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Abstract—We present ATOM, an efficient and effective
framework to enable automated tracking, monitoring, and
orchestration of resource usage in an Infrastructure as a
Service (IaaS) system. We design a novel tracking method
to continuously track important performance metrics with low
overhead, and develop a principal component analysis (PCA)
based approach with quality guarantees to continuously moni-
tor and automatically find anomalies based on the approximate
tracking results. Lastly, when potential anomalies are identified,
we use introspection tools to perform memory forensics on
virtual machines (VMs) to identify malicious behavior inside
a VM. We deploy ATOM in an IaaS system to monitor VM
resource usage, and to detect anomalies. Various attacks are
used as examples to demonstrate how ATOM is both effective
and efficient to track and monitor resource usage, detect
anomalies, and orchestrate system resource usage.

I. INTRODUCTION

The Infrastructure as a Service (IaaS) framework is a
popular model in realizing cloud computing services. While
IaaS model is attractive, since it enables cloud providers to
outsource their computing resources and cloud users to cut
their cost on a pay-per-use basis, it has raised new challenges
in resource monitoring and security.

For example, Amazon Web Service (AWS) provides auto
scaling and load balancing services to help cloud users make
the best use of their (paid) resources. A critical module in
achieving this is the ability to monitor resource usage from
many virtual machines (VMs).

Security is another paramount issue while realizing cloud
computing through an IaaS system. For instance, it was re-
ported in late July 2014, adversaries attacked Amazon cloud
by installing distributed denial-of-service (DDoS) bots on
user VMs through exploiting a vulnerability in Elasticsearch
[11]. We discover that resource usage data could provide
critical insights to address security concerns. Thus, a cloud
provider could utilize the constantly monitored resource
statistics to do anomaly detection.

These observations illustrate that a fundamental challenge
underpinning several important problems in an IaaS system
is the continuous tracking and monitoring of resource usage,
which motivates us to design and implement ATOM.

Eucalyptus is an open source cloud software that provides
AWS-compatible environment and interface [17]. Eucalyptus

provides an AWS-like service called CloudWatch. Cloud-
Watch is able to monitor resource usage of each VM,
collected by each Node Controller (NC), and then reported
to the Cloud Controller (CLC). Clearly, gathering resource
usage in real time introduces overhead in the system (e.g.,
communication overhead). When there are plenty of VMs
to monitor, the problem becomes even worse. CloudWatch
addresses this problem by collecting measurements only
once every minute, but this provides only a discrete, sampled
view of the system status and is not sufficient to achieve
continuous understanding and protection of the system.

Another limitation in existing approaches like Cloud-
Watch is that they only do passive monitoring. We observe
that, e.g., in the aforementioned DDoS attack to Amazon
cloud, alarming signals can be learned from resource usage
data, which also provides the opportunities to trigger VM
introspection (VMI) to debug the system. VMI is used to
detect and identify malicious behaviors inside a VM, but go
through the entire memory constantly is expensive without
the knowledge of when and where. Our goal is to trigger
and guide VMI only when needed in an automatic manner.
Our contribution. Motivated by these discussions, we
present the ATOM framework. ATOM works with an IaaS
system and provides automated tracking, orchestration, and
monitoring of resource usage for a potentially large number
of VMs running on an IaaS cloud, in an online fashion.

ATOM introduces an online tracking module running at
NC and continuously tracks various performance metrics and
resource usage values of all VMs. The CLC is denoted as the
tracker, and the NCs are denoted as the observers. The goal
is to replace the sampled view at the CLC with a continuous
understanding of system status, with minimum overhead.

ATOM then uses an automated monitoring module that
continuously analyzes the resource usage data reported by
the online tracking module to detect anomaly. A naive
method would be to simply define a threshold value for any
metric of interest. Clearly, this approach is not very effective
against dynamic and complex attacks and anomalies. ATOM
uses a dynamic online monitoring method developed based
on PCA to do mining in the resource data, and generates
anomaly information to aid further analysis by the orches-
tration component when this happens.

Lastly, ATOM leverages existing VMI tools into its
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Figure 1. The ATOM framework.

orchestration component, which only introspects specific
regions in the VM memory space based on the information
provided by the online monitoring component, when it is
triggered to do so.
Paper organization. The rest of this paper is organized
as follows. Section II gives an overview on the design of
ATOM, and the threat model it considers. Sections III and
IV describe the online tracking and the online monitoring
modules in ATOM. Section V introduces the orchestration
module. Section VI evaluates ATOM using Eucalyptus
cloud and shows its effectiveness. Lastly, section VII reviews
the related work, and section VIII concludes the paper.

