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Abstract The available spatial data is rapidly

growing and also diversifying. One may obtain in large

quantities information such as annotated point/place

of interest (POIs), check-in comments on those POIs,

geo-tagged microblog comments, and demarked

regions of interest (ROI). All sources interplay with

each other, and together build a more complete

picture of the spatial and social dynamics at play in a

region. However, building a single fused representation

of these data entries has been mainly rudimentary,

such as allowing spatial joins. In this paper, we extend

the concept of semantic embedding for POIs (points of

interests) and devise the first semantic embedding of

ROIs, and in particular ones that captures both its

spatial and its semantic components. To accomplish

this, we develop a multipart network model capturing

the relationships between the diverse components, and

through random-walk-based approaches, use this to

embed the ROIs. We demonstrate the effectiveness of

this embedding at simultaneously capturing both the

spatial and semantic relationships between ROIs

through extensive experiments. Applications like

popularity region prediction demonstrates the benefit

of using ROI embedding as features in comparison

with baselines.

1 Introduction

In the last decade, location-based social networks

(LBSNs) like Facebook, Instagram, Foursquare,

Twitter have attracted billions of users, where people

can check in at point of interests (POIs) and share life

experience in the physical world via mobile device
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Fig. 1: ROI examples from Lower Manhattan, New York.

promptly. It is crucial for such service providers to

leverage the data they collected to make personalized

recommendations that help their users to explore new

places and facilitate targeting advertisement for

generating revenue [3, 8, 26]. Recent literature suggests

that distributed representation of point of interest

(POI) or embedding can further improve the

results [18, 43, 47, 56]. It is worth to note that point of

interest (POI) are a single point/place on the map of

Earth (e.g. New York Stock Exchange, New York).

Recently, an increasing interest on studying region

of interest (ROI) [45] is rising [39], where the social

dynamics occurring at POIs located in a particular

region is considered as a whole. By picturing the

semantic and spatial features of different regions

intertwined with people’s activities can yield

important information such as functional behavior,
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distinctive features and social effects, which can be

further utilized in urban planning and region-level

recommendation.

An example of the application is shown in Figure

1; ROIs 02000000 (blue), 08000005 (green) are

semantically as well as spatially correlated with ROI

09000000 (yellow) from Manhattan, New York City.

Semantic category information of ROI 09000000 is

also presented in Figure 1 where Outdoors &

Recreation, College and Education, Nightlife and

Pubs, Travel and Transport, Professional Services are

presented as top five major categories based on cosine

similarity metric. A careful observation in the map

will reveal that ROI 09000000 consists of Statue of

Liberty, Ellis Island & Battery Park and World Trade

Center which has been visited by more than 3.5

million visitors in an average for the last 5 years [30],

is a major reason for Outdoors & Recreation as the

topmost category. New York University, The King’s

College and Pace University etc. are also demarked

within the region that follows the second top spot as

College and Education. The next three top categories

are intuitive to estimate since Lower Manhattan is the

hub of some popular old pubs, financial offices, hotels

and well connected subway, transport & ferry system

in the city. Though ROI 08000005 is geospatially

distant from ROI 09000000 but they are semantically

similar in terms of Outdoor & Recreation, College &

Education and Travel & Transport because of Central

Park, New York University Midtown Campus, Pace

University, Grand Central Terminal and major subway

connections respectively.

An effective approach to capture both semantic
and spatial feature at the same time is to embed them

in a latent semantic space as elaborated by [43, 47, 48]

for POIs. Hence, embedding over ROI with semantic

features would also be an effective method for ROI

analysis. Nevertheless, existing solutions only consider

the semantic embedding of POI but not ROI. A naive

extension for extending semantic embedding for POI

to obtain semantic embedding of ROI is to simply

aggregate over POI features for all POIs inside a ROI

and treat that ROI then simply as an aggregated POI.

However, this approach is not effective in capturing

spatial and semantic information simultaneously due

to the loss of interesting correlations between spatial

and semantic information in the process of simple

aggregation, as also verified by our experiments. We

deduced ROI embedding problem into a tripartite

graph embedding problem with entities (a) ROIs (b)

POIs (c) Words, whose embedding goal is to minimize

the probability distribution difference between

embedding entities in latent space and the information

graph network based on edge connections. The ROI

embedding model facilitates the online analysis and

discovery of the (dis)similarities between any pair of

ROIs from the perspective of human understanding.

To further add to our motivation, and answer why

ROI embedding is needed, we need to look at the

advantages of using embedding over raw information

or semantic keyword based search. Firstly,

computation efficient embeddings are generic and

aggregate latent features that can easily be integrated

into downstream tasks. Secondly, to comply with data

retention policies and maintain security standards, it

is essential to limit raw information access and step

towards a generic and lossy embedding. Thirdly,

semantic ROI embeddings grant measurable

techniques to attribute a region and can account for

its change over time.

Application-wise, incorporating ROI embedding as

a feature for ad services can have a significant impact,

as localized crowd engagement/activity in

neighborhoods can promote economic growth. ROI

features is another step towards improvement of

localized search results. Another far reaching

application of ROI using features is vacation home

rentals recommendations based on user’s

neighborhood preferences. Semantic embedding of

ROIs also enables users to filter with scores on each

categories like Travel & Transport, Shops & Services,

Arts & Entertainment, Schools or Nightlife for finding

listings with neighborhood information.

The main set of challenges of ROI semantic

embedding comparing against POI semantic

embedding lies in:

1) Geographic Influence: Recent studies on POI

embedding can effectively classify the POIs categories

and use them as features for prediction and

recommendation applications. However, evaluating the

influence of POIs on its neighborhood region is

challenging and not yet been addressed in literature.

2) Capturing Social Effect: Social responses from

microblog sites are highly dynamic and often captures

popularity information of places in any region.

Discovering any spatial features from social behavior

is complex and involves significant challenges.

3) Semantic challenges: Leveraging the textual

information associated with places and regions to

obtain semantic features is a non-trivial task. We

modeled a tripartite graph network embedding

approach to learn ROI embedding.

4) Data Challenges: It is difficult to get a large

and open dataset of POIs with textual information

from location-based social networks. Currently

available public datasets are either geographically
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sparse or not suitable for our problem statement. We

resort to scraping and crawling for creating

appropriate datasets for our investigation.

We summarize the contributions of this paper.

– We formulate the Region of Interest (ROI)

semantic embedding that simultaneously embeds

into semantic space and spatial space. That is, this

embeds ROIs nearby others in latent space, which

are both nearby semantically in terms of the

dominant places of interest as well as the social

discussion within those regions, and nearby

geospatially, in that way they are nearby other

neighboring and overlapping ROIs.

– We propose a Tripartite Network Embedding

(TNE) to learn a low-dimensional representation

of ROIs. For property preserving embedding, TNE

introduces, (a) Mergeable Indirect Graphs: TNE

creates transitive relation preserving more

informative homogeneous graphs, then proposes a

method for compatibility testing to merge multiple

homogeneous graphs. (b) Community-aware

Random Walks: TNE alleviates moderately

connected community problem in graphs. (c)

Heterogeneous Negative Sampling: TNE proposes

noise distributions on heterogeneous graphs which

enhances learnability. TNE is easily extendable to

multi-partite network embedding problems.

– We introduce a semantic category annotation for

ROIs to identify the feature similarities of ROI

with defined categories for semantic

understanding. It also helps us to evaluate ROI

embeddings in our experiments.

– We present extensive experiments with real-world

datasets to show qualitative advantage of ROI

embedding with TNE. We compared TNE with

state-of-the-art baselines to justify our embedding

process through spatial and semantic facets.

The rest of the paper is organized as follows.

Section 2 presents our problem formulation with

baseline approaches inspired by state-of-the-art

literature. In Section 3, we present our model TNE:

Tripartite Network Embedding followed by

experiments in Section 4, related works in Section 5

and Section 6 concludes the paper.

2 Preliminaries

This section introduces problem formulation with

some necessary definitions and notations used in the

paper. After that, we present problem statements on

semantic ROI embedding formally and describe our

information graph network. Next, we enlist a few

baseline approaches to compare with our tripartite

network embedding model, TNE.

2.1 Problem Formulation

Assume we have three sets of data: points of interest

(POIs), regions of interest (ROIs) and geotagged

documents. We define each next.

A Region of Interest (ROI) dubbed as r is an area

in the map of Earth demarked by a geometry of circle,

rectangle or polygon, e.g., ROI 09000000 from Figure

1. An ROI r=(id, geofeatures, name, properties) is a

tuple of identifier, polygonal geofeatures, name and

optional properties like state, country respectively.

ROIs are technically stored as GeoJSON [17]. We

represents a set of ROIs as R = {r1, r2, . . . , r|R|}.
A Point of Interest (POI) dubbed as p is defined

as a specific point location in the map of Earth. E.g.

Empire State Building, New York. A POI p=(id,

coord, name, properties) is a tuple of identifier,

latitude-longitude geo-coordinate, name and optional

properties like keywords, description, address and

category respectively. It is also stored as GeoJSON

object. A set of POIs is represented as

P = {p1, p2, . . . , p|P |}.
A geotagged document dubbed as d is a geolocation

associated textual record either by origin or reference.

