low error for both approaches, PBE-1 (offline)
performs better.
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CONCLUSION

We have unleashed the potential of Bursty Event Detection for past events.

Existing work focus on Real-time bursty detection, doesn’t discuss on efficient storage for
retrieval.

We propose a framework to answer historical bursty event queries with small space.
= Single event stream
= Offline Dynamic Programming: Optimal but requires buffering
= Online Piecewise Linear Approximation: Fast and no-buffering, but with higher error.

= Multiple events stream: A variant of Count-Min Sketch

Supported queries
= Point query
= Bursty time range query
= Bursty event query
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QUESTIONS







Event
Mentioning of e

_______ Cumulative
frequency

~ Burst frequency
(Incoming Rate)

Burstiness
(Acceleration)

Value

0 1 2 3 4 5 6 7 8
Time

Figure 1: An example of burst where 7 = 1.
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PBEL: OFFLINE OPTIMAL SOLUTION

= Input: P, The set of corner points in the original staircase
= Input: eta, the number of points in the output

= Output: P*, a subset of the input points with size eta

= Use Dynamic Programming to calculate optimal P*.

= A*(i,j): The optimal solution when chooseing i points from the first j points in P

.A*(l i) = min min,er;—q1 j—1) A%(¢ —1,2) —6(j, F*(2 — 1,x)); Choose the j-th point
“““.re[/.‘,— ] A*( , ). Not choose the j-th point

= Buffering in online case
= Buffer n points, run DP, concatenate optimal staircases
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