_			_
	ATOM. Automated Treaking Orchastrat	i a la la la la la	
	ATOWI: Automated Tracking, Orchestrat	lion and	
	Monitoring of Resource Usage in Infrastru	icture as	
	Monitoring of Resource Osage in minastru	icture as	1
	a Service Systems		
	a Service Systems		

Min Du, Feifei Li

School of Computing, University of Utah

THE UNIVERSITY OF UTAH

<ロ> <同> <同> < 同> < 同>

A Simplified Cloud

Monitor the Cloud

- To provide system-wide visibility
- CloudWatch (AWS/Eucalyptus)

Monitor the Cloud

- To provide system-wide visibility
- CloudWatch (AWS/Eucalyptus)

Monitor the Cloud

- To provide system-wide visibility
- CloudWatch (AWS/Eucalyptus)

Monitor the Cloud

- To provide system-wide visibility
- CloudWatch (AWS/Eucalyptus)

Questions

1. Monitor more efficiently?

< 同 ▶

2. Utilize the statistics for security purpose?

THE UNIVERSITY OF UTAH

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ATOM Architecture

UNIVERSITY OF UTAH

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ATOM Architecture

THE UNIVERSITY OF UTAH

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ATOM Architecture

ATOM Architecture

ATOM Architecture

THE UNIVERSITY OF UTAH

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ATOM Architecture

UNIVERSITY OF UTAH

(日) (同) (三) (三)

Tracking Component

What if a small error Δ is allowed?

What if a small error Δ is allowed?

• Sequence: {0, 6, 0, 6, 0, 6, ...}; $\Delta = 4$

What if a small error Δ is allowed?

- Sequence: {0, 6, 0, 6, 0, 6, ...}; Δ = 4
- A naive way:

3

-∢ ≣ →

Tracking Component

What if a small error Δ is allowed?

- Sequence: {0, 6, 0, 6, 0, 6, ...}; $\Delta = 4$
- A naive way:

< ∃ →

Tracking Component

What if a small error Δ is allowed?

- Sequence: {0, 6, 0, 6, 0, 6, ...}; $\Delta = 4$
- A naive way:

< ∃ →

Tracking Component

What if a small error Δ is allowed?

- Sequence: {0, 6, 0, 6, 0, 6, ...}; $\Delta = 4$
- A naive way:

< ∃⇒

Tracking Component

What if a small error Δ is allowed?

- Sequence: {0, 6, 0, 6, 0, 6, ...}; $\Delta = 4$
- A naive way:

< ∃ →

Tracking Component

What if a small error Δ is allowed?

- Sequence: {0, 6, 0, 6, 0, 6, ...}; $\Delta = 4$
- A naive way:

< ∃ →

Tracking Component

What if a small error Δ is allowed?

- Sequence: {0, 6, 0, 6, 0, 6, ...}; $\Delta = 4$
- A naive way:

3.5

Tracking Component

What if a small error Δ is allowed?

- Sequence: {0, 6, 0, 6, 0, 6, ...}; $\Delta = 4$
- A naive way:

What if a small error Δ is allowed?

- Sequence: {0, 6, 0, 6, 0, 6, ...}; $\Delta = 4$
- A naive way:

-

Tracking Component

What if a small error Δ is allowed?

- Sequence: {0, 6, 0, 6, 0, 6, ...}; $\Delta = 4$
- A naive way:

What if a small error Δ is allowed?

- Sequence: $\{0, 6, 0, 6, 0, 6, ...\}; \Delta = 4$
- A naive way:

What if a small error Δ is allowed?

- Sequence: $\{0, 6, 0, 6, 0, 6, ...\}; \Delta = 4$
- A naive way:

- * Values sent: {0, 6, 0, 6, 0, 6, ...}
- * Optimal offline algorithm could only send one value: 3

What if a small error Δ is allowed?

- Sequence: $\{0, 6, 0, 6, 0, 6, ...\}; \Delta = 4$
- A naive way:

- * Values sent: {0, 6, 0, 6, 0, 6, ...}
- * Optimal offline algorithm could only send one value: 3
- * Competitive ratio: Unbounded

- E - K

Tracking Component

What if a small error Δ is allowed?