E.g., check-in comments, reviews, microblogs etc. A

geotagged document d = (id, text, coord, properties)

is a tuple of identifier, text, a latitude-longitude

geo-coordinate and optional properties like timestamp,

user information. We are mainly interested in two

types of geotagged documents (a) Microblogs (b)

Social reviews. Microblog documents associated with a

ROI r is denoted as Dr, and social review documents

associated with a POI p is denoted as Dp. Documents

are associated with POIs and ROIs based on

geotagged locations. We define all geotagged

documents as D = DR ∪ DP where DP and DR are,

DP =
⋃
p∈P Dp; DR =

⋃
r∈RDr. Words from D

forms vocabulary set W = {w : w ∈ d.text, d ∈ D}.
We capture relations among multiple entities (i.e.,

POI, ROI, and Words) through the information graph

described in Section 2.3. In Table 2, we summarize all

the notations used in this paper.

2.2 Problem Statements

Problem 1 (Semantic Embedding of ROI) Given

a set of ROIs R, a set of POIs P , an associated set of

geotagged documents D and an embedding dimension

n, the goal of semantics embedding of ROI is to embed

each ROI r ∈ R as a vector #»r ∈ Rn, such that the

cosine distance of #»ri and #»rj captures the similarity of

ri and rj in both spatial and semantic aspects.
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Table 1: Table of Notation

Notation Meaning
R = {r1, r2, r3, . . . , r|R|} A set of ROIs.
P = {p1, p2, p3, . . . , p|R|} A set of POIs.
Dr = {d1, d2, d3, . . . , d|Dr|} A set of geotagged documents associated with ROI r.
Dp = {d|Dr|+1, d|Dr|+2, . . . , d|Dr+Dp|} A set of geotagged documents associated to POI p.

D = DR ∪DP A set geotagged documents.
W = {w1, w2, . . . , w|W |} Vocabulary set or Words.
d.text= {w1, w2, . . . : wi ∈W} Text of document d.
Grp ROI-POI Bipartite Graph.
Grw ROI-Words Bipartite Graph.
Gpw POI-Words Bipartite Graph.
Gr ROI Graph.
Gw Word Graph.
G = (Grp, Grw, Gpw, Gr, Gw) Information Graph Network.
#»r Embedding of ROI r.
#»p Embedding of POI p.
#»w Embedding of Word w.
C = {c1, . . . , c|C|} Semantic Categories.
C = { # »c1, . . . ,

#      »c|C|} The set of semantic category vectors.

The objective of ROI semantic embedding is

capturing geographic information and the semantic

perspective from the crowd about the region. If any

ROI stands out in any semantic features such as

recreational activities, office & services, residential

region or any combination of activities, that must be

captured via embedding. We introduce an application

of ROI embedding as Problem 2: Semantic Category

Annotation for evaluation of ROI embedding.

Problem 2 (Semantic Category Annotation of

ROI) Given a semantic embedding #»r for ROI r and a

set of categories C = {c1, . . . , c|C|}, where a category

ci = {w1, w2, . . .} is represented with set of words, the

goal is to annotate the ROI r with semantic categories

Semr = {ci : scorei|∀ci ∈ C} with corresponding

similarity scores.

The aim of Problem 2 is to semantically annotate

any ROI r from the generated ROI semantic

embedding #»r . As we know, word representation in

semantic space are capable of capturing its meaning

via context or synonyms in close proximity space.

Firstly, we propose a systematic approach to define

semantic category which adheres to the categories

defined in Table 2. In our model we describe a

category c with a set of words {w1, w2, . . . , wk} that

captures meaningful information about that category.

For example, the category Travel and Transport is

described with words travel, trip, station, train, ferry,

car, airport, pier etc. We perform a normalized

average of these word vectors (each word is

represented by a vector via an word embedding

process, e.g., Word2Vec embedding) to represent the

vector for the semantic category which we dub as

Table 2: A set of Sampled Categories C

1. Arts & Entertainment 2. College & Education
3. Food 4. Nightlife Spot
5. Outdoors & Recreation 6. Professional & Other Places
7. Residence 8. Shop & Service
9. Travel & Transport

semantic category vector #»c . The cosine similarity

score of a semantic category vector #»c with an ROI #»r

i.e. normalized dot product 〈 #»r , #»c 〉 determines the

closeness of ROI with respective semantic category.

The goal of this study is to find how well we can

annotate an ROI with sentiment categories

C = { # »c1, . . . ,
# »c9} and whether it adheres to real world

scenarios. An example of ROI semantic category

annotation is given in bottom corner of Figure 1.

2.3 Information Graph Network

We define an information graph network

G = (Grp, Grw, Gpw, Gr, Gw), which is a combination

of graphs with POI, ROI and Word entities to capture

spatial and semantic information, illustrated in Figure

2. It is to note that vocabulary of semantic words

W = {w : w ∈ d.text, d ∈ D} is from geotagged

documents.

In our model, the information graph G is formed of

multiple subgraphs. The subgraphs we model are of

two types heterogeneous or bipartite subgraphs and

homogeneous subgraphs. We define the three bipartite

subgraphs and two homogeneous subgraphs as follows.

Definition 1 (ROI-POI Bipartite Graph: Grp)

An ROI-POI graph, denoted as Grp = (R ∪ P,Erp), is
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Fig. 2: Information Graph Network G with illustration of ROI-POI bipartite graph Grp, ROI-Word bipartite

graph Grw, POI-Word bipartite graph Gpw, ROI graph Gr and Word graph Gw.

a bipartite graph with edges Erp. An edge

{e = (ri, pj) ∈ Erp} exists iff pj is located within ri
and the weight of edge is ω(ri, pj) = 1.

Definition 2 (ROI-Word Bipartite Graph: Grw)

An ROI-Word graph, denoted as Grw = (R ∪W,Erw),

is a bipartite graph with edges Erw. An edge

{e = (ri, wj) ∈ Erw} exists iff wj is mentioned in any

dri and the weight of edge $(ri, wj) is calculated with

tf-idf scores.

Definition 3 (POI-Word Bipartite Graph: Gpw)

A POI-Word graph, denoted as Gpw = (P ∪W,Epw),

is a bipartite graph with edges Epw. An edge

{e = (pi, wj) ∈ Epw} exists iff wj is mentioned in any

dpi and the weight of edge $(pi, wj) is calculated with

tf-idf scores.

Definition 4 (ROI Graph: Gr) An ROI graph,

denoted as Gr = (R,Er), is a homogeneous graph

network of ROIs where an edge e ∈ Er between two

ROIs denote they are spatially overlapped or

neighboring region.

Definition 5 (Word Graph: Gw) An word graph,

denoted as Gw = (W,Ew), is a homogeneous graph

network of words where an edge e ∈ Ew between two

words signifies their co-occurrence in geotagged

documents.

2.4 Baseline Approaches

State-of-the-art methods are not tailored for

multi-partite embedding. Hence, we extend the

state-of-the-art network embedding methods to form

multiple comparable baselines to compare against our

TNE model with various experiments in Section 4.

The last baseline TNE nw use TNE model but

trained on non-weighted edges version of information

graph. We use this baseline to show the importance of

edge weights in our model.

1. GE poi (POI Aggregation): The work of Xie et

al. [47] produces state-of-the-art POI embedding

{ #»p : p ∈ P} for POI recommendation. Though their

objective is different from our but we matched their

technical model with our information graph network

G \(Grw, Gr) to generate POI embedding for fair

comparison. Based on the edges of graph Grp we

aggregate POI embedding #»p from same ROIs via

normalized vector summation to obtain resultant ROI

embedding vector #»r . This baseline also depicts what

if similar importance is given to all the POIs in a

region. Mathematically #»r is calculated as:

#»r =
{ ∑

#»p

||
∑

#»p ||
: ∃(r, p) ∈ Erp, r ∈ R

}
This approach is expected to perform well in POI

embedding and capturing basic (non-weighted)

semantic relation of ROIs. Since, GE poi does not
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perform crowd engagement within ROIs, it is expected

to partially solve the problem.

2. CrossMap (Region-Word graphs): This approach is

very similar to CrossMap work from Zhang et al. [54] for

popular event exploration. Inspired by their model, we

only leverage the information from social engagements

and its relation on ROIs to generate ROI embedding.

From our information graph G, we used Grw, Gr, Gw
to generate ROI embedding for this baseline. Baseline

CrossMap captures crowd engagements on ROI but

neither the geospatial correlation nor the POI effects is

considered for ROI in their approach.

3. BiNE (Multiple Bipartite Networks): BiNE [16] is

a method proposed for learning vertex representation

in bipartite graphs. We treat this as another baseline

for learning ROI embedding from bipartite graphs

Grp, Gpw, and Grw. It will be interesting to see if this

baseline can capture the spatial affinity and semantic

relation of ROIs. We expect BiNE to fail in capturing

geospatial correlation as transitivity property is not

incorporated in this approach. In the related work

(i.e., section 5), we explicate the rationale of using

BiNE as another state-of-the-art baseline model for

comparisons.

4. TNE wcr (TNE without Community Random

Walk): This version of our model TNE does not take

advantage of our community-aware random walk

strategy and uses the traditional random walk

strategy. Including this baseline model in our

experiments helps recognize the impact of

incorporating the community-aware random walk in

TNE.

5. TNE nw (Non-weighted TNE): This version of our

model TNE does not use tf-idf weights over Gpw graph

for measuring the popularity of POIs. This approach

demonstrates the modeling advantage of these weights

in comparison to Jenkins et al. [22] which does not use

such weights – among other differences.