II. THE ATOM FRAMEWORK

Figure 1 shows the ATOM framework. For simplicity,
only one CC and one NC are shown. ATOM adds three
components to an IaaS system like AWS and Eucalyptus:

(1) Tracking component: ATOM adapts the optimal online
tracking algorithm inside the data collection service on NCs.
This enables continuous measurements at the CLC;

(2) Monitoring component (anomaly detection): ATOM
adds this component in the CLC. It uses a modified PCA
method which continuously analyzes a subspace defined by
the measurements from the tracking module, and automat-
ically raises an alarm whenever a shift in the subspace
has been detected. Even though PCA-based methods have
been used for anomaly detection in various contexts, a
new challenge in our setting is to cope with approximate
measurements produced by online tracking, and pinpoint the
abnormal dimensions to assist the orchestration.

(3) Orchestration component (introspection and debug-
ging): When a potential anomaly is identified by the mon-
itoring component, an INTROSPECT request along with
anomaly information is sent to the orchestration component
on NC, in which VMI tools are triggered to introspect the
specific regions inside a VM.
Thread Model. ATOM provides real time tracking and
monitoring on the usage of cloud resources in an IaaS
system. It further goes out to detect and prevent attacks that
could cause notable or subtle change in resource usage from
its typical subspace.

To that end, we need to formalize a threat model. We
assume cloud users to be trustworthy, but they might acci-
dentally run some malicious software out of ignorance. Also,
despite various security rules and policies that are in place,
it’s still possible that a smart attacker could bypass them
and perform malicious tasks. The malicious behavior could
very likely cause some change in resource usage. Note that,
however, this is not necessarily always accompanied with
more resource consumption! Some attacks could actually
lead to less resource usage, or simply different ways of using
the same amount of resources on average. All these attacks
are targeted by the ATOM framework.

III. TRACKING COMPONENT

Consider Eucalyptus CloudWatch as an example. It is
capable of collecting and aggregating data from resources
such as VMs and storage for as frequently as one minute and
store them for up to two weeks. It also allows cloud users
to set some alarm (essentially, a threshold) for a specific
measure, and be notified or let it trigger some predefined
action if the alarm conditions are met.

Various measures are monitored overtime on each VM,
each of which is called a metric. The measurement for each
metric, for example, Percent for CPUUtilization, Count for
DiskReadOps and DiskWriteOps, Bytes for DiskReadBytes,
DiskWriteBytes, NetworkIn and NetworkOut, is called Unit
and is numerical.

A continuous understanding of these values is much more
useful than a periodic, discrete sampled view that is only
available, say, every minute. But doing so is expensive; an
NC needs to constantly sending data to the CLC. A key
observation is that, for most purposes, cloud users may
not be interested in the exact value at every time instance.
Thus, a continuous understanding of these values within
some predefined error range is an appealing alternative.
For example, it’s acceptable to learn that CPUUtilization
is guaranteed to be within ±3% of its exact value at any
time instance.

This way NC only sends a value whenever the newest one
is more than ∆ away from last sent value on a measurement,
where ∆ is a user-specified, maximum allowed error on this
measurement. The CLC could use the last received value as
an acceptable approximation for all values in-between. In
practice, often time certain metrics on a VM do not change
much over a long period. Thus far fewer values need to be
sent to the CLC.

To achieve this, a naive method would be to send the exact
current value whenever it’s more than ∆ away from the last
sent one. But unfortunately, this seemingly natural idea may
perform very badly in practice. In fact, in the worst case,
its asymptotic cost is infinite in terms of competitive ratio
over the optimal offline algorithm that knows the entire data
series in advance. For example, suppose the first value NC
observes is 0 and then it oscillates between 0 and ∆ + 1.



Then NC continues to send 0 and ∆ + 1 to the CLC. While
the optimal offline algorithm could send only one message -
the value ∆

2 . Formally, this is known as the online tracking
problem, which is formalized and studied in [20]. In online
tracking, an observer observes a function f(t) in an online
fashion, which means she sees f(t) for any time t up to the
current. A tracker would like to keep track of the current
function value within some predefined error. The observer
needs to decide when and what value she needs to send to
the tracker so that the communication cost is minimized.

Suppose function f : Z+ → Z is the function that
observer observes overtime. g(t) stands for the value she
chooses to send to the tracker at time t. The predefined
error is ∆, which means at any time tnow, if the observer
does not send a new value g(tnow) to the tracker, it must
satisfy

∥∥f(tnow)− g(tlast)
∥∥ ≤ ∆, where g(tlast) is the last

value the tracker receives from the observer. This is an online
tracking over a one dimension positive integer function.

