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Motivation
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Alexa, what are 
the flavors of nescafe? 

Nescafe Coffee flavors include 
caramel, mocha, vanilla, coconut, 

cappuccino, original/regular, 
decaf, espresso, and cafe au lait

decaf.



KDD 2018

Problem Statement: Extract attribute values 
from (text of) product profiles

Input Product Profile Output Extractions

Title Description Bullets Flavor Brand …

CESAR Canine 
Cuisine Variety 
Pack Filet Mignon
& Porterhouse 
Steak Dog Food 
(Two 12-Count 
Cases)

A Delectable Meaty Meal for 
a Small Canine Looking for 
the right food … This 
delicious dog treat contains 
tender slices of meat in 
gravy and is formulated to 
meet the nutritional needs 
of small dogs.

• Filet Mignon Flavor; 
• Porterhouse Steak 

Flavor;
• CESAR Canine 

Cuisine provides 
complete and 
balanced nutrition 
…

1.filet mignon
2.porterhouse 
steak

cesar
canine 
cuisine

… … … … …
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Characteristics of Attribute Extraction

Open World Assumption
• No Predefined Attribute Value
• New Attribute Value Discovery 

Limited semantics, irregular syntax
• Most titles have 10-15 words
• Most bullets have 5-6 words
• Phrases not Sentences

• Lack of regular grammatical 
structure in titles and bullets

• Attribute stacking

1. Rachael Ray Nutrish Just 6 Natural Dry Dog 
Food, Lamb Meal & Brown Rice Recipe

2. Lamb Meal is the #1 Ingredient

1. beef flavor
2. lamb flavor
3. meat in gravy flavor
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Contributions and Prior Work (to do)
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Outline
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• Sequence Tagging
• Models
• Active Learning
• Experiments and Discussions
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Attribute Extraction as Sequence Tagging

w1 w2 w3 w4 w5

x

w6

beef meal & ranch raised lamb

w7

recipe

B I O E B I O E B I O E B I O E B I O E B I O E B I O E y
t1 t2 t3 t4 t5 t6 t7

B
I
O
E

Beginning of attribute value

Inside of attribute value

Outside of attribute value

End of attribute value

x={w1,w2,…,wn} input sequence

y={t1,t2,…,tn} tagging decision

{beef meal} {ranch raise lamb}Flavor Extractions
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Models

• BiLSTM
• BiLSTM + CRF
• Attention Mechanism
• OpenTag Architecture
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OpenTag Architecture
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Word Embedding
• Map words co-occurring in a similar context to nearby points in 

embedding space

• Pre-trained embeddings learn single representation for each word

• But ‘duck’ as a Flavor should have different embedding than ‘duck’ as a Brand

• OpenTag learns word embeddings conditioned on attribute-tags
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Bi-directional LSTM

• LSTM (Hochreiter, 1997) capture long and short range dependencies between 

tokens, suitable for modeling token sequences

• Bi-directional LSTM’s improve over LSTM’s capturing both forward (ft) and 

backward (bt) states at each timestep ‘t’

• Hidden state ht at each timestep generated as: ht = 𝞼𝞼([bt, ft])
12
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Conditional Random Fields (CRF)
• Bi-LSTM captures dependency between token sequences, but not 

between output tags
• Likelihood of a token-tag being ‘E’ (end) or ‘I’ (intermediate)  increases, if 

the previous token-tag was ‘I’ (intermediate)
• Given an input sequence x = {x1,x2, …, xn} with tags y = {y1, y2, …, yn}: 

linear-chain CRF models:
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Bi-directional LSTM + CRF
CRF feature space formed by Bi-

LSTM hidden states
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14

h1 h2 h3 h4 h5

x

h6

beef meal & ranch raised lamb

h7

recipe

B E O B I E O yt1 t2 t3 t4 t5 t6 t7
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Attention Mechanism
• Not all hidden states equally important for the CRF
• Focus on important concepts, downweight the rest => attention!
• Attention matrix A to attend to important BiLSTM hidden states (ht)

• αt,t′ ∈ A captures similarity between ht and ht′

• Attention-focused representation lt of token xt given by:
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h1 h2 h3 h4

l1 l2 l3 l4
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OpenTag Architecture
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Final Classification
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Maximize log-likelihood of joint distribution

