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Abstract—The explosion of time series advances the develop-
ment of time series databases. To reduce storage overhead in
these systems, data compression is widely adopted. Most existing
compression algorithms utilize the overall characteristics of the
entire time series to achieve high compression ratio, but ignore
local contexts around individual points. In this way, they are
effective for certain data patterns, and may suffer inherent
pattern changes in real-world time series. It is therefore strongly
desired to have a compression method that can always achieve
high compression ratio in the existence of pattern diversity.

In this paper, we propose a two-level compression model that
selects a proper compression scheme for each individual point, so
that diverse patterns can be captured at a fine granularity. Based
on this model, we design and implement AMMMO framework,
where a set of control parameters is defined to distill and
categorize data patterns. At the top level, we evaluate each
sub-sequence to fill in these parameters, generating a set of
compression scheme candidates (i.e., major mode selection). At the
bottom level, we choose the best scheme from these candidates for
each data point respectively (i.e., sub-mode selection). To effec-
tively handle diverse data patterns, we introduce a reinforcement
learning based approach to learn parameter values automatically.
Our experimental evaluation shows that our approach improves
compression ratio by up to 120% (with an average of 50%),
compared to other time-series compression methods.

I. INTRODUCTION

Nowadays, time series data is being continuously generated
from a wide range of applications, such as finance [5], Internet
services [23] and Internet of things [12]. Such increasing
demand for storing and processing time series data facilitates
the emergence and development of time series databases
(TSDBs), such as OpenTSDB [21] and InfluxDB [9]. One
of the key component in these databases is an effective
compression scheme that reduces storage footprint, leading to
two performance boosts. First, more records can reside in the
memory cache for fast access. Second, lower data transfer cost
is required between devices (e.g., RAM to disk, and to FPGA
or GPU if they are used to speedup processing).

There are plenty of compression schemes to use off the
shelf [1], [3], [15], [22]–[25]. However, the effectiveness of
a scheme largely depends on its input, where each is only
effective on a certain types of inputs (i.e., patterns). Hence
in a TSDB, especially a cloud TSDB service that manages
data from various sources, it is difficult to rely on a pre-
selected compression scheme to sustain high compression ratio
for any data. Figure 1 illustrates four examples of real-world
time-series data. As shown, these data are distinct from each
other, making a single compression scheme difficult to achieve

satisfactory compression ratio on all of them. Ideally, we hope
that a TSDB could automatically search for the scheme (as
well as its parameters) that achieves high compression ratio
for a given piece of data. We refer to this problem as adaptive
compression scheme selection.

This problem gets more challenging in real worlds, since
time series data in many applications are awfully complex:
even within one time series, the pattern can change over time
(Figure 1c); and different parts from a single piece of data
may prefer different schemes (Figure 1d). Therefore, in order
to achieve good compression ratio, we cannot simply apply
one compression scheme for the entire data piece. Instead, we
have to examine the data in a fine granularity, and decide the
appropriate scheme for sub-pieces of the original data. In the
extreme case, we could break down the data into individual
points and find the optimal compression scheme for each
data point. However, this is almost impractical since both
the search space for the optimal scheme and the number of
points contained in a TSDB are huge, incurring prohibitive
computation cost if we perform the search for each point.

In this paper, we work towards enabling automatic per-
point compression scheme selection to achieve satisfactory
compression ratio in real-world applications. Note that the
per-point approach (needed as illustrated in Figure 1c and
Figure 1d) introduces extra space overhead on meta data
compared to a global compression scheme. To balance the
trade-off between scheme selection efficiency and compression
efficiency, we propose a two-level compression model, which
is able to adaptively select proper compression schemes for
each point. It is built on a concept called parameterized scheme
space that abstracts the entire search space as a set of scheme
templates and control parameters. At the top level, for each
timeline (a sequence of continuous points), we construct a
scheme space (a small search space) by filling in values for
control parameters. At the bottom level, the most effective
scheme from the space is selected for each point.

However, there remain two challenges in the proposed
model. First, how to construct a parameterized scheme space
that has the potential to always perform well against unpre-
dictable patterns. It is desired that the entire search space
is small but covers most cases. Second, how to fill in
values of control parameters for a chosen timeline. It is
hard to distill hidden patterns from timelines and translate
them into parameter values, both effectively and efficiently.
For the first challenge, we design and develop AMMMO
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Fig. 1: Four use cases from real scenario; different use cases have different patterns. Fig 1c shows an example that different
periods from data could have different patterns; Fig 1d illustrates the preferred compression scheme at different parts of data.

(Adaptive Multi-Model Middle-Out) framework. In particu-
lar, it divides the entire search space into four sub-spaces,
called major modes, designed with insightful preferences (i.e.,
transform/bitmask/offset-preferred or mixed in Section IV-B).
Each major mode further contains four sub-modes, which are
constructed compression schemes. For the second challenge,
we propose both rule-based and learning-based approaches to
address it. In particular, for learning-based approach, since
labels (i.e., ground truths) for optimal parameter settings are
unavailable, we apply reinforcement learning on a neural
network structure to learn parameters interactively. When the
compression ratio drops due to pattern changes, this network
can be easily retrained.

In summary, we make following major contributions:

• We introduce a two-level model to select compression
schemes for each individual point, which addresses inher-
ent data diversity in time series. A parameterized scheme
space is proposed to facilitate the representation of the
entire search space.

• We design a compression framework AMMMO, follow-
ing the two-level model. This framework encompasses
four major modes to categorize typical patterns, and
defines sophisticated control parameters to help construct
sub-modes, i.e., compression schemes.