3 TNE: Tripartite Network Embedding

In this section present our approach TNE, the

Tripartite Graph Network representation learning

which can be generalized to a multipartite network

embedding model. The primary focus of TNE is

learning of ROI embedding, i.e. Problem 1 and

Problem 2 is an application of the former. Our

network embedding model TNE is (a) microscopic

structure-preserving network embedding; (b) transitive

property preserving networks; and (c)

community-aware network embedding. We explain each

of these features as we simplistically unravel our

model.

3.1 Direct Relation Models

The relationship among vertices which is

straight-forward visible from the edges set in the

information network is known as direct relation model.

We classify Direct Relation Models based on type of

vertices between the edges in graph, such as, (a)

Heterogeneous Relation (b) Homogeneous Relation

models.

3.1.1 Direct Heterogeneous Relation Model

The basic graph building block for any

multipartite/tripartite networks are bipartite networks

that represent relationships between two non-similar

entities or vertices set. Consider our tripartite

information network G, we have three bipartite

networks Grp, Grw, Gpw. A bipartite graph network is

a heterogeneous vertex network (in our model) that

represents direct or first order relations which we dub

as Direct Heterogeneous Relation Model.

In any structure preserving network embedding, it

is desirable that the closeness property between two

well-connected vertex is high. Even if the connected

vertices are different in nature (e.g. POI and Word in

Gpw) but their proximity in network is a direct

relational information must be imbibed in the

embedding network. For the sake of understanding, let

us consider a bipartite network Guv = (U ∪ V,Euv)
where U = {u1, u2, . . . , u|U |} and

V = {v1, v2, . . . , v|V |} are two sets of different types of

vertices, and Euv ⊂ U × V is edge set. Also consider

the embedding representation of vertex ui and vj as
# »ui ∈ Rn and # »vj ∈ Rn respectively. In our model we

consider the Euclidean embedding space where we

define closeness measure between any two vertices ui
and vj as conditional probability Pr(vj |ui).

Pr(vj |ui) =
exp(− # »vj

T # »ui)∑
vk∈V exp(− # »vk

T # »ui)
(1)

Existing literatures and pioneer embedding work of

word2vec [28] depicts the importance of using inner

product for similarity measure and transforming it

into probability space with sigmoid function. The

microscopic structure of network connection is

captured with conditional probability between

vertices.
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Pr(vj |ui) =
$(ui, vj)

degui

(2)

where $ is edge weight function i.e. $(ui, vj) is weight

of edge euivj ∈ Euv and degui =
∑
euivk

∈Euv
$(ui, vk).

The objective of the model is to learn the

embedding vectors by minimizing difference between

pairwise distribution.

minimize O = DKL(Pr ||Pr)

= −
∑

euivj
∈Euv

Pr(vj |ui) log
Pr(vj |ui)
Pr(vj |ui)

= −
∑

euivj
∈Euv

$(ui, vj) · log Pr(vj |ui)

(3)

where DKL is KL divergence measure for difference

between probability distributions. The expression

−
∑

Pr(vj |ui) log Pr(vj |ui) from Equation 3 is the

information entropy expression which is modeled as

edge entropy i.e.
∑
$(ui, vj) function. From the final

expression, we obtain all the variables in optimization

functions i.e. vectors # »ui,
# »vj from Pr(·).

KL divergence is a particular case of a broader

class of divergences called f -divergences. KL

divergence is asymmetric and commonly used by

embedding methods that preserves local and

microstructures [21]. There are other types of

divergences such as Reverse KL divergence (RKL),

Jenson-Shannon (JS) divergence, Hellinger

distance [19], χ2 distance measures. As the name

suggests optimizing with Reverse KL measures can

capture the global or macro network structures. JS
divergence is symmetric in nature, and some research

works suggests using JS distance as a cost function in

the empirical domain for optimization purpose [15,27].

χ2 distance also behaves similar with respect to

preserving local structure. Based on the intention of

capturing micro- and macro-structure or giving equal

importance to both of them, we can pick out the right

methods.

In our case, the optimization equation for tripartite

graphs Grp, Grw & Gpw with KL-divergence method

follows:

minimize Orp = −
∑

eripj∈Erp

$(ri, pj) · log Pr(pj |ri)

minimize Orw = −
∑

eriwj
∈Erw

$(ri, wj) · log Pr(wj |ri)

minimize Opw = −
∑

epiwj
∈Epw

$(pi, wj) · log Pr(wj |pi)

(4)

3.1.2 Direct Homogeneous Relation Model

In many information network having a direct

homogeneous graph is not common. For example,

consider the information network with Yahoo Answers

or Quora. Users in these sites post questions which

then gets answered by other users. There are direct

relational graphs between users-questions,

questions-answers and answers-users but there are no

direct relations among users. There are of course

information networks where direct homogeneous

graphs are present. It is important that we utilize the

information from such graphs because more

information helps in learning better [10, 41] as it

reduces uncertainty in learning weights within model.

In our scenario, Gr and Gw are two homogeneous

graph in G i.e. the edges are between the same type of

vertices. The edges in these graphs signify explicit

proximity between connected vertices. Even though

the information from these explicit relations are very

informative but not sufficient for embedding because

of their sparse nature. The embedding model can still

be significantly enhanced by incorporating implicit

information via indirect relation graphs as discussed

in Section 3.2 and then merging direct & indirect

homogeneous graphs as shown in Section 3.2.2.

3.2 Indirect Relation Models

In this section, we focus on modeling indirect and

deducible relations that contributes in obtaining

meaningful information towards embedding. Recent

work suggests deducible information helps in

improving semantic properties [16, 23, 51].

Heterogeneous networks consisting of bipartite graphs

do not have explicit relations among vertices of the

same type. To understand the importance of indirect

relation, take the example of POIs in our data. The

POIs set P does not have any explicit edges between

any two POIs. But there are POIs that are similar

based on the reception they receive from people. A

subset of words can form a topic and commonly

describe similar POIs (which is true in real world

scenario), it is very likely that there will be significant

number of paths between the similar POIs in bipartite

graph Gpw. Generating all the paths between all pairs

of large number of vertices is infeasible. To alleviate

the issue, it is a common practice to generate several

random walks to mimic the representation of a corpus

of vertices with the intuition that important vertices

gets repeated based on its popularity.
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3.2.1 Indirect Homogeneous Graphs

Random walks on bipartite graphs have periodicity

issues [1]. The common strategy of addressing this

problem is to construct two homogeneous graphs from

bipartite graph utilizing 2nd-order proximity between

vertices of same types [11]. Having said that, we

construct Gvu = (U,Evu), a homogeneous graph with

vertices U by utilizing transitive relations with

vertices V from bipartite graph Guv. We defined the

2nd-order proximity between two vertices ui and uj
by weight $(ui, uj) where euiuj

∈ Evu such that there

exists edges euivk and evkuj
in Guv.

$(ui, uj) =
∑
vk∈V

$(ui, vk) ·$(vk, uj) (5)

Similarly we construct homogeneous graph Guv =

(V,Euv ) with relations via vertices U from Guv.

3.2.2 Merging Homogeneous Graphs

Our information network G consists of three bipartite

graphs Grp, Grw, Gpr. We now generate homogeneous

graph Gpr on ROIs R with indirect relations via POIs

P and homogeneous graph Gwr on ROIs R with

indirect relations via words W . Similarly,

homogeneous graphs Grp, G
w
p are obtained on POIs P

with indirect relations on ROIs R and Words W

respectively. Homogeneous graphs Grw, G
p
w are also

generated with indirect relations on ROIs R and POIs

P respectively. All-inclusive Gpr , G
w
r ,Grp, G

w
p , Grw, G

p
w

indirect homogeneous graphs are obtained from three

bipartite graphs.

The homogeneous graphs Gpr , G
w
r both on ROIs R

provides implicit relation among its vertices. We use

all the information from direct and indirect

homogeneous graphs by simply appending the edges

from the graphs Gpr , G
w
r , Gr to form a single graph G′r

for modeling random walks. However, it should be

determined whether these graphs are compatible and

not contrasting to each other. Intuitively incompatible

graphs can be very contrast in terms of their hubs and

authority vertices which can lead to a information

dilution and loss of quality. In such cases, a wise

decision is to only choose the most effective – the most

compatible – set of homogeneous networks to merge

from multiple homogeneous graphs; this decision lies

with the data scientist. To effectively measure the

compatibility of graphs, we use the hub and authority

matrices from both graphs. Close observation on

HITS [25] algorithm reveals that it is an iterative

power method to compute the dominant eigenvector

for M · MT and for MT · M where matrix M is an

adjacency matrix of a graph. Hub matrix is

H = M ·MT and authority matrix is A = MT ·M .

Also, constant initialization of hub/authority scores

enables us to perform power iteration on H and A and

choose matrices from any iteration. Let Hpr ,Hwr and

Apr ,Awr be the hub and authority score matrices of

two homogeneous graphs on ROI R.

Finding similarity or distance with labeled graphs

is an easy task and we can leverage simple methods

like edit distances, matrix similarity or even complex

methods like coupled vertex-edge scoring [53],

MCES [37] etc. For our model, we use Frobenius

distance between two matrices and they qualify for

merge if the sum of distance is less than some positive

value φ.