Instead of the naive algorithm that’s shown above, Yi
and Zhang provide an online algorithm that is proved to
be optimal with a competitive ratio of only O(log ∆); that
means in the worst case, its communication cost is only
O(log ∆) times worse than the cost of the offline optimal
algorithm that knows the function f(t) for entire time
domain [20]. But unfortunately, the algorithm works only
for integer values.

We observe that in reality, especially in our setting, real
values (e.g., “double” for CPUUtilization) need to be tracked
instead. To that end, we adapt the algorithm from [20], and
design Algorithm 1 to track real values continuously in an
online fashion. The algorithm performs in rounds. A round
ends when S becomes an empty set, and a new round starts.

Algorithm 1 One round of online tracking for real values
let S = [f(tnow)−∆, f(tnow) + ∆];
while Supper bound − Slower bound > γ do
g(tnow) = (Supper bound − Slower bound)/2;
send g(tnow) to tracker;
wait until

∥∥f(tnow)− g(tlast)
∥∥ > ∆;

Supper bound = min(Supper bound, f(tnow) + ∆);
Slower bound = max(Slower bound, f(tnow)−∆);

end while /* this algorithm is run by observer */

The central idea of our algorithm is to always send the me-
dian value from the range of possible valid values, denoted
by S, whenever f(tnow) has changed more than ∆ (could be
non-integer) from g(tlast). The next key observation is that
any real domain in a system must have a finite precision.
Suppose γ is the finest resolution for the floating point values
being tracked in the algorithm. Then at the beginning of each
round, the number of possible values within S is 2∆/γ,
and since S is a finite set, it always becomes an empty set
at some step following the above algorithm. As long as S
contains a finite number of elements in Algorithm 1, we
can show its correctness and optimality with a competitive

ratio of only O(log (∆/γ)). Due to the space constraint, the
proofs are omitted here but will be available in the extended
version of this paper.

In an IaaS system, an NC obtains the values for a metric
of interest and acts as an observer for these values, and then
chooses what to send to the CLC by following Algorithm 1.
The CLC, as the tracker, stores and analyzes these values,
whenever they are reported from an NC.

IV. MONITORING COMPONENT

By continuously tracking values of various metrics,
ATOM is able to do a much better job in monitoring system
health and detecting anomalies.

To find anomalies in real-time, a naive method is to utilize
the threshold approach used by CloudWatch to do auto
scaling tasks [2], which allows user to set an alarm along
with an alarm action that can be triggered if certain threshold
is met. However, in practice, it is very hard to set a magic
effective threshold in a dynamic environment like an IaaS
system. Besides, it’s inconvenient to change the threshold
for each metric every time a user changes workloads. Thus
an automated monitoring method would be very useful.

A. An overview of PCA method

Given a data matrix in Rd space, some dimensions in
which are possibly correlated, the PCA method could trans-
form this matrix into a new coordinate system, resulting a
set of principal components. The first principal component
points to the direction with the largest variance, and the
following principal components each points to the largest
variance direction that is orthogonal to all previous ones.
The intuition to use PCA for anomaly detection, is that
the abnormal data points most likely do not fit into the
correlation between each dimension in the original space.
Thus by transforming the data matrix into a new space, the
original abnormal point would have a large projection length
on the axis supposed to have very small variance. Hence
anomalies can be detected by analyzing the projection length
onto these axes. Using PCA for anomaly detection has been
widely studied for network traffic analysis [14], [16].

That said, there are three challenges we need to address:
1) do online PCA using a sliding window; 2) pinpoint
the abnormal dimensions once an anomaly is identified; 3)
handle approximate data from the tracking module and take
the tracking errors into analysis.

B. The data matrix

Suppose there are d′ metrics reported for each VM.
Then, PCA could be performed on these data which form a
t× d′ matrix, where t is the length of a time-based sliding
window. A more general and interesting case is to perform
online monitoring over a data matrix composed of multiple
VMs’ data, e.g., d = d′ · n dimensions where n is the
number of VMs. For VMs hosted on the same physical



node, or even the same cloud, it’s quite possible that one
VM may attack another [19], or several VMs are attacked
by the same process simultaneously. Detecting anomaly on
a d-dimensional space makes it easier to discover such
correlations. Moreover, performing PCA on multiple VMs’
statistics yields a higher residual space, leading to more
accurate anomaly detection.

