

OpenTag: Open Attribute Value Extraction From Product Profiles

Guineng Zheng^{*}, Subhabrata Mukherjee[△], Xin Luna Dong[△], FeiFei Li^{*} [△]Amazon.com, ^{*}University of Utah

Guineng Zheng

Motivation

Alexa, what are the flavors of nescafe?

Nescafe Coffee flavors include caramel, mocha, vanilla, coconut, cappuccino, original/regular, decaf, espresso, and cafe au lait

Problem Statement: Extract attribute values from (text of) product profiles

	Input Product Profile		Output Ext	ractions	
Title	Description	Bullets	Flavor	Brand	•••
CESAR Canine Cuisine Variety Pack Filet Mignon & Porterhouse Steak Dog Food (Two 12-Count Cases)	A Delectable Meaty Meal for a Small Canine Looking for the right food This delicious dog treat contains tender slices of meat in gravy and is formulated to meet the nutritional needs of small dogs.	 Filet Mignon Flavor; Porterhouse Steak Flavor; CESAR Canine Cuisine provides complete and balanced nutrition 	1.filet mignon 2.porterhouse steak	cesar canine cuisine	

Characteristics of Attribute Extraction

Limited semantics, irregular syntax

- Most titles have 10-15 words
- Most bullets have 5-6 words
- Phrases not Sentences
 - Lack of regular grammatical structure in titles and bullets
 - Attribute stacking
 - Rachael Ray Nutrish Just 6 Natural Dry Dog Food, Lamb Meal & Brown Rice Recipe
 - 2. Lamb Meal is the #1 Ingredient

Open World Assumption

- No Predefined Attribute Value
- New Attribute Value Discovery
- 1. beef flavor
- 2. lamb flavor
- 3. meat in gravy flavor

Contributions and Prior Work (to do)

Outline

- Sequence Tagging
- Models
- Active Learning
- Experiments and Discussions

Models

- BiLSTM
- BiLSTM + CRF
- Attention Mechanism
- OpenTag Architecture

OpenTag Architecture

amazon

10

Word Embedding

- Map words co-occurring in a similar context to nearby points in embedding space
- Pre-trained embeddings learn single representation for each word
 - But 'duck' as a Flavor should have different embedding than 'duck' as a Brand
- OpenTag learns word embeddings conditioned on attribute-tags

- LSTM (Hochreiter, 1997) capture long and short range dependencies between tokens, suitable for modeling token sequences
- Bi-directional LSTM's improve over LSTM's capturing both forward (f_t) and backward (b_t) states at each timestep 't'
- Hidden state h_t at each timestep generated as: $h_t = \sigma([b_t, f_t])$

Conditional Random Fields (CRF)

- Bi-LSTM captures dependency between token sequences, but not between output tags
- Likelihood of a token-tag being 'E' (end) or 'I' (intermediate) increases, if the previous token-tag was 'I' (intermediate)
- Given an input sequence x = {x₁,x₂, ..., x_n} with tags y = {y₁, y₂, ..., y_n}: linear-chain CRF models:

$$\Pr(y|x;\Psi) \propto \prod_{t=1}^{T} exp\left(\sum_{k=1}^{K} \psi_k f_k(y_{t-1}, y_t, x)\right)$$

amazon

Attention Mechanism

- Not all hidden states equally important for the CRF
- Focus on important concepts, downweight the rest => *attention*!
- Attention matrix A to attend to important BiLSTM hidden states (h_t)
 - $\alpha_{t,t'} \in \mathbf{A}$ captures similarity between h_t and $h_{t'}$
- Attention-focused representation I₊ of token x₊ given by:

 $l_t = \sum_{t=1}^{n} \alpha_{t,t'} \cdot h_{t'}$

15

OpenTag Architecture

amazon

Final Classification

Best possible tag sequence with highest conditional probability

$$y^* = \operatorname{argmax}_y \Pr(y|x; \Psi)$$

Experimental Discussions: Datasets

Domain	Profile	Attribute	Training		Testing	
			Samples	Extractions	Samples	Extractions
Dog Food (DS)	Title	Flavor	470	876	493	602
Dog Food	Title	Flavor	470	716	493	762
	Desc	Flavor	450	569	377	354
	Bullet	Flavor	800	1481	627	1179
	Title	Brand	470	480	497	607
	Title	Capacity	470	428	497	433
	Title	Multi	470	1775	497	1632
Camera	Title	Brand	210	210	211	211
Detergent	Title	Scent	500	487	500	484