Best possible tag sequence with highest conditional probability

CRF feature space formed by attention-focused 
representation of hidden states
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Experimental Discussions: Datasets
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Results
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Discovering new attribute-values not seen during training
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Intepretability via Attention
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OpenTag achieves better concept clustering 

Distribution of word vectors before attention Distribution of word vectors after attention 
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Semantically related words come closer in the 
embedding space
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Active Learning (Settles, 2009)
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• Query selection strategy like uncertainty sampling selects 
sample with highest uncertainty for annotation

• Ignores difficulty in estimating individual tags 
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Tag Flip as Query Strategy
• Simulate a committee of OpenTag learners C over epochs
• Most informative sample => major disagreement among committee 

members for tags of its tokens
• Use dropout mechanism for simulating committee of learners
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duck , fillet mignon and ranch raised lamb flavor
B O B E O B I E O
B O B O O O O B O

Tag flips = 4

• Most informative sample has highest tag flips across all the epochs
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OpenTag reduces burden of human 
annotation by 3.3x

Learning from scratch on detergent data Learning from scratch on multi extraction

150 labeled samples 500 labeled samples
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Production Impact
Increase in Coverage over Existing 
Production System (%)

Attribute_1 53
Attribute_2 45
Attribute_3 50
Attribute_4 48
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Summary

• OpenTag model based on word embeddings, Bi-LSTM, CRF and attention
• Open world assumption (OWA), multi-word and multiple attribute value extraction

• OpenTag + Active learning reduces burden of human annotation (by 3.3x)
• Method of tag flip as query strategy

• Interpretability
• Better concept clustering, interpretability via attention, etc.

28



KDD 2018

Backup Slides

29



KDD 2018

Multiple attribute values  

• Predicting multiple attribute values jointly

• Modify tagging strategy to have separate tag-set {Ba, Ia, Oa, Ea} for 
each attribute ‘a’
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Why Sequence Tagging

Open World Assumption & 
Label Scaling

• Limited Tags: [BIOE]
• Unlimited Attributes

• Tag-set not attribute-specific

B           E
Australian lamb flavor

B               B         E
beef and green lentils

Australian lamb

beef, green lentils

Detected Flavors

Discovering multi-word & 
multiple attribute values

• Semantics of word Itself and
surrounding context for chunking

Tag Evidence of Tag

dry dog food, duck, 10lb duck itself

whitefish flavor keyword flavor

lamb recipe lamb, keyword recipe

beef and green lentils beef, conjunct word “and”
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Bi-directional LSTM

w1
ranch raised beef flavor

e1 e2 e3 e4

f1 f2 f3 f4

b1 b2 b3 b4

h1 h2 h3 h4

B I O E B I O E B I O E B I O E

Word Index

Word Embedding
glove embedding 50

Forward LSTM
100 units

Backward LSTM
100 units

Hidden Vector
100+100=200 units

Cross Entropy Loss

w2 w3 w4
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Bi-directional LSTM + CRF

w1
ranch

w2
raised

w3
beef

w4
flavor

e1 e2 e3 e4

f1 f2 f3 f4

b1 b2 b3 b4

h1 h2 h3 h4

B I O E B I O E B I O E B I O E

Word Index

Embedding
glove embedding 50

Forward LSTM
100 units

Backward LSTM
100 units

Hidden Vector
100+100=200 units

Cross Entropy Loss

CRF Conditional Random Fields

CRF feature space formed by Bi-
LSTM hidden states
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Uncertainty Sampling: Probability as Query Strategy

• Select instance with maximum uncertainty
• Best possible tag sequence from CRF:

• Label instance with maximum uncertainty:

• Considers entire label sequence y, ignores difficulty in estimating 
individual tags yt ∈ y 
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Tag Flip as Query Strategy

• Most informative instance has maximum tag flips aggregated over all 
of its tokens across all the epochs:

• Top B samples with the highest number of flips are manually 
annotated with tags

duck , fillet mignon and ranch raised lamb flavor

B O B E O B I E O

B O B O O O O B O

Tag flips = 4
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Experiments and Discussions
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Active Learning: Tag Flip better than Uncertainty Sampling

TF v.v. LC on detergent data TF v.v. LC on multi extraction
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