FA,B = ‖A−B‖F =

√∑
i,j

(Ai,j −Bi,j)2 (6)

FHp
r ,Hw

r
+ FAp

r ,Aw
r
≤ φ (7)

Similar to G′r homogeneous graph of ROIs, we

construct G′p and G′w by merging (Grp, G
w
p ) and

(Grw, G
p
w, Gw), respectively.

3.2.3 Community-aware Random Walks

Homogeneous graphs constructed from bipartite

networks is used to generate a corpus of several

random graphs. DeepWalk [35] generates such random

walk and utilize it for learning embedding. BiNE [16]

addresses issues that DeepWalk [35] does not capture

the characteristic of the real world network because

the distribution of vertices in random walks, and the

graph network does not match. One solution is to

generate random walks based on the importance of

vertices measured with hubs and authority score of

vertices.

Community is defined as a subset of vertices

within the graph such that connections between the

vertices are denser than connections with the rest of

the network [36]. If the number of connections or

reachability between vertices within a very few hops is

high, then they must have a stronger bond. In a

real-world scenario, we often have edges that act as

bridges between communities or sub-communities.

Often sparsity and lack of information in training data

are responsible for the appearance of bridges within a

community. Even if there is a moderate number of

bridges, centrality biased random walks will seldom

connect them. We propose a δ-hop community-aware

random walk where a step in the random walk can
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Algorithm 1: Community-aware Random Walk

Input: Graph G′u, Sequence Params (µ, σ), maxStart, Walk mutation probability α ;
Output: Du

Adjacency matrix M = Adjacency(G′u) ;
H = Centrality(M);
3-hop Adjacency Matrix M3;
foreach vertex ui ∈ U do

numStart = max(H(ui)× maxStart, 1);
for i=1 to numStart do

# Choose length l with Normal Distribution;
Length l = N(µ, σ);
Sequence S = {ui};
cur = ui ;
for k = 2 to l do

rand = RandomFloat((0,1]);
if 0 < rand ≤ α then

uk = MutateRandomWalk(M3, cur) ;
end
else

uk = RandomWalk(M, cur) ;
end
cur = uk;
Add cur to Sequence S ;

end
Add Sequence S to Du

end

end
return Du;

mutate to a jump with probability α within δ-hop

connected community.

The motivation of a δ-hop community is to include

strongly/well-connected bridges and avoid weak

connected community bridges. We used M3, 3-hop is

the least number of hops such that an internal node

from a well-connected community can reach an

internal node of another community via a bridge,

where M is a adjacency matrix.

Hence, it is straightforward to follow that with a

low δ = 3 and a low step-jump mutation probability

α = 0.1 the jump likely remains within the community

but alleviates the moderately connected community

problem. Like other biased random walk model

following “rich gets richer” principle, our mutated

step-jump act as a welfare strategy in the algorithm.

Algorithm 1 presents the summarized

community-aware random walk to prepare corpus Du
from graph homogeneous G′u. Statistic suggests that

mean length of sentences in English varies between

20-25 words and follows normal distribution [52].

Technical writing sentences are typically shorter. We

take the inspiration from it and use normal

distribution with mean µ = 15 and standard deviation

σ = 10 to generate length of sequences in corpus Du.

Starting a sequence with a vertex depends on its

popularity (centrality) but we also limit it to a

maximum of 5 with variable maxStart.

3.2.4 Corpus Generation

Following the community-aware random walk on

G′r, G
′
p, G

′
w we obtain corpuses Dr,Dp,Dw respectively

by using Algorithm 1.

For a sequence S in corpus Dr an ROI ri positioned

at index c in S is represented as rci . In a sequence S a

context of m from c will be the ROIs positioned from c−
m to c+m i.e., {rc−m� , rc−m+1

� , . . . , rc�, r
c+1
� , . . . , rc+m� }

where � is in range [1, |P |]. We can now apply the skip-

gram model on corpuses similar to the technique used in

Word2Vec [29] embedding to optimize each embedding

entity. To optimize the embedding for ROIs #»r , POIs #»p ,

and Words #»w we should minimize the expressions for

objective functions O′r, O
′
p, and O′w respectively. It is

to note that for each entity, as we create an embedding

vector, we also need to assign a corresponding context

vector for that entity.

minimize O′r =−
∑

rci∈S∧S∈Dr

2m∑
j=0,j 6=m

log Pr(rc−m+j
� |rci )

Pr(rc−m+j
� |rci ) =

exp (
# »
rci
T ·

#                  »

ϕc−m+j
� )∑|R|

k=1 exp (
# »
rci
T ·

#    »

ϕk
�)

where
#    »

ϕc
� is the context vector for rc�.

(8)
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Similarly, we optimize for POIs #»p with function O′p.

minimize O′p =−
∑

pci∈S∧S∈Dp

2m∑
j=0,j 6=m

log Pr(pc−m+j
� |pci )

Pr(pc−m+j
� |pci ) =

exp(
# »
pc
i
T ·

#                 »

%c−m+j
� )∑|P |

k=1 exp (
# »
pc
i
T ·

#   »

%k
�)

where
#   »

%c
� as the context vector for pc�.

(9)

Finally, we optimize for Words #»w with function O′w.

minimize O′w =−
∑

wc
i∈S∧S∈Dw

2m∑
j=0,j 6=m

log Pr(wc−m+j
� |wci )

Pr(wc−m+j
� |wci ) =

exp (
#  »
wc

i
T ·

#                 »

ϑc−m+j
� )∑|W |

k=1 exp (
#  »
wc

i
T ·

#   »

ϑk
�)

where
#   »

ϑc
� as the context vector for wc�.

(10)

3.3 Negative Sampling

The conditional probability Pr(vj |ui) from Equation

3,4 and Pr(uj |ui) from Equation 8,9,10 is

computationally expensive since it would need to sum

over the entire set of vertices. The state-of-the-art

method to empirically estimate them is via negative

sampling (e.g., as in specified in [29]), where the

denominator is estimated by sampling random

vertices. The numerator (defined by explicitly similar

vertices) can be calculated directly.

In particular, negative sampling helps to learn a

better embedding by selecting negative vertices that

have significant probability difference, yet are closely

connected vertices. Our negative sampling method

uses popularity biased method which helps in learning

faster but also alleviates gradient vanishing issues [6].

We use the concept of transition probabilities in

random walk from one vertex to another and this

strategy perfectly replicates the popularity/ranking

based system which we leverage for negative

sampling [55]. In a random walk starting from vertex

ui adjacent to vertex uj the probability of reaching

from ui to uj is defined as the ratio of the weight of

the edge (ui, uj) over the sum of weights on all

adjacency edges of vertex ui. We compute the (i, j)th

cell of transition matrix T from the adjacency matrix

M of graph as

T (ui, uj) =
Mui,uj∑|Mui
|

k=1 Mui,uk

(11)

where Mui,uj is weight of edge between ui and uj .

Naturally T is a right stochastic matrix. We also

make sure that self-loops, if they initially exists, are

removed from the matrix. Based on the matrix T we

perform a δ-hop random walk by power iteration T δ.

For some dense graphs the matrix can converge and

reach a steady state distribution in few hops. For our

purpose we restrict the δ to δmax = 5. The row ui of

T δmax
ui

act as a noise distribution matrix for selection of

negative candidates for target vertex ui. We define the

K negative samples for target ui as NK
Gu

(ui).

Following the negative sampling technique for

homogeneous graphs, we need to extend this technique

for incorporating bipartite graphs as well. Firstly, we

assume the prevalence of transitive property for

bipartite graphs to model hops between same type of

vertices i.e. if ui is connected to vk and then vk is

connected to uj then we assume existence of edge

between ui and uj in graph Guv. The weights of edge

i.e. $(ui, uj) =
∑
vk∈V $(ui, vk) · $(vk, uj). After we

have defined the edges and weights between connected

uis and ujs, it is easy to obtain T . Thereafter,

δmax-hop and T δmax noise matrix is obtained to

perform negative sampling on same seed and target

type vertices, we dub this as homogeneous negative

sampling. For a seed vertex ui in bipartite graph K

negative samples NK
Guv

(ui) is obtained from noise

distribution row S(ui) in S where

S(ui) = {T δmax(ui, uj) : ∀uj ∈ U} (12)

For negative sampling on bipartite graphs where

the seed vertex is different from target sample

vertices, which we dub as heterogeneous negative

sampling, e.g. seed ui to target vl, we apply the usual

transition probabilities on the already obtained noise

matrix T δmax . When a vertex ui connected to uj in

δmax-hop, all the adjacent vertices of uj say

V ′ = {vl|euj ,vl ∈ Euv)} are now considered for

heterogeneous negative sampling. The entry of (ui, vl)

cell in noise distribution matrix of bipartite graphs is

calculated as

S(ui, vl) =
∑
uj∈U

T δmax(ui, uj) ·
Muj ,vl∑

vm∈V Muj ,vm

(13)

where
Muj,vl∑

vm∈V Muj,vm
is the transition probability

from uj to vl.
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Algorithm 2: Embedding Training

Input: Graph G, Training Samples N, Random Walk Params (µ, σ,maxStart,α), negative sample K ;
Output: ROI embedding #»r ,POI embedding #»p , Word embedding #»w ;
Create Grp, Grw, Gpw, G′r, G

′
p, G
′
w from G;

Dr = Community-aware Random Walk(G′r,µ, σ,maxStart,α);
Dp = Community-aware Random Walk(G′p,µ, σ,maxStart,α);

