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Abstract—This work introduces novel polynomial algorithms for processing top-k queries in uncertain databases under the generally

adopted model of x-relations. An x-relation consists of a number of x-tuples, and each x-tuple randomly instantiates into one tuple from

one or more alternatives. Our results significantly improve the best known algorithms for top-k query processing in uncertain

databases, in terms of both runtime and memory usage. In the single-alternative case, the new algorithms are 2 to 3 orders of

magnitude faster than the previous algorithms. In the multialternative case, we introduce the first-known polynomial algorithms, while

the current best algorithms have exponential complexity in both time and space. Our algorithms run in near linear or low polynomial

time and cover both types of top-k queries in uncertain databases. We provide both the theoretical analysis and an extensive

experimental evaluation to demonstrate the superiority of the new approaches over existing solutions.

Index Terms—Algorithm, probabilistic data, query processing, top-k, uncertain database, x-relation.
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1 INTRODUCTION

UNCERTAIN databases have received a lot of attention
recently due to the large number of applications that

require management of uncertain and/or fuzzy data.
Examples of such applications include data integration [1],
data cleaning [2], [3], [4], and mobile and sensor data
management [5], [6] just to name a few. It is interesting to
note that some important works on this topic appeared
sporadically in the last two decades, including possible
world semantics and probabilistic databases [7], [8], [9],
[10], [11]. However, only recently we witness a more
systematic and persistent effort to address uncertainty data
management issues such as data modeling and representa-
tion [12], [13], [14], [15], general query processing [16], [6],
[17], indexing [18], [19], [20], and development of query
languages [21].

As a concrete example, consider the website of the 1998
FIFA World Cup that organized its Web servers in a
distributed fashion. The website is replicated over multiple
servers that are located at different geographical areas
throughout the world. Thus, a client’s request can be served
by either the closest server or the server with the highest
free bandwidth at the moment of the request with the goal
to minimize the response time to the client. Web server

requests traces and a detailed description about this setup
are available at the Internet Traffic Archive [22]. Each
record in the request trace represents an entry in the access
log of the world cup Web server. Among other fields, a
record contains a time stamp, a client id (mapped from the
IP address of the user sent the request), an object id (the
particular web page being requested), a status code, and a
server id. The status indicates the response status code and
the server id in which a particular server handled the
request. Note that, at the time of the request, it is unclear
which server will handle the request and what the status of
this request will end up being. Motivated by this, we can
create a database of requests that can be modeled as an
uncertain database, where each request represents an
x-tuple. The status and the server id are attributes with
uncertainty and can be associated with certain probability
distributions. Therefore, an access log can be seen as an
instantiation of the many possible worlds associated with
an x-relation. Furthermore, such an uncertain database
could be very large. For example, the traffic on a single day,
e.g., the day 46, contains roughly half a million requests.

The uncertain data model. Quite a few uncertain data
models have been proposed in the literature [14], [15], [23],
[16], trying to represent the probability distribution of all
the possible instances of the database. They range from the
basic model in which each tuple appears with a certain
probability independently to powerful models that are
complete, i.e., models that can represent any probability
distribution of the database instances. However, complete
models have exponential complexities and are hence
infeasible to handle efficiently, so some extensions to the
basic model have been introduced to expand the expres-
siveness of the model while keeping computation tractable.
Notably, in the TRIO [23] system, an uncertain data set,
which they call an x-relation, consists of a number of
x-tuples. Each x-tuple includes a number of alternatives,
associated with probabilities, which represent a discrete
probability distribution of these alternatives being selected.
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Independence is still assumed among the x-tuples. This
model has been frequently used in the study of uncertain
databases as it is a reasonable approximation of the
uncertain nature of the data. For example, the world cup
example mentioned above perfectly fits into the x-relation
model. Since different requests are mutually independent,
the values for attributes of one request could take different
assignment based on what has actually happened to that
request, but only one assignment is possible (the actual
request that takes place with some randomness, depending
on the server status, etc.), i.e., they are mutually exclusive.

In this paper, we also adopt the x-relation model,
augmented with a score attribute, on which we rank the
tuples. More precisely, each tuple t consists of four
components: a unique identifier idðtÞ, a score sðtÞ, a
confidence pðtÞ that is the probability of t appearing in the
database, and all the other attributes AðtÞ. An x-tuple � is a
set of tuples (up to a constant number), subject to the
constraint that

P
ti2� pðtiÞ � 1. These tis are called the

alternatives of � . An x-tuple represents a discrete probability
distribution of the possible values � may make in a
randomly instantiated database, i.e., � takes ti with
probability pðtiÞ, for i ¼ 1; . . . ; j� j,1 or does not appear at
all with probability 1�

Pd
i¼1 pðtiÞ.

2 We define an uncertain
database D as a collection of M pairwise disjoint x-tuples. We
use D to denote the set of all tuples in D, and let
jDj ¼

P
�2D j� j ¼ N . Without loss of generality, we assume

that all scores are distinct in D.
An uncertain database D is instantiated into a possible

world assuming mutual independence of the x-tuples [23].
More precisely, let �1; . . . ; �M be the x-tuples of D, and let W
be any subset of the tuples appearing in D, the probability
of W occurring is Pr½W � ¼

QM
j¼1 pW ð�jÞ, where for any

� 2 D, pW ð�Þ is defined as

pW ð�Þ ¼
pðtÞ; if � \W ¼ ftg;
1�

P
ti2� pðtiÞ; if � \W ¼ ;;

0; otherwise:

8<:
If Pr½W � > 0, we say W is a possible world, and let W be

the set of all possible worlds. Thus, D represents a
probability distribution over W in a succinct format. Please
refer to Fig. 1 for an example, where each x-tuple represents
a request from a client to a 1998 world cup web page, and it
may be served by one of the servers chosen from several
alternative servers, as we have explained above. Here, each
tuple (an alternative) is a client id, the score attribute is the
server id assuming that the servers are ordered by their
available bandwidth (higher ID reflects a higher band-
width), and the probability for an alternative is simply the
probability that this request ends up being served by this
particular server. It is not necessary to always select the
server with the highest bandwidth, rather the decision is
made based on the current traffic of each server and the free
bandwidth a server could offer at the moment. Both the
number of x-tuples (request in this example) and tuples (the
clients in this example) in such a database could go upto
millions as demonstrated above.

We distinguish between two cases. In the single-
alternative case, each x-tuple has only one alternative; in
the multialternative case, there could be more than one
alternative for an x-tuple.

Top-k queries in an uncertain database. This paper
investigates query processing issues under the setting of
uncertain data, and in particular, we concentrate on
top-k queries. Top-k queries received increasing interest
in relational databases recently [24], mainly as a way to
integrate the imprecise query answering semantics of
information retrieval with the highly structured storage
and representation of relational data. Because of their
particular semantics, top-k queries are even more mean-
ingful in the context of uncertain and probabilistic
databases. Some recent efforts started to investigate
top-k queries in uncertain databases [25], [26], although
with different emphases. This work focuses on the
top-k queries defined in [25] and the difference to [26] is
discussed in Section 7. In particular, Soliman et al. [25]
extend the semantics of top-k queries from relational to
uncertain databases. They propose two different defini-
tions for top-k queries in such databases and provide
algorithms to compute the query results for each defini-
tion. The first definition is the Uncertain Top-k query
ðU-TopkÞ, where the result is the set of tuples with the
highest aggregated probability to be the top-k tuples
across all possible worlds. The second definition is the
Uncertain k-Ranks query ðU-kRanksÞ, where each tuple in
the result is the most probable tuple to appear at a given
rank over all possible worlds.