amazon	
--------	--

Results

KDD 2018

Datasets/Attribute	Models	Precision	Recall	Fscore
Dog Food: Title Attribute: Flavor	BiLSTM BiLSTM-CRF	83.5 83.8	85.4 85.0	84.5 84.4
	OpenTag	86.6	85.9	86.3
Camera: Title	BiLSTM	94.7	88.8	91.8
Attribute: Brand name	BiLSTM-CRF	91.9	93.8	92.9
	OpenTag	94.9	93.4	94.1
Detergent: Title	BiLSTM	81.3	82.2	81.7
Attribute: Scent	BiLSTM-CRF	85.1	82.6	83.8
	OpenTag	84.5	88.2	86.4
Dog Food: Description	BiLSTM	57.3	58.6	58
Attribute: Flavor	BiLSTM-CRF	62.4	51.5	56.9
	OpenTag	64.2	60.2	62.2
Dog Food: Bullet	BiLSTM	93.2	94.2	93.7
Attribute: Flavor	BiLSTM-CRF	94.3	94.6	94.5
	OpenTag	95.7	95.7	95.7
Dog Food: Title	BiLSTM	71.2	67.4	69.3
Multi Attribute:	BiLSTM-CRF	72.9	67.3	70.1
Brand, Flavor, Capacity	OpenTag	76.0	68.1	72.1

19

Discovering new attribute-values not seen during training

Train-Test Framework	Precision	Recall	F-score
Disjoint Split (DS)	83.6	81.2	82.4
Random Split	86.6	85.9	86.3

Intepretability via Attention

KDD 2018

OpenTag achieves better concept clustering

Distribution of word vectors before attention

KDD 2018

Semantically related words come closer in the embedding space

Active Learning (Settles, 2009)

- Query selection strategy like *uncertainty sampling* selects sample with *highest uncertainty* for annotation
- **KDD 2018** Ignores difficulty in estimating *individual tags*

Tag Flip as Query Strategy

- Simulate a committee of OpenTag learners *C* over epochs
- Most informative sample => major disagreement among committee members for tags of its tokens
- Use *dropout mechanism* for simulating committee of learners

duck	,	fillet	mignon	and	ranch	raised	lamb	flavor
В	0	В	E	0	В	T	E	0
В	0	В	0	0	0	0	В	0

Tag flips = 4

• Most informative sample has *highest tag flips* across all the epochs

OpenTag reduces burden of human annotation by 3.3x

Learning from scratch on multi extraction

Production Impact

	<i>Increase</i> in Coverage over Existing Production System (%)
Attribute_1	53
Attribute_2	45
Attribute_3	50
Attribute_4	48

Summary

- OpenTag model based on word embeddings, Bi-LSTM, CRF and attention
 - Open world assumption (OWA), multi-word and multiple attribute value extraction
- OpenTag + Active learning reduces burden of human annotation (by 3.3x)
 - Method of tag flip as query strategy
- Interpretability
 - Better concept clustering, interpretability via attention, etc.

Backup Slides

Multiple attribute values

• Predicting multiple attribute values jointly

Attribute	Precision	Recall	F-Score
Brand: Single	52.6	42.6	47.1
Brand: Multi	58.4	44.7	50.6
Flavor: Single	83.6	81.2	82.4
Flavor: Multi	83.7	77.5	80.5
Capacity: Single	81.5	86.4	83.9
Capacity: Multi	87.0	87.2	87.1

 Modify tagging strategy to have separate tag-set {B_a, I_a, O_a, E_a} for each attribute 'a'

Why Sequence Tagging

Open World Assumption & Label Scaling

- Limited Tags: [BIOE]
- Unlimited Attributes
 - Tag-set not attribute-specific

Discovering multi-word & multiple attribute values

• Semantics of word Itself and surrounding context for chunking

B E	Detected Flavors
Australian lamb flavor	Australian lamb
B B E	
beef and green lentils	beef, green lentils

Тад	Evidence of Tag
dry dog food, <mark>duck</mark> , 10lb	duck itself
whitefish flavor	keyword flavor
lamb recipe	lamb, keyword recipe
beef and green lentils	beef, conjunct word "and"

Uncertainty Sampling: Probability as Query Strategy

- Select instance with maximum uncertainty
 - Best possible tag sequence from CRF:

 $y^* = \operatorname{argmax}_y \Pr(y|x; \Psi)$

- Label instance with maximum uncertainty: $O^{lc}(x) = 1 - \Pr(y^*|x; \Psi)$
- Considers entire label sequence y, ignores difficulty in estimating individual tags $\mathbf{y}_{\mathrm{t}} \in \mathbf{y}$

Tag Flip as Query Strategy

duck	,	fillet	mignon	and	ranch	raised	lamb	flavor
В	0	В	Е	0	В	I.	Е	0
В	0	В	0	0	0	0	В	0

Tag flips = 4

• Most informative instance has maximum tag flips aggregated over all of its tokens across all the epochs:

$$Q^{tf}(x) = \sum_{e=1}^{E} \sum_{t=1}^{n} \mathcal{I}(y_t^*(\Psi^{(e-1)}) \neq y_t^*(\Psi^{(e)}))$$

• Top *B* samples with the highest number of flips are manually annotated with tags

Experiments and Discussions

Active Learning: Tag Flip better than Uncertainty Sampling

TF v.v. LC on detergent data

TF v.v. LC on multi extraction