- Sequence: {0, 6, 0, 6, 0, 6, ...}; Δ = 4
- The optimal one dimension online tracking algorithm:

Tracking Component

What if a small error Δ is allowed?

- Sequence: {0, 6, 0, 6, 0, 6, ...}; Δ = 4
- The optimal one dimension online tracking algorithm:

Tracking Component

What if a small error Δ is allowed?

- Sequence: {0, 6, 0, 6, 0, 6, ...}; Δ = 4
- The optimal one dimension online tracking algorithm:

Tracking Component

What if a small error Δ is allowed?

- Sequence: {0, 6, 0, 6, 0, 6, ...}; Δ = 4
- The optimal one dimension online tracking algorithm:

Tracking Component

What if a small error Δ is allowed?

- Sequence: {0, 6, 0, 6, 0, 6, ...}; Δ = 4
- The optimal one dimension online tracking algorithm:

Tracking Component

What if a small error Δ is allowed?

- Sequence: {0, 6, 0, 6, 0, 6, ...}; Δ = 4
- The optimal one dimension online tracking algorithm:

What if a small error Δ is allowed?

- Sequence: {0, 6, 0, 6, 0, 6, ...}; Δ = 4
- The optimal one dimension online tracking algorithm:

What if a small error Δ is allowed?

- Sequence: {0, 6, 0, 6, 0, 6, ...}; Δ = 4
- The optimal one dimension online tracking algorithm:

What if a small error Δ is allowed?

- Sequence: $\{0, 6, 0, 6, 0, 6, ...\}; \Delta = 4$
- The optimal one dimension online tracking algorithm:

What if a small error Δ is allowed?

- Sequence: $\{0, 6, 0, 6, 0, 6, ...\}; \Delta = 4$
- The optimal one dimension online tracking algorithm:

UNIVERSITY OF UTAH

(日) (同) (三) (三)

Tracking Component

IVERSITY UTAH

(日) (同) (三) (三)

Monitoring Component

Data matrix reported from each node:

Data matrix reported from each node:

Anomaly detection using this matrx;

Data matrix reported from each node:

- Anomaly detection using this matrx;
- Use Principal Component Analysis (PCA);

Data matrix reported from each node:

- Anomaly detection using this matrx;
- Use Principal Component Analysis (PCA);
- Sliding window;

Data matrix reported from each node:

$$\underbrace{\begin{pmatrix} V_{00} & V_{01} & V_{02} & \cdots & V_{0d} \\ \vdots & & \ddots & \\ V_{(n-2)0} & V_{(n-2)1} & V_{(n-2)2} & \cdots & V_{(n-2)d} \\ V_{(n-1)0} & V_{(n-1)1} & V_{(n-1)2} & \cdots & V_{(n-1)d} \\ V_{(now)0} & V_{(now)1} & V_{(now)2} & \cdots & V_{(now)d} \\ \end{pmatrix}}_{d \text{ metrics}} n \text{ time instances}$$

- Anomaly detection using this matrx;
- Use Principal Component Analysis (PCA);
- Sliding window;
- Metrics identification after anomalies are detected.

PCA:

PCA:

PCA:

PCA:

PCA:

PCA:

+ Threshold Q_{α} is computed according to a given false alarm rate α .

PCA:

- + Threshold Q_{α} is computed according to a given false alarm rate α .
- $+ \mbox{ Tracking component introduces} \\ \mbox{ error } \Delta \mbox{ to data matrix}.$

PCA:

- + Threshold Q_{α} is computed according to a given false alarm rate α .
- $+ \mbox{ Tracking component introduces} \\ \mbox{ error } \Delta \mbox{ to data matrix}.$
- + Given μ , dynamically adjust Δ according to PCA results, to ensure false alarm rate $\in (\alpha - \mu, \alpha + \mu)$

Goal: Pinpoint the abnormal dimensions of suspicious data points to assist Orchestration component.