The work in [25] was the first to identify the importance
of top-k query processing in uncertain databases and to
propose methods to address it. The basic idea of their
algorithms is to map each configuration (of appearing and
not appearing tuples) to a state and create a very large
graph with these states. Then, the problem becomes a
search over this huge graph using some generic, A�-like
algorithm to find the best state. However, since the model
that they use can capture any possible correlation between
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1. j� j is the number of alternatives in � .
2. We denote the number of alternatives for an x-tuple � as dx ¼ j� j.

Fig. 1. An example uncertain database and all its possible worlds with

their probabilities.



the tuples (complete model) [27], the generated graph can be
exponentially large. Therefore, their algorithms are expo-
nential in both space and time, which makes them
impractical for large databases. Even for the basic model
where all tuples are mutually independent, i.e., the single-
alternative case of the x-relation model, the proposed
algorithms, although more efficient, are still not optimal.

In this paper, we show that under the popular x-relation
model, it is possible to exploit the internal structure of the
problem to design much more efficient algorithms for
processing top-k queries in uncertain databases. We provide
solutions for both U-Topk queries and U-kRanks queries,
both of which are significantly faster and use much less
space under the x-relation model. A comparison of the
asymptotic results of the algorithms under the x-relation
model are given in Fig. 2.

The rest of the paper is organized as follows: Section 2
gives the two definitions for top-k queries. We set up the
processing framework in Section 3. The improved algo-
rithms for U-Topk and U-kRanks queries appear in
Sections 4 and 5, respectively. An experimental study is
performed in Section 6, followed by a review of related
work and the conclusion.

2 Top-k DEFINITIONS

There are two popular types of top-k queries that are
currently adopted in uncertain databases.

Definition 1: Uncertain Top-k query ðU-TopkÞ. Let D be an
uncertain database with possible worlds space W. For any
W 2 W, let �ðWÞ be the top-k tuples in W by the score
attribute; if jW j < k, define �ðWÞ ¼ ;. Let T be any set of k
tuples. The answer T � to a U-Topk query on D is
T � ¼ arg maxT

P
W2W;�ðWÞ¼T Pr½W �. Ties can be broken

arbitrarily.

In other words, T � is the set of k tuples that has the
maximum probability of being at the top-k according to
the score attribute in a randomly generated world. This
definition fits in scenarios where we require the
top-k tuples belong to the same world(s). For the example
in Fig. 1, the U-Top2 answer is ft1; t2g, with a probability
of 0:08þ 0:12 ¼ 0:2.

Definition 2: Uncertain k-Ranks query ðU-kRanksÞ. Let D be
an uncertain database with possible worlds space W. For any
W 2 W, let  iðWÞ be the tuple with the ith largest score, for
1 � i � jW j. The answer to a U-kRanks query on D is a
vector ðt�1; . . . ; t�kÞ, where t�i ¼ arg maxt

P
W2W; iðWÞ¼t Pr½W �,

for i ¼ 1; . . . ; k. Ties can be broken arbitrarily.

The answer to a U-kRanks query is a vector of tuples
that might not appear together in any possible world, but
each of them has the maximum probability of appearing
at its rank over all possible worlds. This definition fits in
scenarios where the top-k tuples are not restricted to
belong to the same world(s). For the example in Fig. 1, the
U-2Ranks answer is ðt1; t3Þ: t1 has a probability of 0:12þ
0:08þ 0:18þ 0:12 ¼ 0:5 of being at rank 1, and t3 has a
probability of 0:18þ 0:048þ 0:072 ¼ 0:3 of being at rank 2.

3 PROCESSING OVERVIEW

We store D, the set of all N tuples in a relational database
table, called the tuple table, sorted in a decreasing score
order. We store information about the x-tuples in an x-table.
For each x-tuple that has more than one alternative, we
store in a list all the alternatives, but with only their id,
score, and confidence attributes. All other attributes are not
stored in the x-table. By using a hash map, given the id of a
tuple t, the score and confidence values for all its
alternatives can be retrieved efficiently from the x-table in
Oð1Þ time.

To process a top-k query, we retrieve tuples in the
decreasing score order from the tuple table, while looking
up information from the x-table when needed. We perform
computation with the retrieved tuples and stop as soon as
we are certain that none of the unseen tuples may possibly
affect the query result.

Why score order? It is curious to ask why we retrieve
tuples in the score order instead of some other order, say,
the confidence order. In order to compare different ordering
criteria, we define the scan depth, denoted by n, to be the
minimum number of tuples that have to be retrieved so as
to guarantee the correctness of the result. More formally, we
have the following.

Definition 3: Scan depth. Suppose the tuples in an uncertain
database D are t1; . . . ; tN in some predefined order. For a
U-Topk or U-kRanks query, the scan depth n is the
minimum n such that the following holds: for any D0 where
the first n tuples in D0 under the same ordering criteria are the
same as those of D, i.e., t1; . . . ; tn, the query answer on D0 is
the same as that on D.

It is important to note that for a predefined ordering
function, the scan depth is determined by the database
instance and k, i.e., n is the inherent lower bound for the
number of tuples that need to be retrieved for any
algorithm. Any algorithm that accesses the database in the
predefined order has to read at least n tuples to avoid
possible errors.

Note that for many Ds, n is much smaller than N , so it is
possible to stop earlier. However, in the worst case, n can be
as large as �ðNÞ, i.e., on some bad database instances, any
algorithm has to retrieve �ðNÞ tuples. In [27], it is shown
that if N is unknown to the algorithm, then access in the
score order has the optimal scan depth among all orderings.
This applies to the scenario where the tuple table is not
materialized; instead, tuples are supplied by an iterator
interface that produces tuples in the designated order upon
request, and it is difficult to estimate N beforehand. Here,
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Fig. 2. Asymptotic results in x-relation model, where n is the scan depth

(Definition 3).



we, in addition, consider the case where N is known and
show that in this case there is no optimal ordering. Let us
consider the following example first.

Example 1. Consider the basic case where each x-tuple

has only one alternative, and we are to perform a

U-Topk query with k ¼ 1 (or equivalently, a U-kranks

query with k ¼ 1). Assume that the N ð> 2Þ tuples of

D have sðtiÞ ¼ N � i, pðtiÞ ¼ 1=N for 1 � i � N � 1,

and sðtNÞ ¼ 0, pðtNÞ ¼ 1. The query answer will be tN ,

since the probability of tN being the top-1 in a random

possible world is ð1� 1=NÞN�1 � 1=e, while the prob-

ability of any other tuple is at most 1=N . Thus, sorting

by score will have a scan depth of n ¼ N . On the other

hand, if we sort by confidence, we can stop as soon as

we have retrieved 2 tuples. This is because after

having observed that the second tuple has confidence

1=N , we know that all the remaining tuples’ con-

fidences are at most 1=N , thus we can conclude that tN
must be the answer since its probability is at least ð1�
1=NÞN�1 � 1=e (assuming pessimistically that all un-

seen tuples have higher scores and have confidence

1=N), thus any unseen tuple cannot possibly beat tN .
If D is a multialternative x-relation, things are slightly

more complicated. But still, it can be verified that in the
worst case, tN has a probability of 1=N of being the
answer (when all remaining tuples have larger scores,
confidence 1=N , and are in one x-tuple); thus, the
algorithm can still stop after retrieving only 2 tuples.