Recall that ATOM’s tracking module ensures that at any
time point τ , for each metric E, the CLC can obtain a value
v′τ that is within vτ ±∆, where vτ is the exact value of this
metric at time τ from a VM of interest. Next we show how
to design an online PCA method to detect anomaly using a
t × d matrix M, where t is a fixed number of recent time
instances, and d is the number of metrics for each VM times
total number of VMs being monitored. Each data value in
this matrix is guaranteed to be within ∆ of the true exact
value for the same metric at that same time instance.

C. Monitoring in detail

The following matrices are used in our construction
besides the original reported data matrix M: (1) matrix Y,
the standardized version of M. An element yi,j in the ith
row and jth column from Y is yi,j = (mi,j − avgj)/stdj ,
where mi,j is the element at the ith row and jth column
in matrix M (i.e., the value of the jth metric at the ith
time instance in the sliding widow of size t), while avgj
and stdj are the mean and the standard deviation for the
j-th column in M respectively. (2) matrix A: it contains
all data considered abnormal in consecutive time instances
from (tnow− t) to tnow. (3) matrix B: standardized version
of A where each element in B is bi,j = (ai,j − avgj)/stdj .

Our monitoring method has 5 steps: (1) process data from
M to form Y; (2) build the initial PCA model based on Y;
(3) do anomaly detection for every newest time instance data
z using the latest PCA model; (4) if z is normal, move it to
M and update the PCA model, and continue step 3; (5) if z
is abnormal, move it to A, and do metrics identification to
find which metric(s) of which VM(s) might have caused this
anomaly, meanwhile continue step 3. Next we will explain
the key procedures in detail.

1) Build the PCA model: To build the PCA model, we
perform eigenvalue decomposition on the covariance matrix
of Y, and get a set of eigen vectors V = (v1,v2, ...,vd)
sorted by their eigen values λ1 ≥ λ2 ≥ ... ≥ λd ≥ 0.

We define the principal subspace and the residual sub-
space as follows. The principal subspace S stands for
the space spanned by the first k principal axes in V,
while residual subspace S̃ stands for the space spanned
by the rest (d − k) eigen vectors, which could be used
to detect anomalies. Of numerous methods to determine
k, we choose cumulative percent variance (CPV) method
[15] for its ease of computation and good performance in
practice. For the first ` principal components, CPV (`) =

(
∑`
i=1 λi/

∑d
i=1 λi) · 100%, And we choose k to be: k =

argmin
`

(CPV (`) > 90%).

2) Anomaly detection: Unlike previous methods that per-
form offline batched PCA anomaly detection, we only need
to detect anomalies for the newest vector z at tnow. That’s
because we have classified data into the (normal) data matrix
M and the abnormal matrix A, and the real-time detection
of ongoing anomalies is based on the PCA model built from
M. To do this, we first standardize z using the mean and
standard deviation of each column in M. We use x to denote
the standardized vector.

Given the normal subspace S : P1 = [v1, ...,vk], and
the residual subspace S̃ : P2 = [vk+1, ...,vd], x is divided
into two parts by projecting on these two subspaces: x =
x̂ + x̃ = P1P1

Tx + P2P2
Tx.

If z is normal, it should fit the distribution (e.g. mean and
variance) of the normal data, and the values of x̃ should
be small. Specifically, the squared prediction error (SPE) is
defined to quantify this:

SPE(x) =‖x̃‖2 =
∥∥∥P2P2

Tx
∥∥∥2

=
∥∥∥(I−P1P1

T )x
∥∥∥2

.

x is considered to be abnormal if SPE(x) > Qα. The
threshold Qα is derived as:

Qα = θ1[
cα
√

2θ2h2
0

θ1
+ 1 +

θ2h0(h0 − 1)

θ2
1

]
1
h0 ,

where θi =
∑d
j=k+1 λ

i
j , i = 1, 2, 3; h0 = 1 − 2θ1θ3

3θ22
, and

cα is the (1−α) percentile in a standard normal distribution,
with α being the false alarm rate [12].

Finally, if z is normal, we add it to M and delete the
oldest data in M, then update the PCA model accordingly.
Otherwise it is added to A, and the corresponding standard-
ized x is moved to matrix B.

3) Abnormal metrics identification: When an anomaly is
detected, we need to do further analysis to identify which
metric(s) on which VM(s) from the d dimensions might have
caused the anomaly, to assist the orchestration module. Our
identification method consists of 3 steps. It compares the
abnormal data matrix A (and the corresponding standardized
matrix B), and normal matrix M (and Y). Suppose there
are m vectors in A (B) and t vectors in M (Y).