• We design a neural network structure with reinforcement
learning to tune parameter values automatically. It solves
the issue that no labeled training samples available in the
context of data compression.

• We conduct extensive experimental evaluations using
large-scale real datasets. The results show that our ap-
proach improves compression ratio up to 120% (with
an average improvement 50%), compared to other time-
series compression methods.

The rest of the paper is organized as follows. We first
discuss background and motivation in Section II. We then
introduce the two-level scheme selection model in Section III,
present the AMMMO framework in Section IV, followed by
reinforcement-learning-based model selection in Section V.
We evaluate our approach in Section VI and conclude in
Section VII.

II. PRELIMINARIES
A. Data Compression

The data compression can be regarded as a process to
transform a byte sequence in some representation (e.g., floating
numbers for metric value) into a new byte sequence that
contains the same information but with less bytes. As surveyed
in [16], there are many universal compression techniques, such
as (static or adaptive) Huffman and arithmetic coding, which
are ubiquitous in real-world applications. Besides, there are
also compression algorithms tailored for certain data types. For
example, HEVC [30] and H264 [10] are designed for videos,
while gzip, 7zip and snappy are designed for texts.

Based on different byte alignment strategies for compressed
bit streams, compression algorithms can be categorized into
byte-level and bit-level [29]. In general, the bit-level compres-
sion achieves higher compression ratio, while the byte-level
compression avoids costly bit shift operations, and is more
suitable for partition and parallel processing. In this work,
we will focus on byte-level compression since it has higher
throughput and is more hardware-friendly.
B. Time Series Data

As defined in [21], [24], a time series consists of many data
points, each of which is uniquely identified with a timestamp,
a metric name, a measured value, and a set of tags. A simple
example is shown in Table I. The combination of tags allows
users to record different data properties and issue queries
intuitively. Among all fields, timestamps and measured values
dominate the storage consumption. Therefore, major task is to
compression values in these two fields effectively.

Although general-purposed compression algorithms can be
directly applied to time series data, these data have their unique
characteristics (detailed in Section III-A) that could potentially
help us to tailor more effective compression scheme for them.

C. Reinforcement Learning

Reinforcement learning (RL) is a type of machine learning
concerned with how to take appropriate actions to maximize
reward in a particular situation. It could be useful for training
without ground truth [32].

Reinforcement learning has been widely applied in many
interactive scenarios, such as game playing [7], [28] and



TABLE I: An example of raw time-series data on CPU load
requests.

timestamp metric name value tagA tagB

1386806400 cpu.load 0.07 node=alpha type=system
1386806402 cpu.load 0.13 node=alpha type=user
1386806403 cpu.load 0.05 node=beta type=user
1386806405 cpu.load 0.48 node=beta type=user

resource arrangement [18], [19]. In this work, we explore
machine learning based compression methods for TSDBs.
Since it is hard to obtain ground truth (i.e. optimal compression
scheme and configuration), reinforcement learning becomes a
promising solution to facilitate our learning process.

D. Related Work

There are several compression algorithms designed for time-
series data in the literature. [3], [15] present lossy compres-
sion methods running on sensors over a time series stream.
Gorilla [23] adopts a lossless algorithm that first conducts
delta-of-delta operations on timestamps and xor operations
on measured metric values in server side. However, its bit-
level compression model is not friendly to heterogeneous
computing, such as GPU and FPGA, which is prevalent for
computation acceleration. In the parallel middle out algo-
rithm [25], a byte-level compression algorithm is proposed
achieving higher throughput. It adopts only one mode for
contiguous 8 data points hence achieves lower compression
ratio. Similar, [26] develops a SIMD based algorithm for
integer data, achieves higher performance while its compres-
sion ratio improvement is minor. Sprintz [1] presents a time
series compression for the Internet of Things. Its focus is on
8/16 bit integers and is not optimized for floats. PBE [22]
utilizes dynamic programming to achieve optimal compression
scheme for monotonically increasing time series data, but it
cannot handle general time series data with ups and downs.
Compression planner [24] presents an interesting idea that
constructs and selects compression plan dynamically on GPU
from various compression tools like Scale, Delta, Dictionary,
Huffman, Run Length and Patched Constant. However, since
it tries to compress all the time-series data several times with
various tools and then pick the best one, this is not suitable
for high-throughput scenarios. ModelarDB [11] develops a
model-based algorithm which segments data into 2 major
static models, Gorilla and constant function model which
performs well in regular time series and lossy mode. In data
mining area, lossy compression for time-series data is widely
adopted [13], [17]. However, these methods are unacceptable
for a commercial-level TSDB production system.

To support commercial systems for various applications, one
of our objectives is to design a lossless byte-level compression
framework for time series data that can achieve both high
compression ratio and high throughput.

III. TWO-LEVEL COMPRESSION SCHEME SELECTION

A. Time-Series Data Characteristics

Based on our observations from production environments,
we summarize several inherent characteristics in time-series
data, which play a crucial role in guiding the design of an
effective and practical data compression algorithm:
• Time Correlation. A time series contains data points

continuously collected over a time period. These points
are usually sampled with a pre-defined interval (e.g. per
second). This leads to two consequences: consecutive
timestamp values advance at a relatively fixed rate; and
consecutive metric values are always close to each other.
These observations should be utilized by compression
schemes for good compression ratio.