On the other hand, it is also fairly easy to construct an
example where sorting by score is much better than sorting
by confidence.

Example 2. Still in the same setup as in Example 1, but now
the tuples of D have sðtiÞ ¼ N � i, pðtiÞ ¼ 0:5 for
2 � i � N , and sðt1Þ ¼ N , pðt1Þ ¼ 0:4. In this case, the
query answer is t1. It is not difficult to verify that sorting
by score gives a scan depth of 2, while sorting by
confidence yields n ¼ N .

Now that neither choice gives us a satisfying order, one
may be tempted to design other functions fðs; pÞ that might
give a good ordering (for example, ordering by s � p).
Unfortunately, we obtained the following negative result,
whose proof is given in Appendix A.

Theorem 1. For any function f : IR� ½0; 1� ! IR and any N ,
there exists a single-alternative uncertain database D with
N tuples, such that if we retrieve tuples from D in the order of
f , the scan depth is at least �ðNÞ for answering a U-Topk or
U-kRanks query even with k ¼ 1.

Note that since k ¼ 1 is the easiest case (any U-Topk or
U-kRanks result for any k > 1 always includes the U-Top1
or U-1Ranks result), the theorem also holds for any k > 1.

This negative result precludes the existence of an

ordering function that is good for all cases. Thus, we settle

for an ordering that is good for “typical” cases, and we

argue that ordering by score is a good choice. First, ordering

by score order often makes the algorithms easier by

exploiting the fact that all unseen tuples have smaller

scores. Second, in many practical situations, the scan depth

under score ordering is actually very small and nowhere

near the worst case like the one in Example 1. This is

evident from the empirical studies in both [25] and our own

experiments in Section 6.
Therefore, the score order is arguably a good order

whether N is known or unknown, and thus, from now
on, we will stick to the score order. Without loss of
generality, we assume that tuples are t1; . . . ; tN such that
sðt1Þ > � � � > sðtNÞ. We focus on the following problems.
1) By definition, the scan depth n is the lower bound on
the number of tuples that have to be retrieved. Can this
lower bound be attained, i.e., can we design an algorithm
that immediately stops after reading n tuples? 2) If the
answer to 1 is yes, how efficient can the algorithm be?
This work answers both questions affirmatively and
design algorithms that read exactly n tuples before
termination. More importantly, these algorithms run in
near linear time or low polynomial time and consume
small space as well. Sections 4 and 5 present such
algorithms for both types of queries. Some of our
notations are summarized in Table 1.
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4 UNCERTAIN TOP-k QUERIES

Define Di to be the uncertain database when D is restricted
on Di ¼ ft1; . . . ; tig, for i ¼ 1; . . . ; N , i.e.,

Di ¼ f� 0j� 0 ¼ � \Di; � 2 Dg:

For the database in Fig. 1, this means that D1 ¼ f� 01 ¼ ft1gg,
D2 ¼ f� 01 ¼ ft1g; � 02 ¼ ft2gg , D3 ¼ f� 01 ¼ ft1g; � 02 ¼ ft2g; � 03 ¼
ft3gg and D4 ¼ f� 01 ¼ ft1; t4g; � 02 ¼ ft2g; � 03 ¼ ft3gg. We use
W jDi to denote a possible world W generated from Di, with
probability Pr½W jDi�. For i � k, let Si be the most probable
world generated from Di that consists of k tuples, i.e.,
Si ¼ arg maxjW j¼k Pr½W jDi�, and let �i ¼ Pr½SijDi�. Our
algorithms for both the single alternative and the multi-
alternative case follows the same general framework: We
read tuples one by one and progressively compute Si as i
goes from k to N . Finally, we take the Si with the maximum
�i as the final answer T �. The correctness of this general
framework is guaranteed by the following lemma.

Lemma 1. Pr½�ðW jDÞ ¼ T �� ¼ maxf�ijk � i � Ng.
Proof. Let i� ¼ maxfijti 2 T �g. It is clear that

Pr½�ðW jDÞ ¼ T �� ¼ Pr½�ðW jDi� Þ ¼ T �� ¼ �i� ;

so Pr½�ðW jDÞ ¼ T �� � maxf�ijk � i � Ng.
On the other hand, consider any T 0 and let

i0 ¼ maxfijti 2 T 0g. By definition, Pr½�ðW jDÞ ¼ T �� �
Pr½�ðW jDÞ ¼ T 0� ¼ �i0 for any i0. Thus, we have
Pr½�ðW jDÞ ¼ T �� ¼ maxf�ijk � i � Ng. tu

Using Lemma 1, instead of computing T � by Definition 1,
i.e., enumerating all the worlds and calculating the max-
imum aggregated probability, we could simply compute the
�is, and the Si corresponding to the maximum �i will be T �.
Therefore, the problem boils down to computing Si and �i
for i ¼ k; kþ 1; . . . ; N . In fact, we can stop the process as
soon as we are certain that none of the remaining �is is going
to be larger than the current maximum �i we have found so
far, i.e., as soon as we have read n tuples, where n is the scan
depth. However, we still need an efficient algorithm to
compute these Sis and �is, as well as a method that can tell
us if the scan depth is reached or not. Below, we first tackle
the easier single-alternative case, then we move on to the
more challenging multialternative case following the same
general idea.

4.1 The Single-Alternative Case

Lemma 2. For a single-alternative database D and any
k � i � N , Si consists of the k tuples with the largest
confidences in Di, and

�i ¼
Y
tj2Si

pðtjÞ �
Y

tj2DinSi
ð1� pðtjÞÞ:

Proof. Since Pr½W jDi� is the product of two factors, the
probability that all tuples in W appear and the
probability that none of the rest appears, both of which
are maximized when W consists of the k largest
confidence tuples. Once we have Si, �i is immediate. tu

We next characterize the scan depth for this case.

Lemma 3. For a single-alternative uncertain database D and a

U-Topk query, the scan depth is the minimum n such that

max
1�i�n

�i �
Y

1�i�n
maxfpðtiÞ; 1� pðtiÞg: ð1Þ

Proof. We first show that when (1) happens, no more tuples

need to be fetched. This is because the LHS of (1) is the

current best answer we have found after reading n tuples;

while the RHS of (1) is an upper bound on Pr½W jDi� for

any W , regardless of its cardinality, and any i > n.
Next, we prove that if (1) does not hold, then we

must have not reached the scan depth yet, i.e., the
condition is tight. This guarantees that our algorithm
will not read more than the necessary n tuples. We
first prove the following claim: If we have seen k
tuples with confidence � 1/2, then (1) must hold.
Indeed, consider the first time we have seen k such
tuples, say, after reading ts. Since the k tuples with the
largest confidences in Ds must be those k tuples with
confidences � 1/2, combining with Lemma 2, we have
max1�i�s �i � �s ¼

Q
1�i�s maxfpðtiÞ; 1� pðtiÞg. Further-

more, since the LHS of (1) never decrease and the
RHS of (1) never increase, it must still hold when we
have read n tuples.