Step 1. Since the anomaly is detected by ‖x̃‖2, it is
natural to compare the residual data between B and Y.
Suppose yi is the transpose of the i-th row vector in Y, and
ỹi = P2P

T
2 yi is its residual traffic, then (ỹ1, ỹ2, ..., ỹt)

T =
(P2P

T
2 (y1,y2, ...,yt))

T = YP2P
T
2 forms a residual ma-

trix of Y , denoted as Yr. Similarly, Ar = AP2P
T
2 . For

each dimension j ∈ [1, d], let aj = 1
m

∥∥∥(Ar)j

∥∥∥2

and yj =

1
t

∥∥∥(Yr)j

∥∥∥2

, where (Ar)j is the j-th column in Ar and
(Yr)j the j-th column in Yr. Then rdj = (aj − yj)/yj .



Step 2. If for some dimension j, rdj ≥ b1 for some
constant b1, we measure the change in A and M. In partic-
ular, for each such dimension j, we calculate how much the
abnormal data in A are away from the standard normal devi-
ation of the normal data along that dimension in M. Specif-
ically, we calculate stddevj = 1

m

∑m
i=1 |aij − avgj |/ stdj .

A dimension j is considered abnormal if stddevj ≥ b2 for
some constant b2. In practice, we find small positive integers
work well for b1 and b2, say b1 = 2 and b2 = 3.

Step 3. For a dimension j that’s been considered ab-
normal in Step 2, the difference between the mean of
abnormal and normal data is measured. Specifically, we want
to measure meandiffj = ( 1

m

∑m
i=1 aij − avgj)/ avgj .

Step 1 reveals which dimension has a larger projection on
residual subspace than the normal data, however it is hard
to map such change back to the original data. Step 2 is a
useful measure to show which dimension has a significant
different pattern compared to the normal data, but it does
not tell us whether some metric usage goes up or down.
Thus we use step 3 at last to find this pattern. Step 3
itself is not good enough to indicate a pattern, because the
oscillation of metric usage statistics might make the mean
of some dimension in matrix A appear benign. Thus, the
output of steps 2 and 3 are sent together to the orchestration
module on the corresponding NC(s). Section VI evaluates
how information identified from these three steps could
facilitate the orchestration module to find a “real cause” of
what might have gone wrong and how wrong it is.

4) Interaction between tracking and monitoring: As men-
tioned earlier, the input data to the monitoring module
are produced by the tracking module and each value may
contain an approximate error of at most ∆. The approxima-
tion error introduced by the tracking module may degrade
the detection accuracy of our monitoring module. ATOM
allows user to set a deviation µ on detection accuracy,
and the tracking error for the i-th metric is computed by:
∆i = stdi ·

√
3σi, where stdi is the same standard deviation

mentioned in section IV-C, and σi could be approximated

using 2

√
λ̄
t ·

d∑
i=1

σ2
i +

√
( 1
t + 1

d )
d∑
i=1

σ4
i = ε. λ̄ is the average

of eigen values, t is the number of points used to build
PCA model, d is the number of dimensions, and σ2

i is the
variance along each dimension. The deduction details will
be available in the extended version of this paper.

V. ORCHESTRATION COMPONENT

Many VMI tools have been implemented and studied
for IaaS systems. Our monitoring component provides VMI
tools apriori knowledge of what might have gone wrong. It
also serves as a trigger to tell VMI tools when and where
to do introspection. With such information, the overhead of
using VMI techniques is greatly reduced.

As an example, consider LibVMI and Volatility which
are two open source VMI tools. Our orchestration module

could use any such tools to find out which process might
have caused the anomaly. LibVMI has many basic APIs that
support memory read and write on live memory. Volatility
itself supports memory forensics on a VM memory snapshot
file, and it has many Linux plugins ready to use. By
using Volatility together with PyVMI (a python wrapper for
LibVMI) plugin, we can get rich information about a live
VM and greatly facilitate the introspection.

After the potentially abnormal processes are identified
by VMI tools, an alarm is raised with associated abnormal
information to the VM user. The number of rows in the
abnormal data matrix A could be used as the alarm level
to indicate the length of the ongoing anomaly. If user
believes this is caused by normal workload change, then
ATOM monitoring module will automatically add matrix
A to M and adjust PCA model to the new workload
accordingly. Otherwise if user confirms this as a malicious
behavior, ATOM is able to terminate the malicious processes
inside a VM by using tools like StackDB [13]. StackDB
is designed to be a multi-level debugger, while also serves
well as a memory-forensics tool. ATOM uses StackDB to
debug, inspect, modify, and analyze the behavior of running
programs inside a VM. To kill a process, it first finds the
task_struct object of the running process using process
name or id, and then passes in SIGKILL signal. Next time
the process is being scheduled, it is killed immediately.