• Pattern Diversity. Time series data can be generated by
diverse applications and domains, e.g., finance, Internet,
and IoT, from which data patterns may vary dramatically.
Furthermore, patterns of a time series may vary over time
due to circumstance changes. A compression strategy
designed for certain patterns often performs poorly on
others, which must be carefully handled in a practical
compression solution.

• Data Massiveness. As data points are often generated
at high rate in time series applications, the underlying
storage engine requires both high write throughput (e.g.,
tens of millions operations per second) and fast pro-
cessing capacity (e.g., tens of petabytes per day). It is
therefore essential to have a compression component that
not only helps reduce data volume, but also completes
(de-)compression tasks fast.

B. Model Formalization

According to data compression fundamentals [16], a data
compression process consists of two stages: a transform stage
that transform data from one space to another which is more
regular; and a differential coding that use various coding
methods to represent the differential value after transform.
There are many primitives available in both stages, e.g., Delta,
Scaling, Prediction, Dictionary for transform (IDCT, intra-
prediction etc in H264 [10]), and Huffman coding, Arithmetic
coding, Run-length differential coding (e.g. VLC, CABAC in
H264). By selecting different primitives in each stage, along
with corresponding parameters, we can derive a large number
of compression schemes (Section IV-A) for time-series data.

Due to the pattern diversity issue discussed above, a single
manually-selected compression scheme cannot sustain satis-
factory compression ratio for all scenarios. At the other ex-
treme, it is also prohibitive to enumerate all possible schemes
for each individual point to obtain the local-best compression
ratio. Hence, to ensure that pattern diversity can be gracefully
handled with acceptable overheads, we propose two-level
time-series compression scheme selection model. At the top
level, shared contextual patterns within a consecutive point se-
quence (i.e., timeline) are detected in order to limit the search
space of potentially effective compression scheme candidates



Algorithm 1: Basic Two-Level Compression
Input: a time series ts, scheme spaces sps

1 while ts.empty() == false do
/* read next timeline from ts */

2 timeline = ts.readNext();
/* select scheme space for timeline */

3 space = sps.select(timeline);
4 for each point p in timeline do

/* select scheme for the point */
5 s = space.select(p);
6 compress p using scheme s;

(i.e., space selection). Here, we say points within a sequence
share a ‘contextual pattern’ if they potentially have good
compression ratio under the same set of compression scheme
candidates, e.g., the majority of delta-of-delta difference can be
represented by 2-byte-value. At the bottom level, by searching
over these scheme candidates, we are able to find an effective
scheme for each individual point (i.e., scheme selection). Since
the top-level phase is conducted once for a timeline, a heavy
but effective algorithm is affordable. However, for the bottom-
level phase, the efficiency and efficacy are both critical.

In the context of this paper, a timestamp is represented as a
64-bit integer, and a measured metric value is a 64-bit floating
number. In our data compression framework, all data points
in a time series with the same metric and tags are modeled
as a sequence of 〈timestamp, value〉 pairs. We denote the i-th
point in the sequence as 〈ti, vi〉. Note that a time series is
compressed separately as two sequences T = {t1, t2, ..., tn}
and V = {v1, v2, ..., vn}.

1) Scheme Selection Modeling: In this section, we explain
how the scheme selection problem is modeled as a two-
level procedure. Suppose that we have a collection of trans-
form primitives Ptrans (e.g., xor of two consecutive values
{vi, vi−1}, delta-of-delta of {vi, vi−1, vi−2}) and a collection
of differential coding primitives Pcode (e.g., 6-bit bitmask
coding, 1-byte offset coding). We define several important
notions as follows:

Definition 3.1 (Compression Scheme): A compression
scheme is the basic unit to compress a single value. It is
represented as a tuple s = 〈a, b, λa, λb〉, where a ∈ Ptrans,
b ∈ Pcode and λa, λb are parameters associated to a, b
respectively1. The scheme contains all information required
to compress a value.

Definition 3.2 (Scheme Space): A scheme space S contains
a collection of compression schemes S = {s1, s2, ..., sn}.
Each data point belongs to a single scheme space Si, and
is compressed by a specific scheme sj ∈ Si.

Given a time series and a set of scheme spaces, we propose
the basic scheme selection model for each point, as shown in
Algorithm 1. For each timeline (a consecutive point sequence),
a scheme space is selected. Then it is easy to find the most
effective scheme for each point, by simply compressing the
point using different schemes and keeping the best one.

1We use one parameter per scheme for simplicity. Each scheme can have
multiple parameters instead.

However, from this simplified model, some critical chal-
lenges are not addressed yet:
• How to have a concise scheme space representation,

instead of explicit member list? A concise representation
facilitates the automatic space selection without human
interaction. (Section III-B2)

• How to construct scheme spaces that has the potential to
perform well against diverse patterns? It is desired that
the entire search space is small in size but covers most
frequent patterns. (Section IV)

• How to choose the most suitable scheme space among
all candidates? It is challenging to distill hidden patterns
from time series and associate them to scheme spaces
effectively and efficiently. (Section V)

2) Parameterized Scheme Space: In order to support fast
space selection, the number of space candidates must be kept
small, which inherently declines the capability of handling
different patterns. Instead of having pre-defined static spaces, it
is therefore demanded that these candidates can keep adapting
themselves to pattern changes, e.g., by leveraging machine
learning techniques. However, the member list representation
used in Definition 3.2 treats each compression scheme as an
independent element, and hence is difficult to be learned by
machine learning tasks. Alternatively, we propose a concise
representation called parameterized scheme space, which di-
vides a scheme space into two parts: a static scheme template
set and a configurable variable set.