Now, we construct another D0, whose first n tuples are
the same as D, while all of its remaining tuples have
confidence 1 and argue that we can find a better U-Topk
answer from D0 than the claimed best answer for D if (1)
has not met yet. Since (1) does not hold, there are
‘ < k tuples with confidences � 1/2 in the first n tuples
of D and D0 as we have just argued. Since all the
remaining tuples in D0 have confidence 1, putting
together these ‘ seen tuples and the first k� ‘ unseen
tuples gives us a candidate top-k answer for D0 with
probability

Q
1�i�n maxfpðtiÞ; 1� pðtiÞg, larger than the

current best answer claimed for D. Therefore, by
definition, we have not reached the scan depth. tu

Using Lemmas 2 and 3, it is easy to obtain an efficient

algorithm for processing a U-Topk query. The algorithm

reads the tuples one by one, maintains the k largest-

confidence tuples seen so far, and computes each �i using

Lemma 2. We can use a heap of size k for this purpose,

costing Oðlog kÞ time per tuple. Meanwhile, it maintains

the RHS of (1) so as to be able to stop immediately after

reading n tuples. This can be easily done in constant time

per tuple. Since n is also the lower bound on the number

of tuples that need to retrieved for any algorithm, this

implies that our algorithm is optimal in terms of the

number of tuples accessed. Therefore, we conclude with

the following.

Theorem 2. For a single-alternative uncertain database, our

algorithm can process a U-Topk query by reading n tuples and

spending Oðn log kÞ time. The space requirement is OðkÞ.

4.2 The Multialternative Case

Next, we move on to the multialternative case, where

each x-tuple may have several (up to some constant)

choices. Our algorithm follows the same framework as
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the single-alternative case, but we need new generalized
forms of Lemmas 2 and 3.

Let D be a multialternative uncertain database. For any i,
and any tuple tj 2 � 2 D, let qiðtjÞ be the probability that
none of the tuples in � \Di appears in a randomly
generated world W , i.e., qiðtjÞ ¼ 1�

P
t‘2�;‘�i pðt‘Þ. In other

words, qiðtjÞ is the probability that none of tj’s alternatives,
including tj, among the first i tuples of D appears.

For any two tuples ti, tj, i 6¼ j, that belong to the same
x-tuple, if pðtiÞ > pðtjÞ, or pðtiÞ ¼ pðtjÞ and i < j, then we
say that ti dominates tj. For any i, define bDi be the pruned
version of Di, i.e., bDi consists of all tuples of Di that are
not dominated by any other tuple in Di. Note that to
compute �i, it is sufficient to consider only bDi, since for
any W 	 Di, we can replace each dominated tuple in W

with its dominator, which may only increase Pr½W jDi�.
We now extend Lemmas 2 and 3 to the multialternative

case.

Lemma 4. For a multialternative database D and any i such that
j bDij � k, Si consists of the k tuples with the largest
pðtjÞ=qiðtjÞ ratios3 in bDi, and

�i ¼
Y
tj2Si

pðtjÞ �
Y

tj2bDinSi

qiðtjÞ:

Proof. Let Z ¼ ftjjtj 2 bDi; qiðtjÞ ¼ 0g. This implies that any
randomly generated world W 	 bDi will contain Z. If
jZj > k, then for any W 	 bDi and jW j ¼ k, Pr½W jDi� ¼ 0,
then any Si achieves the maximum probability, which is
zero. Therefore, we only consider the case jZj � k. For
any W 	 bDi, W must include Z in order to have a
nonzero probability, thus we have

Pr½W jDi� ¼
Y
tj2Z

pðtjÞ
Y

tj2WnZ
pðtjÞ

Y
tj2bDinW

qiðtjÞ

¼
Y
tj2Z

pðtjÞ
Y

tj2WnZ

pðtjÞ
qiðtjÞ

Y
tj2bDinZ

qiðtjÞ:

Since the first and third products are fixed while the
second one is maximized when W n Z consists of the
k� jZj tuples with the largest pðtjÞ=qiðtjÞ ratios in bDi n Z
and, by definition, the tuples in Z have an infinite ratio,
the lemma is proved. tu

Lemma 5. For a multialternative uncertain database D and a
U-Topk query, the scan depth is the minimum n such that

max
1�i�n

�i �
Y
ti2bDn

maxfpðtiÞ; qnðtiÞg: ð2Þ

Proof. The proof follows the same lines of reasoning as the
proof of Lemma 3.

First, the LHS of (2) is the current best answer we have
found after reading n tuples, while the RHS of (2) is an
upper bound on Pr½W jDi� for any W , regardless of its
cardinality, and any i > n. Therefore, (2) is a sufficient
condition upon which we can terminate the algorithm.

Next, we show that (2) is also a necessary
condition. We first prove the following claim: If we

have seen k tuples ti in bDn such that pðtiÞ � qnðtiÞ,
then (2) must hold. Indeed, consider the minimum s

such that there are exactly k tuples in bDs with

pðtiÞ � qsðtiÞ. Since these k tuples must have the

largest pðtiÞ=qsðtiÞ ratios in bDs (they have ratios � 1,

while the others < 1), by Lemma 4, we have

max1�i�s �i � �s ¼
Q

1�i�s maxfpðtiÞ; qsðtiÞg. Therefore,
(2) must hold when n ¼ s. Furthermore, as n

increases, the LHS of (2) never decreases, and the

RHS of (2) never increases (since qnðtiÞ never

increases), it must still hold when we have read n �
s tuples.

Now, we construct another

D0 ¼ Dn [ fft0nþ1g; . . . ; ft0Ngg;

with sðtnÞ > sðt0nþ1Þ > � � � sðt0NÞ, and pðt0nþ1Þ ¼ � � � ¼ pðt0NÞ
¼ 1, i.e., the first n tuples in D0 are the same as those in D,

with all of its remaining tuples having confidence 1 and

independent of the first n tuples. We argue that if (2)

does not hold, we can find a better U-Topk answer from

D0 than the claimed best answer for D. By the above

claim, there are ‘ < k tuples ti with pðtiÞ � qnðtiÞ in bDn.

Since all the remaining tuples in D0 have confidence 1,

putting together these ‘ seen tuples and the first

k� ‘ unseen tuples gives us a candidate top-k answer

for D0 with probability
Q

1�i�n maxfpðtiÞ; qnðtiÞg, larger

than the current best answer claimed for D. tu
Using Lemmas 4 and 5, our algorithm proceeds as

follows: As i goes from k to N , we keep in a table of size

OðnÞ the pðtjÞ and qiðtjÞ values for all tuples that have been

seen. These probabilities can be maintained in Oð1Þ time per

tuple, since the pðtjÞs stay the same and at most one of the

qiðtjÞ’s changes as a new tuple is retrieved. We also

maintain bDi, i.e., all the dominators among these tuples.

This can be done in Oð1Þ time per tuple, too, since there is at

most one insertion or one replacement in bDi in each step.

We construct a binary tree on the k dominators with the

largest pðtjÞ=qiðtjÞ ratios in sorted order. We update the

binary tree for each incoming tuple. In each step, we need to

either insert a new tuple and delete one or increase the ratio

of an existing tuple. In both cases, the cost is Oðlog kÞ.
Finally, it is also easy to maintain the RHS of (2) in constant

time per tuple, so that we can stop as soon as n tuples are

retrieved. This ensures that our algorithm is optimal in

terms of the number of tuples accessed. Therefore, we have

the following.

Theorem 3. For a multialternative uncertain database, our
algorithm can process a U-Topk query by reading n tuples and
spending Oðn log kÞ time. The space requirement is OðnÞ.