To this end, many auto-debugging tools could be added,
which is useful to find various kinds of attacks and perform
different desirable actions. We refer these active actions, to-
gether with introspection, as ATOM’s orchestration module.
Orchestration in ATOM can be greatly customized to suit
the needs for tasks such as identification of different attacks.

VI. EVALUATION

We implement ATOM using Eucalyptus as the under-
lying IaaS system. The VM hypervisor running on each
NC is the default KVM. Each VM has an m1.medium
type on Eucalyptus. ATOM tracks 7 metrics from each
VM: CPUUtilization, NetworkIn, NetworkOut, DiskRead-
Ops, DiskWriteOps, DiskReadBytes, DiskWriteBytes. All
experiments are executed on a Linux machine with an 8-core
Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz computer.

A. Online tracking
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Figure 2. A comparison on number of values sent by NC for each metric.



We set the data collection time interval at the NC (the
observer) to 10 seconds, which produces 360 raw values for
each metric per hour. Instead of sending every value to the
CLC (the tracker), the modified CloudWatch with ATOM’s
online tracking component selectively sends certain values
based on Algorithm 1. Figure 2 shows the number of values
sent for each metric over 2 hours, with different workloads
and different ∆ values. Among the 7 metrics for each
VM, only the first 5 ones are shown in each sub-figure,
as DiskReadBytes/DiskWriteBytes follow the same patterns
with DiskReadOps/DiskWriteOps in both experiments.

Figure 2(a) shows the base case when VM is idle and
∆ = 0. The result shows that our tracking component has
already achieved significant savings. Figure 2(b) shows the
result when VM is running TPC-C benchmark on a MySQL
database, which involves large disk reads and writes. ∆ is
set as the average of the exact values in 2 hours when VM is
idle. This is reasonable even for users allowing no error, as
∆ is merely the average of the amount consumed by an idle
VM. Here NetworkIn and NetworkOut only have 2 values
sent to the CLC. Clearly significant amount of values could
be saved for the other metrics if more errors are allowed.

Figure 3 explains how the online tracking component
works. It shows the NetworkOut values sent by standard
CloudWatch (without tracking) and by modified CloudWatch
with ATOM tracking, for a time interval of 1000 seconds.
Here VM is idle and ∆ is set to be 10% of the average value
within last two hours. This clearly illustrates that at each
time instance, with online tracking, the current (exact) value
is not sent if it is within ∆ of the last sent one; and at each
time point, the last value sent to the CLC is always within
∆ of the newest one observed on NC. The values sent by
the tracking method closely approximate those exact ones,
with much smaller overhead.

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000

V
al

u
e 

/ 
b

y
te

s

Time / seconds

Without Tracking
With Tracking

Figure 3. A comparison on NetworkOut values sent by NC.

B. Automated online monitoring and orchestration

We design two experiments to illustrate the effectiveness
of ATOM’s automated online monitoring module. The re-
sults are found not sensitive to false alarm rate α, deviation
µ, sliding window size or collection interval. Here we show
results of α = 0.2% and deviation µ = 1% (to set the

tracking error bound). The Qα threshold with α = 0.5% is
also calculated to compare against. Three VMs co-located in
one Eucalyptus physical node are monitored with a 2-hour
sliding window and 10-seconds collection interval for each
experiment, forming a 720 × 21 data matrix. Dimensions
1− 7 belong to VM 1 and 8− 14 are for VM 2. There are
also a 4-th VM running WebBench and a 5-th VM running
Apache web server as the target of DDoS bots.
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Figure 4. Time series plots of SPE and Qα with α = 0.2% and 0.5%.

In the first experiment, both VM 2 and 3 run an Apache
web server while VM 1 is idle. A DDoS attack turns both
VM 2 and 3 to be zombies at the third hour, using them to
generate traffic towards the target IP. This attack is hard to
detect using the simple threshold approach [2] in the current
setting because the normal workload on VM 2/3 already has
a large amount of NetworkIn/NetworkOut usage. Sending
out malicious traffic only changes roughly 10%−30% to the
mean of normal statistics. Yet ATOM’s monitoring module
successfully finds the underlying pattern, and detects time
instances that are abnormal. Figure 4(a) shows the online
monitoring and detection process, where the black dots
indicate the time instances when DDoS attack happens.