Dw = Community-aware Random Walk(G′w,µ, σ,maxStart,α);
Perform negative sampling NGrp

from Dr, Dp and Grp.; NGrw
from Dr, Dw and Grw.; and NGpw

from Dp, Dw and

Gpw.;
Perform negative sampling NGr

from Dr and Gr.; NGp
from Dp and Gp.; and NGw

from Dw and Gw.;

Initialize embedding vectors ROIs # »ri, POIs # »pj , Words #   »wk ; and context vectors ROIs #  »ϕi, POIs # »%j , Words
#   »

ϑk ;
while iteration = 1 to N do

Sample edge (ri, pj) from Grp, pick NK
Grp

(ri), NK
Grp

(pj);

Update ROI # »ri and context POI #   »%n, pn ∈ NK
Grp

(ri) & update POI # »pj and context ROI #    »ϕn, rn ∈ NK
Grp

(pj) ;

Sample edge (ri, wj) from Grw, pick NK
Grw

(ri), NK
Grw

(wj);

Update ROI # »ri and context Word
#   »

ϑn, wn ∈ NK
Grw

(ri) & update Word #   »wj and context ROI #    »ϕn, rn ∈ NK
Grw

(wj) ;

Sample edge (pi, wj) from Gpw, pick NK
Gpw

(pi), NK
Gpw

(wj);

Update POI # »pi and context Word
#   »

ϑn, wn ∈ NK
Gpw

(pi) & update Word #   »wj and context POI #   »%n, pn ∈ NK
Gpw

(wj) ;

Sample edge (ri, rj) from Gr, pick NK
Gr

(ri);

Update ROI # »ri and context #    »ϕn, rn ∈ NK
Gr

(ri) ;

Sample edge (pi, pj) from Gp, pick NK
Gp

(pi);

Update ROI # »pi and context #   »%n, pn ∈ NK
Gp

(pi) ;

Sample edge (wi, wj) from Gw, pick NK
Gw

(wi);

Update Word #  »wi and context
#   »

ϑn, wn ∈ NK
Gw

(wi) ;

end
return ROI embedding #»r , POI embedding #»p , Word embedding #»w;

For each edge (ui, vj) in a graph with target vertex

ui and K negative samples we follow the conditional

probability approximation Pr(vj |ui), where #»ςj is the

context vector for vj as follows.

Pr(vj |ui) = log σ( #»ςj · # »ui) +
∑

vn∈NK
Guv

(ui)

log σ(− # »ςn · # »ui)

(14)

Similarly, for Pr(uj |ui), where #  »κκκj is the context

vector for uj as follows.

Pr(uj |ui) = log σ( #  »κκκj · # »ui) +
∑

un∈NK
G′u

(ui)

log σ(− #   »κκκn · # »ui)

(15)

3.4 Optimization and Model Update

The intuitive solution for optimization is to minimize

the sum of all objective functions. A more complex

solution for multiobjective optimization can be

applied. However, choosing a multiobjective

optimization in embedding scenario requires more

studies and can be presented as a separate research

work on its own. Having said that we use

non-weighted linear combination of each optimization

expresions from equations 4, 8, 9, and 10 to make a

single global optimization.

O = Orp +Orw +Opw +O′r +O′p +O′w (16)

We present our tripartite joint optimization in

Algorithm 2. In the preparation phase,

community-aware random walks generate corpora

Dr,Dp,Dw, negative sampling module prepares noise

distribution matrices. In the joint embedding training

phase, edges are sampled from each graph

simultaneously, and updates embedding vectors along

with the context vectors using the Stochastic Gradient

Descent algorithm.

The complexity of the training depends on the

density/sparsity of the graph network. To avoid

expensive computation of centrality and δ-hop

adjacency matrix, we perform walks on the graph

based on degree centrality. The context size for a

vertex is b · m; where b is the batch size much less

than the maximum degree of the vertex, and m is

context defined in section 3.2.4. Overall the

computation complexity of our algorithm is

O(|Erp +Erw +Epw| · b ·m · (ns+ 1)), where ns is the

number of negative samples.

TNE supports increment updates as we collect

new datasets from social networks and create a new

information graph or update the old information

graph. In this case, the embeddings previously
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generated from TNE should be used instead of

random initialization of embedding vectors.

Hyperparameter tuning, such as the learning rate,

should be tweaked based on the age of the previously

trained dataset and volume of the new dataset. With

the increasing volume of new data and the aging of

the previous dataset, the learning rate can gradually

increase for optimal performance.

4 Experiments

In this section, we first describe our real-world dataset

based on New York City (NYC) used in our

experiments. We then present five experiments we

performed exhibiting multi-faceted effectiveness of

ROI embedding with TNE on spatial correlation,

semantic association, and predictive capabilities. A

summary of the experiments are as follows:

1. Model validation with POI classification: We

perform this POI embedding experiment to

validate the fact that TNE, TNE nw, and

state-of-the-art baselines can perform this task

equally well as expected. In the follow-up

experiments, we show that baselines methods

cannot perform at par with TNE or TNE nw on

ROI experiments validating the necessity for TNE.

2. Geospatial affinity of ROIs: This experiment

evaluates all the models on ROI embeddings,

whether it can preserve the spatial correlations

among ROIs in the embedding space as the

original data. By spatial correlation, we mean

neighboring or spatially overlapping ROIs.

3. Semantic category annotation of ROIs: In this

experiment, we perform a ranking evaluation task

with category annotation from ROI embeddings

and crowdsourced ground truth results. We use

Normalized Discounted Cumulative Gain

(NDCG) [44] metric as the measure of

performance.

4. Semantic category difference from ROI embedding:

This experiment is similar to the previous

experiment with a distinction here that we try to

evaluate the semantic difference between a pair of

ROIs from their embedding.

5. Popularity Prediction of Regions: We introduce

Region Popularity Prediction experiment with the

simplest of regression models to demonstrate that

ROI embedding with TNE nw, TNE can capture

features better than extended baselines along with

temporal features. The aim is not to

overcomplicate experiment with complex models

aiming lowest error but to show perceptible

differences even with simple feature-based models.

4.1 Dataset

The dataset imitates the information graph G, we

presented in Figure 2. Also, as described in Section 2

our real world dataset consist of three entities (a) POI

(b) ROI (c) Word. We will release the anonymized

processed version of dataset adhering to the copyright

of the sources for the growth of research work in this

field.

POI-Word Data. We used the check-in dataset

from [49] and NYC government site [32] to collect POI

dataset. Our dataset comprise of 38,008 POIs. Each

POI is associated with geolocation, name, category,

description, and comments. The words from name,

description, and all available comments from each POI

is cleaned and tokenized in a preprocessing step. The

association of words with POIs are used to create

edges between them. As mentioned in Section 2.1, the

weights of the POI-Word edges is calculated based on

their TF-IDF score.

ROI-POI Data. The ROI data is obtained from the

publicly available GeoJSON [31] of NYC that are

demarcated with multi-polygonal features. Each

GeoJSON has a unique geographical division of NYC

based on its type. Figure 3 shows some geographical

divisions of NYC, such as boroughs, city councils,

election districts, fire battalions, police precints

districts, health districts, etc. All geographical

divisions consist of several non-overlapping ROIs, and

each of them is treated as a separate and unique ROI

in our dataset. Overall we have 12 different

geographical divisions/districts as stated in Table 3

along with the number of ROIs from that division.

The total number of ROIs in our dataset is 456.

A POI is associated with an ROI iff the

geolocation of the POI is within the polygonal

boundary of the multi-polygonal spatial feature. It is

notable that for a non-overlapping set of ROIs; POIs

Table 3: Geographical Divisions of NYC.

ID Division Type ROIs
01 Boroughs 5
02 City Council 51
03 Community Districts 71
04 Congressional Districts 13
05 Fire Battalions 49
06 Fire Divisions 9
07 Health Centers Districts 30
08 Municipal Courts Districts 28
09 Police Precints 76
10 School Districts 33
11 State Assembly 65
12 State Senate 26
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(a) Boroughs. (b) Community Districts. (c) Police Precints.

(d) Health Centers Divisions. (e) Fire Battalions Divisions. (f) School Districts.

Fig. 3: ROI dataset sample: Different Geographical divisions of NYC.

1 month 6 months
ROI Word Score ROI Word Score
12 empirestatebuilding 0.019 07 empirestatebldg 0.030
07 empirestatebuilding 0.013 07 empirestatebuilding 0.025
00 empirestatebuilding 0.011 12 empirestatebuilding 0.012
06 empirestatebuilding 0.010 06 empirestatebuilding 0.011
07 empirestatebldg 0.008 08 empirestatebuilding 0.007
02 empirestatebuilding 0.007 02 empirestatebuilding 0.005
71 empirestatebldg 0.006 06 empirestatebuilding 0.003
01 brooklynbridge 0.081 53 brooklynbridge 0.079
53 brooklynbridge 0.046 53 brooklynbridgepark 0.091
53 brooklynbridgepark 0.041 01 brooklynbridge 0.074
39 brooklynbridge 0.035 00 brooklynbridge 0.019
12 brooklynbridge 0.031 03 brooklynbridge 0.017
08 brooklynbridge 0.029 04 brooklynbridge 0.008

Table 4: Sample comparison of ROI & TF-IDF score for 1 month and 6

month data with ROI Map.