Example 3. Consider the database with 4 x-tuples
�1 ¼ ft1; t3g, �2 ¼ ft2g, �3 ¼ ft4g, and �4 ¼ ft5g. The
probabilities are pðt1Þ ¼ 0:5, pðt2Þ ¼ 0:6, pðt3Þ ¼ 0:3,
pðt4Þ ¼ 0:8, pðt5Þ ¼ 0:9, and k ¼ 2. We start with i ¼ 2
and bD2 ¼ ft1; t2g. We compute �2 ¼ pðt1Þpðt2Þ ¼ 0:3.
Now, we advance to i ¼ 3. Since t3 is dominated by
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3. We define x=0 ¼ 1 for any x > 0.



t1, we have bD3 ¼ ft1; t2g, and q3ðt1Þ ¼ 0:2, q3ðt2Þ ¼ 0:4.
Since bD3 has only two tuples, we still have �3 ¼ 0:3.
Next, we advance to i ¼ 4. Now, bD4 ¼ ft1; t2; t4g, and
q4ðt1Þ ¼ 0:2, q4ðt2Þ ¼ 0:4, q4ðt4Þ ¼ 0:2. By Lemma 4, we
choose the two tuples with the largest pðtjÞ=q4ðtjÞ
ratios, which in this case are t1 and t4. We compute
�4 ¼ pðt1Þpðt4Þq4ðt2Þ ¼ 0:16. Note that �4 < �2, so the
current best answer is still ft1; t2g. Now, the RHS of (2)
is pðt1Þpðt2Þpðt4Þ ¼ 0:24 < �2, so the algorithm can
terminate and return ft1; t2g as the U-Topk result.

5 UNCERTAIN k-Ranks QUERIES

In this section, we consider U-kRanks queries. We first give
a dynamic programming algorithm for answering U-kRanks
queries in the single-alternative case and then extend it to
the multialternative case. Our algorithms are based on the
following simple intuition: The probability that a tuple ti
appears at rank j depends only on the event that exactly
j� 1 tuples from the first i� 1 tuples appear, no matter
which tuples appear. Our new formulation not only runs
faster but also naturally extends to the multialternative case,
for which only exponential algorithms are known.

5.1 The Single-Alternative Case

Let D be a single-alternative uncertain database. For
1 � j � i � N , let ri;j be the probability that a randomly
generated world from Di has exactly j tuples, i.e.,
ri;j ¼

P
jW j¼j Pr½W jDi�. We also define r0;0 ¼ 1. It is clear

that the probability that ti ranks the jth in a randomly
generated world from D is pðtiÞ � ri�1;j�1. Therefore, the
answers to a U-kRanks query on D are t�ðjÞ, where

�ðjÞ ¼ arg max
j�i�N

fpðtiÞ � ri�1;j�1g; ð3Þ

for j ¼ 1; . . . ; k.
We are now left with the task of computing the ri;js,

which are related by the following equation:

ri;j ¼

pðtiÞri�1;j�1 þ ð1� pðtiÞÞri�1;j; if i � j � 0;
and not the case i ¼ j ¼ 0;

1; if i ¼ j ¼ 0;
0; otherwise:

8>><>>: ð4Þ

The correctness of (4) is obvious: To get j tuples from Di,
we either choose ti and j� 1 tuples from Dj�1 or not choose
ti and take all j tuples from Di�1.

Upon reading each tuple ti, our algorithm computes ri;j
using (4) for j ¼ 0; 1; . . . ;minfi; kg. It also keeps the current

best answers �ðjÞ found so far according to (3). Since to

compute ri;j, only the ri�1;js are needed, our algorithm only

requires OðkÞ space throughout the computation.

Finally, we have the following characterization of the

scan depth n, so that our algorithm can terminate as soon as

the answers are known, retrieving only n tuples from the

tuple table, which is the minimum possible.

Lemma 6. For a single-alternative uncertain database D and a
U-kRanks query, the scan depth is the minimum n such that
the following holds for each j ¼ 1; . . . ; k:

max
j�i�n

fpðtiÞri�1;j�1g � max
0�‘�j�1

rn;‘: ð5Þ

Proof. Since the LHS of (5) is the current best answer for the

tuple at rank j, it is sufficient to prove that, for any D0
whose tuples are t1; . . . ; tn; t

0
nþ1; . . . ; t0N , the RHS of (5) is

an upper bound on the probability of any t0i being at

rank j for j ¼ 1; . . . ; k, and this upper bound is attainable.

First, for any i > n, consider the probability of t0i
being at rank j in a randomly generated world from
D0. Letting �s be the probability that exactly s tuples

from ft0nþ1; . . . ; t0i�1g appear (define �0 ¼ 1 if i ¼ nþ 1),

then

Pr½ jðW jD0Þ ¼ t0i� ¼ p t0i
� � Xj�1

‘¼0

rn;‘ � �j�1�‘

 !

�
Xj�1

‘¼0

rn;‘ � �j�1�‘ � max
0�‘�j�1

rn;‘;

where the last inequality holds because
Pj�1

s¼0 �s � 1.

Thus, we need to access at most n tuples before we can

report the correct answers.

Second, we show that for any j, there is a D0 with

some unseen tuple that achieves this upper bound. Set
pðt0nþ1Þ ¼ � � � ¼ pðt0NÞ ¼ 1, and let ‘� ¼ arg max0�‘�j�1 rn;‘.

Consider the tuple t0nþj�‘� . The probability that it appears

at rank j in a random world from D0 is exactly rn;‘� .

Therefore, we also need to access at least n tuples to

avoid any mistakes. tu

We can check inequality (5) for all 1 � j � k easily in

OðkÞ time per tuple, so that we can stop as soon as n tuples

are retrieved, which ensures that our algorithm is optimal

in terms of the number of tuples accessed. The theorem

below immediately follows.

Theorem 4. For a single-alternative uncertain database, our

algorithm can process a U-kRanks query by reading n tuples

and spending OðnkÞ time. The space requirement is OðkÞ.

Note that if we apply the previous algorithm [25] for this

problem in the x-relation model, it runs in Oðn2kÞ time4 and

uses OðnkÞ space.

5.2 The Multialternative Case

Our U-kRanks algorithm for the multialternative case will

follow the same framework as the single-alternative case.

However, several difficulties need to be resolved with

regard to the alternatives.
The first difficulty is that the ri;js cannot be related

simply as in (4) any more, because if ti has some preceding

alternatives, the event that ti appears is no longer

independent of the event that exactly j� 1 tuples in Di�1

appear. The trick to overcome this difficulty is to convert Di
into a single-alternative �Di, and then apply the previous

algorithm to compute ri;j, for j ¼ 0; . . . ; k.
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4. In fact, the algorithm described in [25] has a worst-case runtime of
OðN2kÞ, due to the termination condition of that algorithm not being tight,
which may cause the algorithm to read far more tuples, upto N in the worst
case, than the necessary scan depth n. See Appendix B for such an example.
However, these contrived cases rarely happen in practice, so we still
consider the bound as Oðn2kÞ.



We construct �Di as follows: For each x-tuple � 2 Di, we

create an x-tuple �� ¼ f�tg in �Di, where pð�tÞ ¼
P

t2� pðtÞ, with

all of �t’s other attributes set to null. In other words, we

merge all tuples in � into one representative �t, whose

probability is the sum of all their probabilities. We claim

that ri;j computed from �Di is the same as the probability

that exactly j tuples in Di appear. Intuitively, because here

we only care about the number of tuples appearing,

merging does not affect anything since the probability that
�t appears is the same as the probability that one tuples in �

appears. The following lemma gives a more rigorous

argument.