Once a time instance is considered abnormal, ATOM
immediately runs metric identification procedure to find the
affected VMs and metrics. As described in Section IV-C3,
ATOM firstly analyzes rdj , then for dimensions that have
rdj > 2, ATOM computes if stddevj > 3, and also
calculates the average change meandiffj if so. The results
are shown in the first table of table I. The gray italic numbers
in this table need not to be calculated by ATOM because the
residual portions on these dimensions are not large enough.
We show them regardless for comparison. Among the 3 VMs
being tracked and monitored, ATOM correctly identifies
the same pattern of anomalies happening on VM 2 and
3, and more specifically, from their first three dimensions
(CPUUtilization, NetworkIn, NetworkOut), indicated by the
bold values. Note that NetworkIn and NetworkOut actually
go down. Our guess is that WebBench tends to saturate the
bandwidth available, while the DDoS attack we use launches
many network connections but not sending as much traffic.

After abnormal metrics are identified, a VMI request is
sent to the corresponding NC for introspection. Since both
VMs have the same anomalous pattern, the introspection
overhead could be saved by first introspecting one VM, and
then checking if another one has the same malicious behav-



Dim (j) vm1-d1 vm1-d2 vm1-d3 vm1-d4 vm1-d5 vm1-d6 vm1-d7 vm2-d1 vm2-d2 vm2-d3 vm2-d4
rdj 23.70 -0.98 -0.98 -0.55 -0.57 4.27 3.76 9.14 64.18 65.05 3.50

Experiment 1 stddevj 0.78 0.42 0.58 0.00 0.67 0.00 0.71 3.17 8.01 8.30 0.00
Metrics meandiffj 0.16 -0.26 -0.28
Identification Dim (j) vm2-d5 vm2-d6 vm2-d7 vm3-d1 vm3-d2 vm3-d3 vm3-d4 vm3-d5 vm3-d6 vm3-d7
Results rdj -0.51 -0.82 4.23 9.04 60.56 61.16 1.45 -0.56 1.89 -0.51

stddevj 0.31 0.00 0.35 7.23 6.06 6.98 0.17 3.39 0.12 3.65
meandiffj 0.39 -0.23 -0.31
Dim (j) vm1-d1 vm1-d2 vm1-d3 vm1-d4 vm1-d5 vm1-d6 vm1-d7 vm2-d1 vm2-d2 vm2-d3 vm2-d4
rdj 2.58 -0.65 -0.93 -0.65 28.23 -0.98 -0.15 6.90 7.94 7.27 -0.76

Experiment 2 stddevj 0.24 0.42 0.63 0.95 0.43 0.98 0.86 7.36 4.52 4.74 0.21
Metrics meandiffj -0.91 -0.85 -0.89
Identification Dim (j) vm2-d5 vm2-d6 vm2-d7 vm3-d1 vm3-d2 vm3-d3 vm3-d4 vm3-d5 vm3-d6 vm3-d7
Results rdj 0.30 -0.99 -0.44 10.70 1282.80 1401.34 1363.47 -0.70 1544.73 -0.53

stddevj 1.41 0.17 1.43 1.86 13.05 12.79 13.42 1.72 13.60 1.78
meandiffj 101.81 110.97 187.16 196.30

Table I
METRICS IDENTIFICATION RESULTS FOR EXPERIMENTS IN FIGURE 4

ior going on. ATOM’s orchestration module first identifies
this as a possible network problem, and then calls Volatility
to analyze the network connections on that VM, which then
finds out the numerous network connections targeting at one
IP address, a typical pattern of DDoS attacks. Volatility is
then called again to find out related processes and their
parent process of these network connections. At this time
ATOM raises an alarm notifying user about the findings.
If user identifies them to be malicious, he/she could either
investigate the VM in further details, or use ATOM’s or-
chestration module to do auto-debugging and kill malicious
processes automatically through StackDB. Figure 4(a) shows
that SPE goes back to normal after the attack is mitigated
on the affected VM.

The second experiment illustrates ATOM’s ability to
detect resource-freeing attack [19], a subtle attack where
the goal is to improve a VM’s performance by forcing a
competing VM to saturate some bottleneck and shift its
usage on the target resource (often times with legitimate
behavior). Strong VM isolation seems the only way to avoid
such attacks. In this experiment, VM 2 runs an Apache
web server constantly handling network requests. VM 3
runs TPC-C benchmark on MySQL database. In the third
hour VM 3 launches GoldenEye attack [4], which achieves
a DoS attack on the HTTP server running on VM 2 by
consuming all available sockets, making network resource
to be a bottleneck for VM 2, and shift its usage on cache.