Fig. 4: ROI from Police Precints

Districts of NYC with IDs.

will create a many-one onto relation function with

ROIs. However, introducing overlapping ROIs makes

the information graph G interesting because shared

POIs among two or more overlapping ROIs increases

the complexity of the graph. The associated weight of

the edges in ROI-POI graph is assigned a value of 1.0.

ROI-Word Data. The relationship between ROI and

Word is obtained from the geotagged tweets collected

over a period of time. Similar to the technique used

with POI-Word pair, the weight of edge between an

ROI-Word is determined from the TF-IDF score.

First, we used 1% sample tweet stream from twitter to

collect our geotagged documents for one month and

prepare a corpus of documents (each document

associated with an ROI). On analyzing the twitter

stream and performing TF-IDF on the corpus, it

revealed that one month of 1% sample stream is not

enough to extract meaningful TF-IDF scores and

information out of blabber, chores, and chatter of

tweets. To alleviate the problem we used 6 months of

1% sample twitter stream. It is still a very feasible

approach as 6 months of 1% sample roughly equates

to 2-3 weeks of original twitter stream or firehose API

of Twitter.

We present examples of the TF-IDF scores w.r.t.

ROIs from Police Precincts division for 1 month and 6
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months of data in Table 4 for two famous attractions

of NYC i.e. Empire State Building and Brooklyn

Bridge. For 1 month of data and word

empirestatebuilding, ROI 12 have maximum

TF-IDF score of 0.019. However, the location of

Empire State Building suggests ROI 07 should have

the maximum score, which ranks second in Table 4. It

is also notable that TF-IDF scores for 1 month does

not suggest good spatial correlation. On contrast the

result with 6 months of data shows significant

correlation of TF-IDF score and true ROI location for

Empire State Building i.e. ROI 07. Furthermore, the

TF-IDF scores for the same are in accordance with

the neighborhood ROIs showing strong geospatial

correlation.

Another interesting trend can be seen with Brooklyn

Bridge, where the true spatial location is ROI 01 and

53. For 1 month of data though the top TF-IDF scores

are in accordance with ground truth ROI location but

the scores are very close to the ROIs that are not near

to Brooklyn Bridge (i.e. ROI 53: 0.041; ROI 39: 0.035).

Whereas, a clear disparate between TF-IDF scores of

ground truth ROIs (53 & 01) and other ROIs (00, 03 &

04) with 6 months of data. These examples explains and

supports our decision of using 6 months of geotagged

tweets.

Region Popularity Data. Region popularity data is

collected from the New York check-in dataset [49],

which contains 227,428 check-ins from Foursquare for

period of April 2012 to February 2013. We score the

popularity of a region from the number of check-ins.

4.2 TNE validation with POI Classification

This experiment evaluates POI embedding from our

model and baselines. The aim of this experiment is to

validate that our model is consistent in learning POI

embedding as other state-of-the-art work. In this

experiment we expect all the methods to perform

equally well.

Our POI dataset have a ground truth category for

each POI which has been collected from the data source.

It is worth mentioning that Table 2 presents all nine top

level categories for our POI dataset.

First, we present (i) k-Nearest Neighbor

Classification to evaluate POI embedding of all the

models. Then we use (ii) t-SNE visualization to notice

the macro- and micro-structure of embeddings.

To boost our learning process, we initialized word

embeddings with pre-trained GloVe [34] embedding.

We used Glove vectors of words from description of

POIs for POI embedding initialization. However, all

the ROI embeddings are always initialized with

random vectors. Our justification for initialization is

to utilize full resources and information available in

hand, rather than spending more iterations on

learning from random initialization.

4.2.1 k-Nearest Neighbor Classification

We trained our k-Nearest Neighbor (k-NN) Classifier

on 70% of embedding and evaluated on the rest of the

embedding data. The dimension of embedding was

kept 100 and k stands for the number of nearest

neighbors considered for k-NN classification. From the

result presented in Table 5, we see that GE poi,

TNE nw, and TNE performed similarly with 96%

accuracy in determining top category, whereas, BiNE

achieves more than 95% for k-NN with k ≥ 3. It

verifies that TNE achieves comparable state-of-the-art

performance with GE poi. We have not included

CrossMap result in Table 5 because CrossMap does

not produce POI embedding.

4.2.2 t-SNE visualization

To reveal subtlety of the POI embedding and explore

macro- and micro-structure, we perform t-SNE on the

high dimensional POI embedding. We color each POI

in accordance to the top category mentioned in Table

2. Figure 5 shows how the POI embedding changes

from training iteration 10 and 40 for TNE. Figure 5a

shows different category points are much nearer and

somewhere overlaps with one another. The scenario of

such overlaps and distance between dissimilar category

cluster improves with more iteration in Figure 5b. We

also present t-SNE of GE poi in Figure 5c.

Though our k-NN classification and t-SNE yield

good performance for top level category or

macro-structure, our experiment did not feature so

well with subcategories. In our microscopic evaluation

of the t-SNE embedding by analyzing the embedding

of subcategories in Figure 6. For this experiment we

have taken all the POIs with top category as Travel &

Transport and performed t-SNE on it. The colors of

Table 5: POI k-NN Classification Accuracy

Model
k

1 3 5 10

GE poi 0.963 0.966 0.966 0.968
BiNE 0.926 0.954 0.957 0.955
TNE wcr 0.923 0.943 0.952 0.951
TNE nw 0.959 0.955 0.967 0.962
TNE 0.964 0.964 0.965 0.967



Semantic Embedding for Regions of Interest 15

(a) TNE Iteration 10. (b) TNE Iteration 40. (c) GE poi Iteration 40.

Fig. 5: t-SNE visualization of POI embedding.

(a) TNE. (b) GE poi.

Fig. 6: t-SNE visualization of Travel & Transport.

the POIs in Figure 6 is based on the subcategories.

Here we provide the list of the subcategories for Travel

& Transport and order them with the color number in

the t-SNE visualization. 0. Airport 1. Bike Rental /

Bike Share 2. Boat or Ferry 3. Bus Station 4. General

Travel 5. Hotel 6. Light Rail Station 7. Metro Station

8. Moving Target 9. Pier 10. Rental Car Location 11.

Rest Area 12. Road 13. Taxi 14. Tourist Information

Center 15. Train Station 16. Travel Lounge.

It is clear from Figure 6, that the POI embedding

of subcategories are overlapping for both GE poi and

TNE. The close association among POIs under same

top level category might explain such embedding

phenomenon in semantic space. However, it might be

worth to look into features of such intra-categorical

POIs in future work.

4.3 Geospatial Affinity of ROIs

In this section, we evaluate the ROI embedding based

on the geospatial affinity among ROIs. The intended

scenario is to obtain similar embeddings for ROIs

having geospatial affinity i.e. (a) overlapping region,

and (b) neighboring region.

We randomly selected 200 ROIs and analyzed 4

nearest neighbors of each ROI from our embedding

with crowdsourced ground truth. Human judgment is

used to find out whether the nearest neighbors ROIs

predicted from embedding have any geospatial affinity

or not with the queried ROI. We build a website with

Table 6: A category similarity analysis for a similar

ROI pair, ROI 11000043 from Staten Island and ROI

05000045 from Brooklyn, New York City

ROI
C Arts & Outdoors Shops Nighlife

Entertainment Activities & Services Spot
11000043 0.3445 0.2992 0.0971 0.1583
05000045 0.3481 0.2542 0.1032 0.1855

geographical map for crowdsourcing and to facilitate

this process. Ideally we would want more ROIs with 3

to 4 geospatially overlapped neighbors from the k-NN

result from embedding space with k = 4. It is worth to

mention that our dataset has 12 different geographical

division, that means each ROI have many (atleast 10)

geospatially overlapped ROIs. In plot of Figure 7d, we

show the number of ROI neighbors that have

geospatial affinity for TNE. The last histogram bar

with black color shows that out of 200 ROIs more

than 80 ROIs have 4 neighbors with geographical

overlapping region or neighboring boundary for TNE.

We performed similar analysis on GE poi the number

of ROIs with 4-NN is comparatively low (only 10%) as

shown in Figure 7a, compared to 40% with our model

in Figure 7d. The results for CrossMap and BiNE

are far worst with almost 50% and 55% of the ROIs

with zero geospatially overlapped neighbors

respectively as shown in Figure 7b and 7c. From this

result we can strongly deduce that our embedding

preserves geospatial affinity in its embedding which

other baseline approaches cannot.

Figure 8 provides three examples of the geospatial

affinity (with query ROIs 06000000, 07000004, and

11000043) obtained by utilizing nearest neighbor

technique on ROI embedding. In Figure 8a shows

nearest neighbors of ROI 06000000 from embedding

(05000000, 03000068, 09000009, 02000005). Similarly,

Figure 8b shows nearest neighbors of ROI 07000004 as

(10000027, 12000010, 02000025, 10000004). The

interesting observation on the Figure 8c for nearest

neighbors for ROI 11000043 in Staten Island is that it

finds a ROI 05000045 located in Brooklyn to be

similar. More detailed observation on both the ROIs

reveals that they are similarly popular with Arts and
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(a) GE poi. (b) CrossMap. (c) BiNE. (d) TNE.

Fig. 7: Geospatial Affinity from ROI Embedding, more the number of geospatial neighbors in k-NN the better.