Definition 3.3 (Scheme Template and Variables): A scheme
template is an extension to a specific compression scheme. It
replaces one or more elements in 〈a, b, λa, λb〉 with variables,
which are determined at runtime. A variable can represent
either a scheme (i.e., a, b) or the parameter associated to a
scheme (i.e., λa, λb)

For example, 〈X,offset, λX , λoffset〉 with variable X
means that the coding scheme is offset coding and the trans-
form scheme is determined by the value of X . Similarly, 〈xor,
bitmask, λxor, Y 〉 with variable Y means that xor transform
and bitmask coding are used, and the parameter (e.g., byte shift
size) of bitmask coding is determined by the value of Y .

Definition 3.4 (Parameterized Scheme Space): A parameter-
ized scheme space contains a collection of scheme templates
and a collection of associated variables. A variable can present
in multiple scheme templates, which introduces correlations
between different schemes within the space.

With the concept of parameterized scheme space, we can
transform the task of finding scheme spaces into the task
of determining variable values. These values can be adjusted
dynamically to catch up pattern changes.

IV. AMMMO COMPRESSION FRAMEWORK

The two-level scheme selection model provides a general-
purpose abstraction for data compression. Based on this model,
we design AMMMO (Adaptive Multi-Model Middle-Out)
compression framework, which is a specific implementation
tailored for time-series data. In this section, we discuss key de-
sign choices made in AMMMO, including scheme primitives,
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TABLE II: List of differential coding primitives. 0x and 0b prefixes stand for hexadecimal and binary formats.

Primitive Name Parameter Format Example
Input Param Output

Offset offByteShift
1 byte: 1-bit control bits || 7-bit value

2 bytes: 2-bit control bits || 14-bit value
3 bytes: 3-bit control bits || 21-bit value

0x 00 17 00 00 00 3 control bits || 0b10111

Bitmask maskByteShift
1 value: (up to 6-bit) bitmask || value

2 values: 6-bit bitmask || value1 || value2 0x 10 00 26 84 00 1 0b1011 || 0x 10 26 84

Trailing-zero N/A
2-bit (or 3-bit) trailing-zero control bits
|| 3-bit non-zero control bits || value 0x 00 14 04 09 00 N/A 1 (0b01) || 3 (0b010) || 0x 14 04 09

TABLE III: List of transform primitives.
Id Primitive Name Operation Description
0 delta vi − vi−1

1 reversed delta (RD) vi−1 − vi
2 xor vi xor vi−1

3 delta-of-delta (DoD) (vi − vi−1)− (vi−1 − vi−2)
4 reversed delta-of-delta (RDoD) (vi−1 − vi−2)− (vi − vi−1)
5 delta xor (DX) (vi − vi−1) xor (vi−1 − vi−2)

scheme spaces (i.e., control parameters, major modes and sub-
modes), and an intuitive rule-based method for scheme space
selection. These choices of primitives and parameter settings
are empirical and have been proven to be effective in practice.
However, they are orthogonal to our model and can be replaced
or extended arbitrarily. An overview architecture of AMMMO
framework is shown in Figure 2.

A. Compression Scheme Primitives

Recall that a compression scheme consists of a transform
stage and a differential coding stage (or called encoding stage).
In AMMMO, we use a set of primitives to build these stages.

Transform primitives. At the transform stage, for the i-th
data point, we apply transform operations to its value vi, which
additionally takes previous two points vi−1, vi−2 as input.
Table III lists six transform primitives used in our framework,
which are proven effective from our empirical evaluations in
production environment. Note that those transform primitives
suffering low throughput (e.g., dictionary) are excluded from
our implementation.

Encoding primitives. The transform stage converts each 8-
byte raw value into a 8-byte differential value. At the encoding
stage, this value is to be encoded using less bytes. Table II lists
three encoding primitives designed in our framework, and we
detail them as follows:

• Offset coding uses a global parameter offByteShift
to indicate from which byte the non-zero value starts. In
our implementation, three coding lengths (1/2/3 bytes)
are supported, each with own offByteShift value.

• Bitmask coding has a bitmask (with up to 6 bits) to
indicate whether a byte has non-zero values. To handle
the case that only high-order bytes have non-zero value, a
global parameter maskByteShift is defined to remove
low-order bytes from the mask. To further reduce the
number of control bits, two consecutive values can share
one bitmask, halving the amortized bits per value.

• Trailing-zero coding separates the 8-byte value into three
parts: trailing-zero bytes, non-zero bytes and leading-zero
bytes. In this format, 2 or 3 bits (trailing-zero control bits)
are able to indicate up to 3 or 7 bytes of trailing zeros;
and 3 bits (non-zero control bits) representing range [1, 8]
instead of [0, 7], indicate the number of non-zero bytes
(up to 8) to be coded after trailing zeros are removed.

B. Compression Scheme Space Definition
AMMMO applies different scheme selection strategies to

metric values and timestamp values. For metric values, the
two-level selection model is used, which determines a major
mode (i.e., scheme space) followed by a sub-mode (i.e.,
scheme), as shown in Figure 2. Timestamp values only use
bottom level (sub-mode) selection model as their patterns are
more regularized.

Based on compression scheme Definition 3.1 and primitives
design IV-A, AMMMO constructs nine (first four specify a
and b, and last five specify λa and λb) control parameters
as listed in Table IV (defining possible compression scheme
spaces), which major mode (each with four sub-modes) is
further defined in Table V.



TABLE IV: The control parameters in AMMMO which de-
fines a compression scheme space in top level.