Lemma 7. For any 0 � j � k,X
jW j¼j

Pr½W jDi� ¼
X
jW j¼j

Pr½W j �Di�:

Proof. For each x-tuple � 2 Di, let I� be the indicator random

variable such that I� ¼ 1 if exactly one tuples from �

appears, and 0 otherwise. It is easy to see that these I�s are

mutually independent and Pr½I� ¼ 1� ¼
P

t2� pðtÞ ¼ pð�tÞ.
Therefore, we have

X
jW j¼j

Pr½W jDi� ¼ Pr
X
�2Di

I� ¼ j
" #

¼ Pr
X
��2 �Di

I�� ¼ j

24 35
¼
X
jW j¼j

Pr½W j �Di�:

tu

Now, we have a way to compute all the ri;js, but the

second difficulty is that the probability of ti ranking at j

is no longer simply pðtiÞ � ri�1;j�1, if ti has some preceding

alternatives in Di�1, because the existence of ti would

exclude all its other alternatives, while ri�1;j�1 includes

the probability of the possible worlds that contain one

of them. To cope with this exclusiveness, we define

D�i�1 ¼ Di�1 n f� 2 Di�1j� includes an alternative of tig, that

is, D�i�1 is the version of Di�1 that excludes all the

alternatives of ti. Similarly, letting r�i�1;j�1 be the prob-

ability of exactly j� 1 tuples from D�i�1 appearing, (3)

becomes

�ðjÞ ¼ arg max
j�i�N

fpðtiÞ � r�i�1;j�1g: ð6Þ

Similarly, define �D�i to be the single-alternative version

of D�i , i.e., after merging all tuples of each x-tuple of D�i into

a representative tuple. Thus, we can compute the r�i�1;j�1s

on �D�i�1 using the dynamic program.
Finally, the condition (5) for the scan depth in Lemma 6

becomes

max
j�i�n

fpðtiÞr�i�1;j�1g � max
0�‘�j�1

rn;‘; ð7Þ

since the LHS of (7) is the current best answer for the rank-j

tuple, while the RHS is still the attainable upper bound on

the probability of any unseen tuple being at rank j.

The algorithm. Having resolved all the difficulties, our
algorithm proceeds as follows: Initially, we have �D1 ¼ D1.
Next, for each fetched tuple ti, we incrementally build �Di,
compute ri;j (and r�i�1;j�1 when necessary), and update �ðjÞ.
More precisely, if ti does not have any preceding alter-
natives, �Di is simply �Di�1 appended with ftig, the ri;js and
�ðjÞs can be computed as before, according to (3) and (4).
This takes only OðkÞ time. If ti has one or more preceding
alternatives, we first construct �D�i�1 from �Di�1 by simply
setting the probability of the representative tuple for the
x-tuple � (that ti belongs to) in �Di�1 to zero. Next, we
compute r�i�1;j�1 from �D�i�1 and update the �ðjÞs according to
(6). This process takes OðnkÞ time. Next, we construct �Di
from �Di�1 by increasing the corresponding representative
tuple’s confidence by pðtiÞ and then compute ri;j using the
dynamic program. This process also takes OðnkÞ time.
Finally, we check the condition (7) to determine if we should
terminate. The detailed algorithm is given in Algorithm 1.

Assume there are m tuples with preceding alternatives in

the first n tuples from D, we have the following result.

Theorem 5. For a multialternative uncertain database, our

algorithm can process a U-kRanks query by reading n tuples

and spending OðnmkÞ time. The space requirement is OðnÞ.
Proof. The time bound follows from the fact that we invoke

the dynamic program only m times, while for tuples that
do not have preceding alternatives, the cost is only OðkÞ
per tuple. Since at any i, we only keep the current Di, �Di,
ri;js, and possibly D�i�1 and the r�i�1;j�1s, which take OðnÞ
space in total. Finally, the dynamic program takes only
OðkÞ space. Therefore, the space complexity of our
algorithm is Oðnþ kÞ ¼ OðnÞ. tu
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Note that m is at most n, so the worst-case runtime of our
algorithm is Oðn2kÞ. Our new algorithm has another
appealing feature: The runtime degrades gracefully as the
number of tuples with alternatives increases. In cases where
few x-tuples have only more than one alternative, our
multialternative algorithm is able to cope with them
without a significant loss in efficiency compared with the
simple single-alternative case. The best known algorithm
has to use exponential time and space even if there is only
one x-tuple having multiple alternatives.

6 EXPERIMENTS

We have implemented both our and Soliman et al.’s
algorithms [25] under GNU C++. We also optimized both
implementations to our best effort. In order to study the
effects of different distributions and correlations between
the score and confidence, synthetic data sets with various
characteristics are generated to test the performance of
the algorithms. The score and confidence values in these
data sets follow a number of different distributions, also
with different correlations. For each data set, we report its
scan depth, as well as the runtime and memory usage of
each algorithm. Note that the scan depth n is completely
determined by the data set; all of algorithms stop after
retrieving n tuples. Since all algorithms consume tuples in
the score order, the underlying ranking process in the
database engine is the same, so we only measure the
costs associated with the top-k processing on the tuple
stream that is already sorted by score. Each data set we
generated contains N ¼ 20; 000 tuples. Note that the
algorithm’s performance does not depend on N since
we never exhaust the entire tuple stream. All experiments
were executed on a Linux PC with a 2.8-GHz Pentium
processor and 2 Gbytes of main memory. In all cases,
algorithms from this work and previous work produce
the same results. This observation empirically verifies the
correctness of the new algorithms.

6.1 The Single-Alternative Case

We first report the experimental results for the single-
alternative algorithms.

Different distributions of confidence. We first study the
case where there is no correlation between score and
confidence. Since only the relative order of the scores
matters, we fixed the scores to be 1; . . . ; N and generated the
confidence values according to a few different distributions.
Specifically, we have experimented with the following
distributions: 1) uniform (denoted as uu), 2) normal
(denoted as un) with 0.5 or 0.9 as mean using 0.2 standard
deviation, and 3) exponential (denoted as ux) with 0.5 or 0.2
as mean.

The experimental results for U-Topk queries are shown
in Fig. 3. Fig. 3a shows the scan depth for different data sets,
from which we can see that it is always linear in k for all
distributions and the worst-case situations like the one in
Example 1 never occur. This confirms our earlier claim that
the score order is typically a good order. However, different
distributions do affect the coefficient in the linear relation
between n and k: A lower mean value for confidence
increases it and so does a skewer distribution. Intuitively,
when the mean is low, later tuples in the score-ranked tuple
stream are more likely to be in the top-k result, hence
leading to a larger scan depth. In terms of runtime, our
algorithm is around 10 to 100 times faster (Fig. 3b), which is
expected from the bounds in Fig. 1. Our algorithm also
consumes less memory, as indicated in Fig. 3c, which is
linear in k regardless of the distribution. While the
algorithm in [25] has a worst-case Oðk2Þ memory space,
since it keeps k representative states for states of length 1 to
k, one for each length, but in practice, it is usually much
better than Oðk2Þ due to the pruning of smaller length states
when there is at least one state with a larger length and a
higher probability. Nevertheless, it still takes more space
than our algorithm in all test cases.

Fig. 4 reports the experimental results on the same data
sets on U-kRanks queries. The same trend has been
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Fig. 3. U-Topk: single alternative, different distributions of confidence. (a) k versus scan depth n. (b) k versus runtime. (c) k versus memory usage.