(a) 4-NN of ROI 06000000 in
Manhattan, New York City.

(b) 4-NN of ROI 07000004 in Queens,
New York City.

(c) 3-NN of ROI 11000043 in Staten
Island, New York City.

Fig. 8: Examples of Geospatial Affinity of ROIs with ROI Embedding and Nearest Neighbors.

Entertainment POIs, Outdoor activities as obtained

from the cosine similarities of the embeddings. Table 6

presents the similarity scores of the above mentioned

ROIs for some semantic categories. We will discuss

more on the technical methods on obtaining it in

Section 4.4.

4.4 Semantic Category Annotation of ROIs

In this section, we present the analysis of ROI

embedding on semantic category annotation. First, we

show an example of semantic annotation in Table 7

for ROI 09000056. The geospatial location of ROI

09000056 Greenpoint, Brooklyn, NYC is presented in

the map along with Table 4 as ROI 56. The rank of

categories in Table 4 suggests Greenpoint has

considerable shops & services locations, recreation

parks and residential complexes. To verify our

prediction, we tallied the rank with human raters who

used Foursquare [14], NYC government site [9] and

ArcGIS [2] maps, Twitter [42] and Wikipedia [46] for

ground truth information. Crowdsourced ground-truth

semantic categories of ROIs are ranked into three

levels (1) low relevant level (2) moderately relevant

Table 7: ROI 09000056: Semantic Category Annotation

Category Score Category Score
8. Shops & Services 0.312 5. Outdoors & Recreation 0.250
7. Residence 0.130 9. Travel & Transport 0.117
2. College & Education 0.114 6. Professional Services 0.071
4. Nightlife Spot 0.067 3. Food & Restaurant 0.052
1. Arts & Entertainment 0.008

level, (3) highly relevant level. Crowdsourced

information for ROI 09000056 suggests that there are

many good shops, McCarren Park for outdoor

activities and residential complexes. This information

aligns with top 3 categories of semantic category

annotation (a) Shops & Services (b) Outdoors &

Recreation (c) Residential.

For a comprehensive analysis, we crowdsourced

ground-truth categories with human raters for 100

random ROIs with category levels 3,2, and 1. We

compare ground-truth against the semantic category

annotations obtained from the embedding. We

converted it into a ranking problem. In an ideal case,

Table 8: NDCG@k Scores with chart on ROI Semantic

Annotation Ranking Analysis on ROI pairs.

NDCG@1 NDCG@2 NDCG@3 NDCG@4 NDCG@5
GE poi 0.609 0.613 0.660 0.710 0.750

CrossMap 0.629 0.630 0.661 0.695 0.725
BiNE 0.650 0.644 0.669 0.696 0.728

TNE wcr 0.727 0.671 0.685 0.717 0.741
TNE nw 0.752 0.693 0.692 0.724 0.750
TNE 0.844 0.783 0.794 0.831 0.854
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Lower East Manhattan, NYC West Manhattan, NYC Midtown Manhattan, NYC
ROIs: 09000004,08000024 ROIs: 03000037,09000005 ROIs: 09000012,08000026
1. Arts & Entertainment 6. Professional Services 1. Arts & Entertainment
3. Food & Restaurant 9. Travel & Transport 2. College and Education
8. Residence 2. College & Education 8. Shops & Services

(a) Lower East Side. (b) West Side. (c) Midtown.

Fig. 9: Semantic difference on overlapped ROIs.

all categories with level 3 should rank higher than

level 2, followed by level 1 categories at the bottom.

We used Normalized Discounted Cumulative Gain

(NDCG) [44] to find the quality of embedding via

ranking order. Table 8 shows NDCG scores at top-k

ranking positions, and higher the score signifies better

ranking order achieved by the model. Result presented

in Table 8 suggests that TNE beats all baselines

GE poi, CrossMap, BiNE, TNE wcr and

TNE nw by a considerable margin. TNE achieved an

NDCG@1 score of 0.844 and an average NDCG@k

(k = [1, 5]) of 0.8206 with 9 semantic categories.

It is an important result in our experiment that

gives us insights on how ROI embeddings can capture

the semantic perspective observed by society about

any region. From Table 8, we follow that TNE

outperformed GE poi, CrossMap and BiNE by

0.235, 0.215, 0.194 NDCG at rank 1 which is

considerably high improvement in selecting the best

category candidate for an ROI. The results are similar

to other ranking levels. An average NDCG gain of

more than 20% from state of the art baselines (i.e.,

GE poi, CrossMap, and BiNE) is a large gain (in

ranking problem) that shows the efficacy of TNE.

Also, to note that TNE nw and TNE wcr

performed better than other baselines but beaten by

TNE with an average score of 0.1 (or 12%). It shows

the necessity of using edge weights in G, and

community-aware random walk in our strategy.

4.5 Semantic Category Difference from ROI

Embeddings

In this section, we briefly demonstrate the capability

of ROI embedding to find semantic differences

between ROIs. Technically, for any pair of ROIs with

embedding vectors # »r1,
# »r2 and semantic category

vectors C = { # »c1, . . . ,
# »c9}, the top semantic category

difference is calculated as follows.

max
{ #»c∈C}

abs(〈 #»

d , #»c 〉) where
#»

d = # »r1− # »r2.

We demonstrate semantic category difference of 3

pairs of overlapped ROIs from lower east, west and

midtown of Manhattan as shown in Figure 9. We

ranked the top three semantic category differences for

each pair with the formulation mentioned before. The

result is presented in the Table within Figure 9 and on

close observation it reveals discernible facts. The

major semantic category differences between the pair

of ROIs (09000004,08000024) from Lower East

Manhattan shown in Figure 9a are Arts &

Entertainment and Residence it is because ROI

09000004 has popular music and theater performance

centers and has a large residential community known

as East Village and on the contrary lower part ROI

08000024 shown in orange has many restaurants.

Similarly, for the pair of ROIs (03000037,09000005)

from west Manhattan shown in Figure 9b has major
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Table 9: NDCG@k Scores for Semantic Category

Difference Annotation on ROI pairs

NDCG@1 NDCG@2 NDCG@3 NDCG@4 NDCG@5
GE poi 0.576 0.655 0.667 0.697 0.723

CrossMap 0.591 0.650 0.665 0.690 0.729
BiNE 0.637 0.636 0.661 0.691 0.723

TNE wcr 0.682 0.673 0.661 0.696 0.739
TNE nw 0.679 0.685 0.687 0.726 0.756
TNE 0.724 0.704 0.738 0.763 0.788

difference with Travel & Transport and College &

Education since ROI 03000037 contains the transit

hub of Manhattan (Port Authority) and universities

such as The City University of New York and State

University of New York and similar places does not

feature in ROI 09000005. Lastly, the midtown

Manhattan with ROIs (09000012,08000026) shown in

Figure 9c does not show Recreation as major category

difference as ROI 08000026 fully covers ROI 09000012

i.e. Central Park (Recreation place) and shows

differences in Arts & Entertainment, Shops & Services

as ROI 08000026 is a cultural hub and a shopping or

commercial area.

We performed an in-depth study of the semantic

category difference annotation with NDCG analysis,

similar to the analysis in Section 4.4. We chose 30

pairs of ROIs, and human raters annotated all

categories on each pair of ROIs in three levels based

on their differences as (1) non-significantly (2)

moderately (3) critically different. In an ideal case, the

analysis from embedding should rank categories in the

order, 3 critically, 2 moderately, and 1

non-significantly different categories. Table 9 shows

the performance of each model on NDCG analysis. We

still found TNE to perform better than other

baselines.

4.6 Region Popularity Prediction

To evaluate the effectiveness of ROI embedding in a

real-world application, we performed the popularity

prediction of region experiment. We used an open

available check-in dataset of New York City [49] for

the prediction task. The only feature used for

prediction is the ROI embedding obtained from

baselines and TNE models. We used two regression

models (a) Random Forest, and (b) XGBoost, for

prediction of the number of check-in in a region. Table

Table 10: Region Popularity Prediction

Random Forest XGBoost
MAE RMSE MAE RMSE

GE poi 855.77 ±39.4 1415.41 ±79.8 929.7 1731.65
CrossMap 674.85 ±16.7 1283.1 ±20.25 779.2 1429.92

BiNE 636.89 ±14.52 1476.1 ±31.47 661.1 1415.37
TNE wcr 661.53 ± 13.72 1471.17 ± 3.81 653.07 1498.37
TNE nw 636.96 ± 8.07 1559.67 ± 6.88 639.63 1585.69
TNE 633.73 ±13.66 1228.5 ±19.84 646.01 1228.57

Table 11: Day and Night Region Popularity Prediction

Random Forest MAE
Day Popularity Night Popularity

TNE 673.49 ± 14.33 629.34 ± 18.06

TNE day 646.08 ± 11.53 616.43 ± 10.54

TNE night 667.81 ± 13.70 611.62 ± 12.31

10 shows the mean absolute error (MAE), and root

mean squared error (RMSE) for both the regression

models. We can notice that TNE performed well in

comparison to baselines in all except XGBoost-MAE

where TNE nw performed best. However, the RMSE

error for TNE nw is very high for both regressions.

We also performed a temporal (day, night) region

popularity experiment, shown in Table 11. TNE day,

and TNE night are TNE models trained with Grw
graph generated from geotagged tweets obtained

during days and nights, respectively.