Parameter Bits Range Description
majorMode 2 [0, 3] Indicate the selected major mode
transType1 3 [0, 5] Refer to a transform in Table III
transType2 3 [0, 5] Similar to transType1
transType3 3 [0, 5] Similar to transType1

offByteShift1 3 [0, 7] Byte offset for 1-byte offset coding:
offByteShift = offByteShift1

offByteShift2 1 [0, 1]
Byte offset for 2-byte offset coding:
offByteShift = offByteShift1
- offByteShift2

offByteShift3 1 [0, 1]
Byte offset for 3-byte offset coding:
offByteShift = offByteShift1
- offByteShift2 - offByteShift3

offUseSign 1 [0, 1] Indicate if offset coding use sign
maskByteShift 3 [0, 5] Byte offset for bitmask coding

TABLE V: The major modes and sub-modes in AMMMO
with control parameters.

Id Major
Mode

Control
Bits Sub-Mode Compression Scheme

0 Transform
Preferred

0b00 transType1 with 6-bit bitmask
0b01 transType2 with 6-bit bitmask
0b10 transType3 with 6-bit bitmask
0b11 transType1 with 6-bit trailing-zero

1 Bitmask
Preferred

0b00 transType1 with 6-bit bitmask
0b01 transType2 with 2-value bitmask
0b10 transType3 with 6-bit bitmask
0b11 transType1 with 6-bit trailing-zero

2 Offset
Preferred

0b1 transType2 with 1-byte offset
0b01 transType2 with 2-byte offset

0b000 transType2 with 3-byte offset
0b001 transType1 with 5-bit trailing-zero

3 Mixed

0b1 transType1 with 1-byte offset
0b01 transType2 with 2-value bitmask

0b000 transType3 with 5-bit bitmask
0b001 transType1 with 5-bit trailing-zero

A space (i.e., major mode) contains 4 sub-modes to adap-
tively compress each point at bottom level. This choice is a
balance between the coverage of search spaces and the over-
head of meta data and computation. Note that the definitions
of the major modes and sub-modes are based on experimental
results and are further extended or replaced when dealing with
different workloads. In our current design, a timeline requires
20 bits (Table IV) of meta data for top-level mode selection,
and an average of 2 bits (Table V) for bottom-level mode
selection.

C. Compression Procedure

In AMMMO, 32 data points are processed as a block with
header and data segment, and timestamps and metrics value
are compressed separately:

Timestamp compression. Timestamps in a timeline usually
have fixed intervals, such as 1 second. This pattern can
be easily captured by the delta-of-delta transform operation.
However, it is common that some points violate this pattern,
e.g., due to sampling jitter or network delay. Inspired by
Gorilla [23], we take advantage of the delta-of-delta operation,
and try to align the irregular data in bytes to speed up. To sim-
plify transform process, we consider the byte representation of
each point as a 64-bit integer. Detailed compression procedure
is shown in Algorithm 2. We maintain two data segments, i.e.,
header for delta-of-delta outputs and data for irregular data

Algorithm 2: Compression for Timestamp Values
Input: timestamp sequence ts
Output: compressed bitStream bs

1 bitStream header, data;
/* write first two points (8 bytes each) */

2 data.append(ts[0], ts[1]);
3 for each point ts[i] where i ∈ [2, ts.length) do
4 d = (ts[i]− ts[i-1]) − (ts[i-1]− ts[i-2]);
5 if d == 0 then header.appendBit(0) ;
6 else
7 header.appendBit(1);
8 if d > 0 then d = d− 1;
9 if d ∈ [−4, 4) then

10 data.append(1b’1 —— 3b’d); // 4 bits
11 else if d ∈ [−32, 32) then
12 data.append(2b’01 —— 6b’d); // 8 bits
13 else
14 if bitmask coding is preferred then
15 data.append(3b’001 —— 5b’bitmask);
16 data.append(bitmask-encoded d);
17 else
18 data.append(3b’000 —— 5b’control-bit);
19 data.append(zero-trailing-encoded d);
/* final output concatenates header and data */

20 return bs.write(header, data)

Algorithm 3: Compression for Metric Values
Input: metric sequence ms
Output: compressed bitStream bs

1 bitStream header, data;
2 data.append(ms[0]);
3 for each point ms[i] where i ∈ [1,ms.length) do
4 d = ms[i]−ms[i-1];
5 if d == 0 then header.appendBit(0) ;
6 else
7 header.appendBit(1);
8 for each mode m from sub-modes do
9 calculate compression ratio r for d;

10 if r ¿ best ratio then
11 best ratio = r;
12 best mode = m;
13 data.append(best mode.compress(d));
14 return bs.write(header, data)

points. The first two points of a timeline are stored in data in
their raw formats (line 2). For subsequent points, we calculate
their delta-of-delta values and indicate in header (line 3-7).
When irregular value occurs (i.e., delta-of-delta is not zero),
they are encoded in different lengths (e.g., 4, 8, 16 bits) and
appended to data segment (line 8-19) 2.

Metric value compression. The compression for metric
values is similar to timestamps, as shown in Algorithm 3. Here,
deltas of consecutive metric values are used as indicators (line
3-7), instead of delta-of-deltas. For each point different from
its predecessor (i.e., d 6= 0), we try all 4 sub-modes to find
the best compression scheme for d. For each sub-mode, we
construct the corresponding scheme to encode d and calculate
compression ratio (line 8-12). We then choose the sub-mode
with the best ratio and append compressed d into the data
segment (line 13).