Goal: Pinpoint the abnormal dimensions of suspicious data points to assist Orchestration component.

$$\begin{pmatrix} V_{00} & V_{01} & V_{02} & \cdots & V_{0d} \\ \vdots & & \ddots & \\ V_{(n-2)0} & V_{(n-2)1} & V_{(n-2)2} & \cdots & V_{(n-2)d} \\ V_{(n-1)0} & V_{(n-1)1} & V_{(n-1)2} & \cdots & V_{(n-1)d} \\ V_{(now)0} & V_{(now)1} & V_{(now)2} & \cdots & V_{(now)d} \end{pmatrix}$$

টেম্মাথে RSITY OF UTAH ₽ ► ▲ ই ► ▲ ই ► ৩৭.৫

Goal: Pinpoint the abnormal dimensions of suspicious data points to assist Orchestration component.

$$\begin{pmatrix} V_{00} & V_{01} & V_{02} & \cdots & V_{0d} \\ \vdots & & \ddots & \\ V_{(n-2)0} & V_{(n-2)1} & V_{(n-2)2} & \cdots & V_{(n-2)d} \\ V_{(n-1)0} & V_{(n-1)1} & V_{(n-1)2} & \cdots & V_{(n-1)d} \\ V_{(now)0} & V_{(now)1} & V_{(now)2} & \cdots & V_{(now)d} \end{pmatrix}$$

Goal: Pinpoint the abnormal dimensions of suspicious data points to assist Orchestration component.

$$\begin{pmatrix} V_{00} & V_{01} & V_{02} & \cdots & V_{0d} \\ \vdots & & \ddots & \\ V_{(n-2)0} & V_{(n-2)1} & V_{(n-2)2} & \cdots & V_{(n-2)d} \\ V_{(n-1)0} & V_{(n-1)1} & V_{(n-1)2} & \cdots & V_{(n-1)d} \\ V_{(now)0} & \mathbf{V}_{(now)1} & \mathbf{V}_{(now)2} & \cdots & V_{(now)d} \end{pmatrix}$$

University OF UTAH ・合ト・モント・モント こ つへで

Goal: Pinpoint the abnormal dimensions of suspicious data points to assist Orchestration component.

$$\begin{pmatrix} V_{00} & V_{01} & V_{02} & \cdots & V_{0d} \\ \vdots & & \ddots & \\ V_{(n-2)0} & V_{(n-2)1} & V_{(n-2)2} & \cdots & V_{(n-2)d} \\ V_{(n-1)0} & V_{(n-1)1} & V_{(n-1)2} & \cdots & V_{(n-1)d} \\ V_{(now)0} & \mathbf{V}_{(now)1} & \mathbf{V}_{(now)2} & \cdots & V_{(now)d} \end{pmatrix}$$

Main idea: Compare each dimension of the abnormal data points and normal ones.

IVERSITY UTAH

(日) (同) (三) (三)

Monitoring Component

(日) (同) (三) (三)

Orchestration Component

Orchestration Component

Orchestration Component

Virtual Machine Introspection (VMI)

Introspect VM memory using existing VMI tools;

Virtual Machine Introspection (VMI)

Introspect VM memory using existing VMI tools;

Virtual Machine Introspection (VMI)

Introspect VM memory using existing VMI tools;

Virtual Machine Introspection (VMI)

Introspect VM memory using existing VMI tools;

Raise alarm;

Virtual Machine Introspection (VMI)

Introspect VM memory using existing VMI tools;

- Raise alarm;
- Optionally, kill process.

Design	Evaluation	Discussion

+ Implemented on the Eucalyptus Cloud platform;

Design	Evaluation	Discussion

- + Implemented on the Eucalyptus Cloud platform;
- + Modified Node Controller and Cloud Controller source code.

Design	Evaluation	Discussion

Recall the two questions:

Recall the two questions:

1. Monitor more efficiently?

Design	Evaluation	Discussion

Recall the two questions:

1. Monitor more efficiently?

2. Utilize the statistics for security purpose?

Design	Evaluation	Discussion

Recall the two questions:

- 1. Monitor more efficiently?
 - Tracking Component
- 2. Utilize the statistics for security purpose?