Fig. 4. U-kRanks: single alternative, different distributions of confidence. (a) k versus scan depth n. (b) k versus runtime. (c) k versus memory usage.



observed for the scan depth (Fig. 4a). Our algorithm is the

clear winner by a factor of 102 to 103 in both runtime

(Fig. 4b) and memory usage (Fig. 4c). The gap gets larger as

k (hence, n) increases. This naturally follows the bounds in

Fig. 1, where we expect an OðnÞ-factor saving in time and

space.
Score-confidence correlations. The correlation between

score and confidence will affect the scan depth and the

performance of the algorithms too, and we study its effects

here. We generated data sets from bivariate normal dis-

tributions with different correlations (þ0.8, 0, �0.8) and

treated score and confidence as the two dimensions and then

ran both U-Topk and U-kRanks queries on them.
The results for U-Topk queries are presented in Fig. 5.

Not surprisingly, a positive correlation decreases query

costs and a negative correlation increases query costs, as a

result of processing tuples in the score order. Our algorithm

is still the clear winner in both runtime and memory usage

(see Figs. 5b and 5c) and is always highly efficient. In the

worst case, with strongly negatively correlated data and

k ¼ 1; 000, our algorithm takes less than 0.01 second of time

and 30 Kbytes of memory.
Fig. 6 reports the results for U-kRanks queries, and the

trend is similar. Our algorithm still consistently beats [25]

by orders of magnitude in both runtime and memory usage.

In the worst case, with strongly negatively correlated data

and k ¼ 1; 000, it takes less than 0.1 second of time and

50 Kbytes of memory.

6.2 The Multialternative Case

We now shift attention to the multialternative case, which is

handled in [27] with exclusiveness rules. Note that although

the algorithms in [27] in principle support any uncertain

data model, their experimental evaluations are limited to

the x-relation model.

We introduce a couple of measures to control the
characteristic of the data sets used in the experiments. The
number of alternatives an x-tuple could have is denoted as
the dx, called the x-degree. The ratio of the number of tuples
involved in all x-tuples over the total number of tuples is
called the x-percentage, denoted �x. Note that the number of
x-tuples is thus �xN=dx. The data sets are generated as
follows: We first generate the score and confidence values
for all tuples using a bivariate normal distribution with a
given correlation, in the same way as the single-alternative
case. Then, we repeatedly pick dx tuples at random and
group them into an x-tuple; if their confidence values add
up to more than 1, we relinquish them and take another set
of tuples until we form a valid x-tuple. We repeat the
process until we have reached the desired x-percentage. We
use the default values �x ¼ 0:1 and dx ¼ 2 unless specified
otherwise.

The exponential nature of [25]’s algorithms. We will
start with an illustration of the exponential nature, for
both runtime and memory usage, in Soliman et al.’s [25]
algorithms. Both their U-Topk and U-kranks algorithms
essentially enumerate all possible combinations of the
first n tuples in the data set, in the process of searching
for the best goal state in the huge state graph. The
U-Topk algorithm does slightly better with a pruning
strategy that reduces the space of states explored, but it
is still exponential. While the U-kRanks algorithm
virtually keeps and expands all possible states. The
number of states kept by the two algorithms for various
ks and correlations are shown in Fig. 11. It is clearly
increasing in an exponential fashion and one could only
afford a very small k with 2 Gbytes of main memory.
Even with strongly positively correlated data, it could
only tolerate a k up to 60 (respectively, 20) for U-Topk
(respectively, U-kRanks) queries, before the 2 Gbytes of
main memory is used up. For strongly negatively
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Fig. 5. U-Topk: single alternative different correlations between score and confidence. (a) k versus scan depth n. (b) k versus runtime. (c) k versus

memory usage.

Fig. 6. U-kRanks: single alternative, different correlations between score and confidence. (a) k versus scan depth n. (b) k versus runtime. (c) k versus

memory usage.



correlated data, the maximum allowed k drops to less
than 15 (respectively, 10).

Score-confidence correlations. Varying the correlations,
Fig. 7 reports the experimental results on U-Topk queries
and Fig. 8 for U-kRanks queries. Figs. 7a and 8a show that
our algorithms have linear scan depth. In both runtime and
memory usage, the algorithms in [25] are already drama-
tically more expensive than our new algorithms even for
small values of k, as indicated in Figs. 7b, 7c, 8b, and 8c due
to their exponential nature. For our algorithms, both of
them occupy linear space with respect to k. In terms of
runtime, the U-kRanks algorithms is more expensive with
its Oðn2kÞ cost compared to the Oðn log kÞ cost of U-Topk. It
is also worth noting that for U-Topk queries, our algorithm

for the multialternative case achieves almost the same
runtime as the single-alternative case. Our algorithms are
extremely efficient in all the test cases: even in the most
difficult case, 200 KBytes of memory space and 0.01 second
is more than enough to process a U-Topk query and
2 seconds for a U-kRanks query.

Varying x-percentage or x-degree. The last set of
experiments studies the effects of x-percentage �x and
x-degree dx. All experiments are executed with k ¼ 300.
Due to the exponential nature, the result of previous work is
not shown. Fig. 9 summarizes the findings for various �xs,
from which we can see that �x does not significantly affect
either our U-Topk or U-kRanks algorithm. Fig. 10 are the
results for varying dx. Similarly, it does not affect our
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Fig. 7. U-Topk: multialternative, different correlations, �x ¼ 0:1, and dx ¼ 2. (a) k versus scan depth n. (b) k versus runtime. (c) k versus memory

usage.

Fig. 8. U-kRanks: multialternative, different correlations, �x ¼ 0:1, and dx ¼ 2. (a) k versus scan depth n. (b) k versus runtime. (c) k versus memory

usage.

Fig. 9. Varying x-percentage �x, with k ¼ 300, dx ¼ 2. (a) �x versus scan depth n. (b) �x versus runtime. (c) �x versus memory usage.

Fig. 10. Varying x-degree dx, with k ¼ 300, �x ¼ 0:1 percent. (a) dx versus scan depth n. (b) dx versus runtime. (c) dx versus memory usage.



algorithms with the only exception in the strongly nega-
tively correlated case for U-kRanks algorithm, where the
runtime demonstrates a linear increase.

7 RELATED WORK

Modeling and building real systems for uncertain databases
are the most important issue to be addressed. It is
impossible to list all currently developing systems, never-
theless, TRIO [15], [23], [14], MayBMS [13], [21], and MystiQ
[16] are three promising representatives. There are also
works focusing on the general query processing techniques
for uncertain databases under the possible worlds seman-
tics, such as the ConQuer project [12] and the discussion on
generating proper and efficient query plans [16]. Special
attention to imprecise information arising from mobile data
management has been made in [6], where the main focus is
querying and indexing on evolving data over continuous
intervals. Indexing techniques of uncertain data also appear
in [19], [18], and [20], and the probabilistic graph model is
proposed to represent correlated tuples in uncertain
databases [17].

There is another recent work concerning about top-k
query processing in uncertain databases [26]. The problem is
to find the k most probable answers for a given SQL query,
where the ranking is purely based on the confidence of the
resulting tuples, and there is no additional scoring dimen-
sion involved to determine the final rank. The solution is
based on Monte Carlo simulations. There, the top-k defini-
tion is quite different from the work in [25] and ours. Our
work, as a direct follow up of that in [25], concentrates on
extending the traditional top-k query definition from the
relational database, in the sense that a scoring function is
defined to compute the rank, together with the confidence of
resulting tuples (in the same spirit as it is in [26]) to jointly
determine the final result.