Figure 4(b) plots the monitoring and the detection process.
The black dots indicate the time instances when abnormal
behavior happens. While the second table in table I analyzes
where the anomaly has originated. The stddevj values show
that the abnormal dimensions are, on VM 2: CPUUtilization,
NetworkIn, NetworkOut; on VM 3: NetworkIn, Network-
Out, DiskReadOps, DiskReadBytes. Further analysis on
meandiffj finds out NetworkIn and NetworkOut statistics
on VM 2 has decreased nearly by an order, while VM 3
has a large increase in NetworkIn, NetworkOut, and more
considerably, on DiskReadOps and DiskReadBytes. This is a
typical resource freeing attack, where network resource has

become the bottleneck of a target VM, and the beneficiary
VM gains much of the shared cache usage by showing
a significant increase in disk read statistics. The sudden
increase in NetworkIn/NetworkOut in VM 3 also suggests
that VM 3 might be the attacker of VM 2 by sending
malicious traffic to it.

Further analysis by VMI in ATOM’s orchestration mod-
ule shows that most of the sockets in VM 2 are occupied by
connecting to VM 3, thus the anomaly could be mitigated
by closing such connections and limiting future ones. Of
course, VM 3 could use a helper to establish such malicious
connections with VM 2 [19], yet ATOM is still able to
raise an alarm to end user and suggests a possible ongoing
resource-freeing attack.

C. Discussion

Possible false alarms. Resource usage change due to normal
changes in user activities might cause ATOM to raise
false alarms. Nevertheless, ATOM is able to raise alarms
and let users decide the right course of actions to take
by assisting users with its orchestration module. ATOM
could also use the new workload statistics to adjust its
monitoring component dynamically and automatically in an
online fashion.
Computation efficiency. The tracking module introduces
only O(1) computation overhead to each NC controller
while resulting in substantial saving of communication. For
the monitoring module, the PCA computation overhead
is only polynomial of sliding windows size and number
of dimensions. The orchestration module orchestrates and
introspects only the affected VMs and metrics, and only
when needed, hence, leads to much smaller overhead than
full-scale VM introspection that are typically required.
Other attacks. Our experiments use the same set of metrics
monitored by CloudWatch and demonstrate two different
types of attacks. But ATOM can be easily extended when
necessary with additional metrics for monitoring without
much overhead, and detecting different kinds of attacks.



VII. RELATED WORK

Most existing IaaS systems follow the general, hierarchi-
cal architecture like AWS. Inside these systems, there are
imperative needs for the controller to continuously collect
resource usage data and monitor system health. AWS and
Eucalyptus use CloudWatch [1] to monitor VMs and other
components in some fixed intervals, e.g., every minute. This
provides cloud users a system-wide visibility into resource
utilization, and allows users to set some simple threshold
based alarms to monitor. OpenStack uses a service called
Ceilometer [3] to collect measurements. However, as ex-
plained earlier, existing approaches only provide a discrete,
sampled view of the system, and offer very limited capability
in monitoring and ensuring system health. To the best of our
knowledge, none of the existing IaaS platforms is able to
provide continuous tracking, monitoring, and orchestration
of system resource usage. Furthermore, none of them is able
to do intelligent, automated monitoring for a large number
of VMs and carry out orchestration inside a VM.

Leading cloud providers have developed advanced mech-
anism to ensure the security of their IaaS systems, most of
which are security policies. The security challenges in IaaS
system were analyzed in [6], [18]. Virtual machine attacks
are considered a major security threat. Performance issue
(while ensuring security) is identified to be a key research
challenge. Our work introduces novel monitoring method
that has low overhead and good detection quality guarantees.

VMI has been a well-known method for ensuring VM
security [7], [8]. It has also been studied for IaaS systems
[10]. However, all of these systems require the VM to be
suspended to gain access to its memory, resulting in user
programs negatively affected. Thus a monitoring method to
know when and where to trigger a VMI would save much
overhead. Another solution was suggested for cloud users to
verify the integrity of their VMs [5], which however is not
an “active detection and reaction” system.

Lastly, PCA has been widely used to detect anomaly in
network traffic volume in backbone networks [9], [14], [16].
As we have argued in Section IV-A, adapting a PCA-based
approach to our setting has not been studied before and it
presents significant new challenges.

VIII. CONCLUSION

We present the ATOM framework that can be easily
integrated into a standard IaaS system to provide automated,
continuous tracking, monitoring, and orchestration of system
resource usage in nearly real-time. ATOM is extremely
useful for resource monitoring and anomaly detection in IaaS
systems. Interesting future work include extending ATOM
for more sophisticated resource orchestration and incorpo-
rating the defense against even more complex attacks.
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