Design	Evaluation	Discussion

Recall the two questions:

- 1. Monitor more efficiently?
 - Tracking Component
- 2. Utilize the statistics for security purpose?
 - Monitoring and Orchestration Component

Recall the two questions:

- 1. Monitor more efficiently?
 - Tracking Component
- 2. Utilize the statistics for security purpose?
 - Monitoring and Orchestration Component

Metrics monitored for each VM:

- The default 7 metrics monitored by Eucalyptus CloudWatch.

Evaluation - Tracking

A comparison on number of values sent by NC for each metric.

- VM workload: TPC-C benchmark on MySQL database;
- Δ: The average for each metric when VM is idle.

RSITY

Evaluation - Tracking

A comparison on number of values sent by NC for each metric.

- VM workload: TPC-C benchmark on MySQL database;
- Δ: The average for each metric when VM is idle.

Evaluation - Monitoring

Experiment setting:

- 3 VMs being monitored: VM 1 idle, VM 2 and 3 run Apache web server;
- VM 2 and 3 are compromised as DDoS bots later.

Evaluation - Monitoring

Experiment setting:

- 3 VMs being monitored: VM 1 idle, VM 2 and 3 run Apache web server;
- VM 2 and 3 are compromised as DDoS bots later.

Evaluation - Monitoring

Experiment setting:

- 3 VMs being monitored: VM 1 idle, VM 2 and 3 run Apache web server;
- VM 2 and 3 are compromised as DDoS bots later.

Dim(j)	vm1-d1	vm1-d2	vm1-d3	vm1-d4	vm1-d5	vm1-d6	vm1-d7	vm2-d1	vm2-d2	vm2-d3	vm2-d4
rd_j	23.70	-0.98	-0.98	-0.55	-0.57	4.27	3.76	9.14	64.18	65.05	3.50
$stddev_j$	0.78	0.42	0.58	0.00	0.67	0.00	0.71	3.17	8.01	8.30	0.00
$meandiff_j$								0.16	-0.26	-0.28	
Dim(j)	vm2-d5	vm2-d6	vm2-d7	vm3-d1	vm3-d2	vm3-d3	vm3-d4	vm3-d5	vm3-d6	vm3-d7	
rd_j	-0.51	-0.82	4.23	9.04	60.56	61.16	1.45	-0.56	1.89	-0.51	
$stddev_j$	0.31	0.00	0.35	7.23	6.06	6.98	0.17	3.39	0.12	3.65	
$meandiff_j$				0.39	-0.23	-0.31					

Metrics Identification Result

Evaluation - Orchestration

- Received a VMI request with information:
 - A possible network problem;
 - Similar patterns for VM 2 and 3.

Evaluation - Orchestration

- Received a VMI request with information:
 - A possible network problem;
 - Similar patterns for VM 2 and 3.
- Node Controller call existing VMI tools to introspect:
 - VM 2: Volatility found suspicious DDoS process;
 - VM 3: Same with VM 2?
 - Raise alarm to user;
 - Kill the processes automatically using StackDB if confirmed.

Discussion - Overhead

Discussion - Overhead

Overhead introduced:

- On NC: O(1) to apply tracking algorithm and call VMI tools;
- On CLC: Depending on the PCA algorithm used, polynomial to sliding window size and number of dimensions monitored.

Discussion - Overhead

Overhead introduced:

- On NC: O(1) to apply tracking algorithm and call VMI tools;
- On CLC: Depending on the PCA algorithm used, polynomial to sliding window size and number of dimensions monitored.

Overhead saved:

- Significant amount of network traffic sending from NC to CC to CLC;
- Significant amount of memory space to be introspected by VMI.

Discussion - Possible Extension

Discussion - Possible Extension

- Monitor more metrics;
- Extend VMI tools to find more complicated attacks.

Design	Discussion

Thank you.

Questions?