Summary: Each experiment investigates a qualitative

aspect of the embedding procedures. TNE provides a

qualitative semantic embedding, shown via semantic

category annotation experiments. The spatial affinity

experiment exhibits that TNE preserves strong

geospatial relations. Region popularity prediction with

embedding features demonstrates the expressiveness of

features from the models. From all the above

experiments it can be established that our approach

for ROI embeddings with TNE shows admissible

support on the quality of ROI representation.

5 Related works

To the best of our knowledge, only one very recent

work by Jenkins et al. [22], builds an ROI embedding

jointly with rich auxiliary information – in their case

POI, satellite images, and taxi flow data. While our

approach also uses POI data, it makes the (as we see

very important) distinction to weight these by

popularity, and also equally incorporates semantic

information from microblog text. This allows for a

different and (in our view) richer set of applications

demonstrated, including temporal variation using

timing of microblog updates. The embedding methods

are also different, while their approach uses a single
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auto-encoder from a convolutional network, we show

how to build a tripartite network that can ensure the

three components (ROIs, POIs, and semantic text)

can be weighted equally. Although this work is only

in-press, and their data is private, we still attempt to

compare against this method by considering similar

baselines – noteably including method TNE nw

which like Jenkins et al. [22] does not include

popularity weights on POIs in the Gpw graph.

POI Embedding. Extended literature survey

suggests that research work on Places of Interest

(POI) embedding are the most closest studies to our

work. But there are major differences in our ROI

embedding from the works on POI

embedding [18, 39, 43, 47, 48, 50, 54]. Firstly, our work

treats ROI as considerably bigger regions encircling

many POIs, simply aggregating POI embedding

vectors to generate ROI embedding does not yield

desired result, as we will see in our comparative

experiments. Secondly, relevant POI embedding

learning works focuses on POI sequence

recommendation task for users based on checkin

activity [18, 43, 48, 50], whereas, our task on ROI

embedding focuses on preserving spatial and semantic

relation without involving users in the scenario. That

makes our problem statement different from others.

Thirdly, POI embedding work by Xie et al. [47]

modeled a bipartite graph network embedding for

learning POI which also consist of a POI-Region

bipartite graph. Though the concept of region is

unclear from their paper, we assumed our definition

for ROI for a comparative analysis. Major difference

in our work is that we capture the social behaviour
within region and also transitive/implicit relationship

for bipartite graphs. Since, POI recommendation task

is extraneous to our problem statement we cannot

directly compare their task/experiment with ours.

Fourthly, the work of Zhang et. al. [54] aims to find

correlation among hotspot locations (defined as spatial

gaussian kernel window), word and time to search

spatio-temporal events. We find our work dissimilar

from [54] as hotspot locations are very different from

our geographically bounded polygonal ROI or POIs.

Both of these spatial entity plays significantly different

role in our model.

Semantic-Visual Embedding. The idea of

cross-modal embedding in one-shot supervised

learning has recently garnered researchers’ attention.

From the bird-eye view, we find our objective

moderately matches semantic-visualization embedding

on images where the problem is the assignment of

semantic labels on sub-region/partial image [13, 38].

Our semantic embedding of ROIs also uses

multimodal features to find the uniqueness of a spatial

region. However, there are distinctions between the

two fields of work. Our work’s novelty lies in the

application of semantic features on the real-world

geospatial regions of interest (ROIs) from the

perspective of social engagement and solving the

specific problems related to it. Additionally, the

former focuses on feature-based spatial search on

images, whereas our work concentrates on

relational-based semantic learning on graph networks.

In that aspect, our work is entirely original in the

geospatial domain.

Graph Network Embedding. Broadly our work is

related to Network Embedding research. The

commonly used methods for network embedding are

matrix factorization, random walk, deep neural

networks. Our model is based on random-walk and

Deepwalk [35] is the first pioneer work on it. We made

advancements in the field with structure-preserving

tripartite or multipartite network embedding following

the footsteps after groundbreaking contribution from

LINE, HINE, Metapath2vec++, PME, BiNE,

etc. [5, 7, 12,16,40].

The first use of tri-party or three entity in graph

network embedding in alignment with random-walk

strategy is from Pan et al. [33]. However, it is not a

true tripartite graph network, rather an attributed

heterogeneous embedding approach involving text

associated-entity by incorporating contextual word

embedding. Another more closely related work on

tripartite embedding is HGP from Kim et al. [24]

involving group→user→item and does not consider

group-item relationship in the picture which does not

make it a complete tripartite network. HGP

propagates relation for each edge type independently,

and their approach concentrates on attention

mechanisms for large scale adaptation. Overall, the

main aim of HGP [24] is to tackle the oversmoothing

problem in heterogeneous graphs on a large scale,

which is very different from our objective of

incorporating implicit and explicit relationship in

learning representation.

More recent work from Hong et al. [20] aligns their

research direction towards attributed network

embedding in a different direction. Each vertex in the

graph network has a fixed set of features to evaluate

their similarity. While these works [20, 24, 33] mainly

concentrate on feature-attributed network embedding,

our work focuses on capturing implicit structural

information from transitive relations on multipartite

graph networks.
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Furthermore, as described in BiNE [16], the

random walk generator used in the works mentioned

above (inspired by [35]) are not equipped to mimic the

real-world distribution of vertices in a graph.

BiNE [16] overshadows them in structure-preserving

embedding, which thoroughly investigates vital

information on edge relationship in graph network

along with the oversmoothing problem of vertices.

Hence, we also add BiNE [16] as a baseline for our

experiments, where our model proposes

community-aware random walk, transitive property

preserving graphs, and a heterogeneous negative

sampling technique for multiple entities embedding.

We thank reviewers of this paper to bring a very

recent work of Chen et al. [4] to our notice, which

explores folded bipartite network embedding using

graph convolution network (GCN). This work

advances bipartite network embedding by introducing

higher-order relationships and using a self-attention

technique to perform embedding. Our work

concentrates on extending bipartite to multipartite

network embedding with random walk modeling and

supporting our use-case with a real-world application,

which makes [4] partially orthogonal.

We believe our work contributes significantly

towards structure-preserving network embedding and

its application in semantic ROI embedding to herald a

new direction in elucidating geospatial regions with

semantic features.

6 Conclusion

In this paper, we propose TNE, a tripartite network

embedding model for learning Regions of Interest

(ROI) embedding. Our study focuses on learning ROI

embedding that simultaneously captures semantic and

geospatial features. First, we formalize the semantic

embedding for ROIs problem with an information

graph that captures social, semantic, and spatial

attributes. Then we use that TNE induces transitive

relational features to obtain better learning

performances while preserving the structure of the

information graph. We performed multifaceted

experiments on real-world data showing the

advantages of performing ROI embedding with TNE

over other baselines. Also, we demonstrate an

interactive map to explore and discover the

similarities and distinctness of regions.

Acknowledgment We thank our colleagues who

helped in crowdsourcing dataset for experiments. We

would also like to show our gratitude to Sunipa Dev

for early discussion on this topic, and initial help in

processing data.

References

1. Alzahrani, T., Horadam, K.J., Boztas, S.: Community
detection in bipartite networks using random walks. In:
Complex Networks V. Springer (2014)

2. ArcGIS: Arcgis.com (2019). URL https://arcgis.com/.
[Online; accessed 15-March-2019]

3. Buyukokkten, O., Cho, J., Garcia-Molina, H., Gravano,
L., Shivakumar, N.: Exploiting geographical location
information of web pages. ilpubs.stanford.edu (1999)

4. Chen, H., Yin, H., Chen, T., Wang, W., Li, X., Hu,
X.: Social boosted recommendation with folded bipartite
network embedding. IEEE Transactions on Knowledge
and Data Engineering (2020)

5. Chen, H., Yin, H., Wang, W., Wang, H., Nguyen,
Q.V.H., Li, X.: Pme: projected metric embedding
on heterogeneous networks for link prediction. In:
Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp.
1177–1186 (2018)

6. Chen, L., Yuan, F., Jose, J.M., Zhang, W.: Improving
negative sampling for word representation using self-
embedded features. In: Proceedings of the Eleventh
ACM International Conference on Web Search and Data
Mining, pp. 99–107. ACM (2018)

7. Chen, Y., Wang, C.: Hine: Heterogeneous information
network embedding. In: International Conference on
Database Systems for Advanced Applications, pp. 180–
195. Springer (2017)

8. Cheng, T.K., Von Behren, J.R.: Location-based searching
using a search area that corresponds to a geographical
location of a computing device (2013). US Patent
8,386,514

9. CityOfNewYork: cityofnewyork (2019). URL https:

//opendata.cityofnewyork.us/. [Online; accessed 15-
March-2019]

10. Courbariaux, M., Bengio, Y., David, J.P.: Binaryconnect:
Training deep neural networks with binary weights
during propagations. In: Advances in neural information
processing systems, pp. 3123–3131 (2015)

11. Deng, H., Lyu, M.R., King, I.: A generalized co-hits
algorithm and its application to bipartite graphs. In:
Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp.
239–248. ACM (2009)

12. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec:
Scalable representation learning for heterogeneous
networks. In: Proceedings of the 23rd ACM SIGKDD
international conference on knowledge discovery and data
mining, pp. 135–144. ACM (2017)

13. Engilberge, M., Chevallier, L., Pérez, P., Cord, M.: Deep
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