D. Rule-based Scheme Space Selection Algorithm

The remaining challenge is to select proper compression
scheme space, i.e., fill in values for all parameters in Table IV.
A rule-based algorithm (Algorithm 4) invokes metric benefit

2Since d = 0 is unoccupied, we utilize it to cover a larger range (line 8).



Algorithm 4: Rule-based Scheme Space Selection
Input: metric value sequence ms
Output: control parameter values params in Table IV
/* PART I: calculate the benefit_score */
/* benefit_score: the total number of bytes can be

saved against the worst case 9-byte original
representation per point (i.e. 1 byte of control
bits and 8 bytes of differential value) for
different compress schemes in a timeline */

1 a 6 × 6 array with zero initializations: benefit score;
2 for each point ms[i] where i ∈ [1,ms.length) do
3 for each transform mode tm[j] in Table III do
4 for each coding format cf [k] in Table II do
5 benefit = calculateBenefit(ms[i], tm[j], cf [k]);
6 benefit score[j][k] += benefit;
7
/* PART II: calculate the params based on

benefit_score */
/* best_majorMode_score represents the best score

among 4 major modes */
8 best majorMode score = 0;
9 for each majorMode mm[i] where i ∈ [0,mm.length) do

10 majorMode score = 0;
/* best_subMode_score represents the best score

among 4 sub modes of the majorMode mm[i] */
11 best subMode score = 0;
12 for each subMode sm[j] where j ∈ [0, sm.length) do

/* find the array indexes in benefit_score that
match mm[i] and sm[j], say s and t */

13 s, t = findIndex(mm[i], sm[j]);
14 if benefit score[s][t] > best subMode score then
15 best subMode score = benefit score[s][t];
16 majorMode score += best submode score;
17 if majorMode score > best majorMode score then
18 params = findParams(mm[i]);
19
20 return params

score to represent a compression scheme’s efficiency, and the
whole process is separated into two parts generally. Firstly,
benefit score for all the possible submodes are constructed
(line 2-6). Secondly, the best major mode is selected based
on the benefit scores, and then fill control parameter values
accordingly (line 8-18).

However, there are issues that limit its efficiency and are
difficult to resolve, for example: whether benefit score is
a good enough metric? Moreover, when the definitions of
Table II ˜ V need to be adjusted (e.g., to tune compression
performance), such an analysis process has to be manually
re-designed and implemented, which is complex and time-
consuming. Therefore, it is appealing to have an efficient,
automatic and adaptive method to tune these parameters,
which motivates us to adopt machine learning approaches.

V. MACHINE LEARNING FOR MODE SELECTION

From Table IV, we have 23 · 4 · 64 · 8 = 331, 776 possible
combinations for control parameters in total. It is prohibitive
to enumerate all cases to find the best control setting. Alterna-
tively, getting the appropriate control setting can be formulated
as a classification problem, which supervised machine learning
approaches are good at solving. However, it is infeasible in our
context to generate ground truths for training since:
• Suppose a training sample has 32 points (256B), there

will be 256256 possible cases in theory. And for each
sample, we need random 331,776 times to find the best
compression ratio and take it as label. The sample orga-

Environment	
(submode	selection) 

Update	Control	setting 

Control setting Compression ratio 

Fig. 3: An overview of policy gradient RL based control setting
generation model.

nization and computation consumption to create dataset
is prohibitive.

• Supervised learning requires the label to be only one or a
few, while given a sample, it’s likely that multiple control
settings are able to achieve the same compression ratio,
which leads to multiple labels associated with a sample.

• Once the primitive and parameter definition is refined,
the original training set becomes useless.

Hence, we propose a framework that adopts reinforcement
learning to tune control parameters automatically in two steps:

1) Learn control settings from blocks. Each timeline is
further divided into fixed-size blocks (e.g., 32 points
per block in our implementation). A neural network
(Section V-B) is trained via reinforcement learning (Sec-
tion V-A) to interactively learn proper settings of control
parameters for each block .

2) Determine the control setting of a timeline. The trained
network is used to generate control settings for all
blocks. After that, the best setting for the entire time-
line is determined following a statistical strategy (Sec-
tion V-C).

A. Training with Reinforcement Learning

Figure 3 illustrates the overview of our learning flow. In
particular, a neural network takes a block as a state, generates
a control setting as the action. Under this setting, the sub-
mode selection module computes the compression ratio as the
feedback to adjust the neural network interactively.

For a given block, its control setting (or called control
option) is defined as cop = { op0, op1, ..., op8}, where opi
belongs to the value range of i-th control parameter listed
in Table IV. For example, op0 is majorMode and its value
belongs to range [0, 3]. Let ri(cop) represent the compression
ratio of the i-th block with control setting cop. The objective
of the control setting generation network is to find the cop that
maximizes the compression ratio:

J(θ) = Ex∼p(x|θ)[f(x)] (1)

where: x stands for a control setting; θ is the policy defined by
the network (Section V-B) that generates the cop; p(x/θ) is the
probability to generate control setting x; and f(x) represents
the reward to the RL network, i.e., compression ratio ri(x).
The network aims to maximize the expected reward of con-
trol setting decision x under probability distribution p(x/θ).
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Decisions are the control option copi drawn from the softmax
distribution in θ.

The weights in the network are learned using Adam [14]
optimizer based on the policy gradients computed via the
REINFORCE equation [32]:

∇θJ(θ) = ∇θEx[f(x)]
= Ex[f(x)∇θlogp(x)]

≈ 1

N

N∑
i=1

f(copi)∇θlogp(copi)
(2)

We sample N control settings to estimate ∇θ as specified in
Formula 2. It implies that the network is updated towards the
direction of better compression reward f(copi).