The work in [25] was the first to identify the importance
of top-k query processing in uncertain databases and to
propose methods to address it. As mentioned in Section 1,
the basic approach in [25] is to search through all possible
states where a state is determined by the tuples seen so far,
i.e., a tuple appears or does not appear in a state with the
probability determined by the probability associated with
this tuple in the original uncertain database. All possible
states constitute a huge graph in which algorithms have to
search through to find the correct answer. Since the model
that they use can capture any possible correlation between
the tuples (complete model) [27], the generated graph can be
exponentially large. To alleviate this problem, certain
pruning techniques have been introduced. Nevertheless,

their algorithms become a search over this huge graph
using some generic, A�-like algorithm to find the best state.
Therefore, these algorithms are exponential in both space
and time, which makes them impractical for large data-
bases. Even for the basic model where all tuples are
mutually independent, i.e., the single-alternative case of
the x-relation model, the proposed algorithms, although
more efficient with polynomial time and space complexity,
are still not optimal. A brief summary for each algorithm in
[25] has been provided along with the corresponding
algorithm we have proposed. Finally, Top-k query proces-
sing has been proved by many real applications as one of
the most important types of queries in relational databases
(see [24] and the references therein), and it is not surprising
to see the same trend in uncertain databases.

In our recent work [28], the single-alternative case for
both U-Topk and U-kRanks queries has been discussed.
However, the more important and challenging problem of
the multialternative case was left unanswered, which is the
focus of this paper. Furthermore, extensive experimental
evaluations are presented in this paper that are not
available from our poster [28]. Independently, Hua et al.
[29] has studied a variation of the u-kRank problem, where
the aggregated probability for a tuple to appear in the top-k
result of some random world is utilized to rank the tuples.
Our algorithm for the u-kRank problem can be easily
generalized to solve this problem as well.

Finally, it should be noted that the algorithms proposed
in this paper only work for uncertain databases that conform
to the x-relation model. The only known algorithms that
work for an arbitrary uncertain database modeled by a
complete model are from [25]. As discussed above, the
algorithms in [25] essentially search through all possible
states in the exponentially large search space to deal with the
arbitrary correlations that could arise in the complete model.
Adopting the x-relation model limits the types of correla-
tions (among tuples in the database) that an uncertain
database can capture but allows for much more efficient
algorithms.

8 CONCLUSION

This work introduces novel algorithms for top-k query
processing in uncertain databases that dramatically im-
prove the state of the art under the widely adopted
x-relation model. The proposed algorithms exhibit very
low runtime and memory overhead, as it is shown both
theoretically and experimentally. Unlike previous ap-
proaches, this is the first work that provides low poly-
nomial time and space algorithms for answering top-k
queries even when tuples are not independent (but follow
the x-relation model). An important future direction is to
extend the top-k query processing methods to other types of
relational queries with imprecise query semantics.

APPENDIX A

PROOF OF THEOREM 1

Proof. For simplicity, we assume that N is even. The same
arguments work for odd N . Consider a single-alternative
uncertain database D, with tuples t1; . . . ; tN with sðtiÞ ¼
N � i and pðtiÞ ¼ 1

N�iþ2 for all 1 � i � N . It is easy to
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Fig. 11. Reference [25]: k versus number of states kept.



verify that the query answer could be any tuple as the
probability of pi being the top-1 tuple is exactly 1=ðN þ
1Þ for any i. If we perturb D slightly by increasing the
probability of any ti by a small � > 0, then the balance is
broken, and ti will be the (unique) answer. We can also
perturb the score of ti by �. This will not change anything
since only the relative order of the scores matters. In the
following, we will choose � to be a sufficiently small
positive.

Let t0i be the perturbed ti, i.e., sðt0iÞ ¼ sðtiÞ þ �; pðt0iÞ
¼ pðtiÞ � �. Let Di be D with only ti replaced with t0i.
Consider the following f values: fi ¼ fðsðtiÞ; pðtiÞÞ and
f 0i ¼ fðsðt0iÞ; pðt0iÞÞ. If there exists an i such that f 0i � fj
for at least N=2 choices of j, then the scan depth of Di
is at least N=2, since the query answer of Di, t0i, is the
ðN=2Þth tuple at best in Di when ordered by f (when
there is a tie among the tuples in terms of f , we
should consider the worst-case ordering). Suppose
otherwise for all i, f 0i > fj for at least N=2 choices of
j. Then, we have at least N2=2 pairs of ði; jÞ such that
f 0i > fj. Therefore, there must be some j� such that f 0i >
fj� holds for at least N=2 choices of i. Now, we
construct a D� whose scan depth is at least N=2� 1.
There are two cases: 1) If j� � 2, then D� consists of
t01; . . . ; t0j��2; tj� ; t

0
j� ; . . . ; t0N . Note that here essentially we

are replacing t0j��1 with tj� from ft01; . . . ; t0Ng. Since this
replacement does not change the score order, and also
effectively increase the confidence of t0j��1 by choosing
� small enough, it is not hard to verify that the query
answer of D� is tj� . On the other hand, tj� is ordered
after at least N=2� 1 of these t0is. Thus, the scan depth
of D0 is at least N=2. 2) If j� ¼ 1, then D� consists of
t1; t

0
3; . . . ; t0N; t

0, where t0 is a dummy tuple with
pðt0Þ ¼ 0. By choosing � small enough, it is still the
case that t1 is the query answer to D0, while t1 is
ordered after at least N=2� 2 of these t0i’s, and the
theorem is proved. tu

APPENDIX B

TERMINATION CONDITION OF

THE U-kRanks ALGORITHM OF [25]

Let pi;j be the probability that ti appears at rank j. The
dynamic program given in [25] proceeds by computing pi;j
for 1 � j � k for each fetched tuple i, with the following
termination condition:

max
1�‘�i

p‘;j � 1�
Xi
‘¼1

p‘;j; for 1 � j � k: ð8Þ

This termination is correct in the sense that it will not
miss any true answers. However, it is not tight, i.e., it may
lead to the scan of unnecessary tuples when the query
answers are already known. Consider the following
example: pðt1Þ ¼ . . . ¼ pðt4Þ ¼ 1=2; pðt6Þ ¼ . . . ¼ pðtNÞ ¼ �
for some sufficiently small � > 0. The U-3Ranks query
results are clearly (t1, t2 or t3, t4). The scan depth in this
case is n ¼ 4, since after reading t4, we have the current
best answers: p1;1 ¼ 1=2 for rank 1, p2;1 ¼ p3;1 ¼ 1=4 for
rank 2, and p4;3 ¼ 3=8 for rank 3. For any future tuple, it
has probability at most 1/16 to be at rank 1, at most 1/4

at rank 2, and at most 3/8 at rank 3 (by Lemma 6). On the

other hand, let us consider the condition (8) at j ¼ 3. Since

p1;3 ¼ p2;3 ¼ 0, p3;3 ¼ 1=8, the RHS of (8) is 1/2 when i ¼ 4.

As we read more tuples, the LHS of (8) stays at 3/8,

which is achieved by t4, while the RHS of (8) can be made

arbitrarily close to 1/2 by choosing � small enough.

Therefore, the algorithm in [25] will read all of the

N tuples, although the first n ¼ 4 tuples are already

sufficient to guarantee the correctness of the results.
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