For N different sampled settings of a block, we should
activate the network to generate higher possibility for those
cops with high rewards. To achieve this goal, block-level
normalized compression reward fn (x) and summarized cross
entropy Hcs(x) are applied:

fn(x) = (f(x)−mean(f(x)))/std(f(x)) (3)

Hc(x) = −(p(x)logp(x) + (1− p(x))log(1− p(x))) (4)

Hcs(x) =

x:op8∑
i=x:op0

Hc(i) (5)

Consider that the SGD scheme uses M blocks as a batch, each
with N samples, the final loss function to be minimized is:

1

M ∗N

M∗N∑
i=1

(fn(copi) ∗Hcs(copi))− λ ∗H(cop) (6)

where H(cop) is the average entropy value of all cop used as
entropy regularization that avoids network converge to local
optimum [20]. We use regularization parameter λ = 0.01 to
leverage it.

B. Neural Network Architecture

Figure 4 shows the neural network structure and overall
data flow of training and inference. In the RL training stage
(module), a batch of total M blocks, each of which has N
duplicate samples, are fed into the network. First, the blocks
pass through the network and generate M ·N control setting
candidates. Second, for each field in a control setting, we sam-
ple with associated probabilities to determine its value. Third,
compression ratios under each control setting are calcuated

TABLE VI: Neural network layers.

Layer Type Size Activation

1 Fully-connected 1024 ReLU
2 Fully-connected 512 ReLU
3 Fully-connected 42 None
4 Region Softmax 42 None

and then are used to derive the loss according to Formula 6.
Last, backward propagation is applied and weights are updated
accordingly. In the inference stage (module), either a single
block, a batch, or all blocks of a timeline can be fed into the
network. We pass through the network and generate control
setting for each block. Then for each field in a control setting,
we choose the highest probability value among all the blocks
as the final setting.

Table VI lists layer configurations used in the network.
The basic input unit is a block, which has the size 32 · 8
bytes. The fully connection is applied to layer 1, 2 and 3, in
which the first two layers have the ReLU activation function.
The size of the hidden node in layer 3 is 42, which is the
number of all available values in nine control parameters.
Each parameter field could make its own decision independent
from others. Hence, rather than using the global softmax as in
image classification tasks, we introduce a region softmax that
conducts softmax on each field, instead of using all 42 logits.

C. Determine Timeline Control Setting

A timeline has only one global control setting that takes
effect on all blocks. We use statistic strategy to assemble
blocks of control setting to one. The procedure is: consider
all these parameters as independent from each other, select
the most frequent values for each field in control parameters.
Note, some other strategies (i.e., select the most frequent
combination of control settings, or choose the most frequent
value for majorMode first, and then select most frequent
values for other fields from those blocks belong to this mode)
have slight difference in the final result view.

VI. EXPERIMENTS

To evaluate the proposed AMMMO framework, we test it on
datasets collected from our business operations3, ranging from
IoT applications to performance monitoring of large clusters.
In addition, a public timeseries repository UCR [4] is also
used. We compare our method against other state-of-the-art
compression methods in terms of both the compression ratio
and efficiency. Also, we evaluate AMMMO framework using
various mode selection algorithms, showing the advantages of
machine learning based methods.

A. Experiment Setup

Datasets. We collect a representative set of time series
datasets that exhibit different patterns, characteristics and
sizes. In particular, 28 datasets are selected, where 8 of
them are from IoT applications and 20 of them are from

3https://github.com/JonyYu/ATimeSeriesDataset.



cluster monitoring. They are of different sizes, from 10k to
500k points4. For the purpose of applying machine learning
methods, these datasets are further divided into a test set A
(for training) and a test set B (for validation), as listed in
Table VII5.

TABLE VII: Datasets with 28 selected time series.

Test Set A
Name Points Name Points Name Points
IoT0 430,737 IoT6 430,413 Server35 147,395
IoT1 429,745 IoT7 313,539 Server41 136,594
IoT2 428,390 Server30 158,188 Server43 29,233
IoT3 344,581 Server31 147,385 Server46 154,585
IoT4 306,736 Server32 165,395 Server47 140,199
IoT5 372,868 Server34 140,194 Server48 157,051

Test Set B
Name Points Name Points

Server57 26,779 Server94 140,198
Server62 32,569 Server97 158,194
Server66 135,409 Server106 136,478
Server77 136,598 Server109 153,438
Server82 143,798 Server115 165,384

Also, there is a well-known time series datasets named
UCR [4], which is a repository of 85 univariate time series
datasets from various domains, commonly used for bench-
marking time series algorithms. Since most of them are small,
and each has several different patterns (pattern id 0, 1, 2,
...). We choose the longest 8 datasets, and concatenate all the
pattern 0 to form a single longer time series. We also separate
this dataset into test sets A and B in Table VIII.

Figure 5 illustrates two of the datasets. As shown in figure,
the data from different datasets exhibit different characteristics.
Even in one dataset, the internal data patterns are complex.

TABLE VIII: 8 longest time series datasets in UCR

Test Set A Test Set B
Name Points Name Points

HandOutlines 641,796 CinC ECG torso 8,190
Haptics 19,638 InlineSkate 16,929

StarLightCurves 155,496 MALLAT 6,138
UWaveGestureLibraryAll 115,168 Phoneme 4,092

Timestamp
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(b) Haptics
Fig. 5: Illustration of two of the datasets.

Methods and Variants. Three open-sourced baseline com-
pression methods and six AMMMO variants are used to eval-

4Each dataset is treated as a single timeline for simplicity. However, in real
world, a long time series (with diverse patterns) is always split into multiple
timelines to mitigate the pattern diversity within a timeline.

5In test set A, 8 out of 18 datasets contain constant metric values over long
periods (e.g., with most values being zero), which can be easily compressed.
Hence, we only include them in timestamp evaluation.

uate the performance of AMMMO framework and machine
learning mode selection.
• Gorilla [2]: a state-of-the-art commercial bit-level com-

pression algorithm applied in server side. It applies delta-
of-delta on timestamp values followed by a variable
length coding, while applies xor on metric values fol-
lowed by Huffman coding.

• MO (Middle-Out) [25]: a byte-level compression al-
gorithm good for parallel processing, which takes 8
points as a process block. It applies xor on timestamp
values followed by byte-aligned differential coding, while
applies xor on metric values followed by trailing zero
coding on the differences.

• Snappy [6]: a general-purpose compression algorithm
developed by Google. It is byte-level and is used
by InfluxDB [9], KairosDB [8], OpenTSDB [21],
RocksDB [31], the Hadoop Distributed File System [27]
and numerous other projects.

• AMMMO Lazy: AMMMO framework with a fixed con-
trol setting, i.e., set majorMode to 0, transTypes to
2/5/0, and all other parameters to 0.

• AMMMO Rnd5000Best: Control setting is selected
from random generations. Generate 5000 times and select
the one with the best compression ratio. Although we
do not cover all possible settings, it still gives a good
approximation for the optimal ratio that AMMMO could
achieve. Note that this method is unaffordable in produc-
tion deployment, and we only use it as a reference point.

• AMMMO Rnd1000Best: Generate random control set-
tings 1000 times, report the best compression ratio.

• AMMMO Rnd1000Avg: Generate random control set-
tings 1000 times, report the average compression ratio.

• AMMMO Analyze: Scheme space selection is done by
rule-based analysis algorithm (Section IV-D).

• AMMMO ML: Scheme space selection is done by ma-
chine learning (Section V).

B. Compression Ratio

In this section, we evaluate the compression ratio achieved
by AMMMO framework on both timestamp and metric values.
We also demonstrate the advantages of using machine learning
methods.

1) Timestamp Compression: For timestamp values, we use
one-level mode selection in AMMMO, and hence all variants
have the same behavior. Therefore, we omit their internal
comparisons and only provide results for Gorilla, MO and
AMMMO.

Figure 6 shows the compression ratios for all 18 time series
in test set A. There is no result for Gorilla on server monitoring
applications, as it cannot handle the case that the difference
between two consecutive timestamps is larger than 2 hours
(which exists in all these time series). As can be seen, Gorilla
and AMMMO perform much better than MO. It is because
that delta-of-delta operations are more suitable for timestamps
compared to xor operations. Moreover, AMMMO achieves
the best results in all cases, since it uses 3 bits to handle
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Fig. 7: Comparison of compression ratios.

sample jitter pattern and uses adaptive multiple modes (e.g.,
offset, bitmask, trailing-zero) to handle other patterns. We
can observe that the overall compression ratio improvement
in AMMMO are significant: an 8-byte raw value only costs
1 to 2 bits in average after compression. Note that Gorilla
also requires only 4 bits in average, indicating that timestamp
compression is quite effective in most cases.

2) Metric Value Compression with AMMMO: Recall that
AMMMO framework enables variants with different mode
selection strategies as listed in Section VI-A. To clearly
show its overall capacity, we define AMMMO as the best
compression ratio achieved by all variants.

We define X improved compression ratio over Y as (X−Y )
Y .

Figure 7a shows the average compression ratio on all tests in
IoT/Server/UCR datasets. From the result, Snappy achieves
worst performance since it does not consider characteristic
of timeseries much; Gorilla is slightly better than MO in
general (MO is better in IoT cases since IoT data is usually
simpler), because it uses bit level packing operation; AMMMO
is significantly better in all these cases. Figure 7b shows
the improved compression ratio comparison. The average
improved ratio of AMMMO over Snappy, Gorilla, and MO
are around 87%, 42% and 49%.

Figure 8 shows the detailed compression ratios on each
time series in test set A. For better readability, the x-axis is
sorted by Gorilla’s compression ratio. As can be seen, Snappy
is worst, Gorilla and MO are close, and AMMMO variants
significantly outperform others in most cases; an exception
is UWaveGesture, where snappy achieves very good com-
pression ratio and AMMMO Rnd5000Best achieves slightly
better result. Note that AMMMO Rnd5000Best is better than
AMMMO Rnd1000Best in most cases except for IoT5 and
Server43 (due to randomness). This indicates that AM-
MMO Rnd5000Best is a proper approximation of AMMMO’s
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best performance. For practical variants AMMMO Analyze
and AMMMO ML, machine learning approaches outperform
manually-determined rules in most cases. And AMMMO ML
is very close to or even better (Server43) than AM-
MMO Rnd5000Best, except UWaveGesture.

3) AMMMO with Machine Learning: In this part, we focus
on the evaluation of whether AMMMO ML is able to learn
proper parameter values from training data, i.e., test set A.
Therefore, we compare it with other variants on validation
test set B. In the training stage, we set batch size M to
896, block duplicate sample N to 64, and start learning ratio
to 0.0005. Figure 9 illustrates the average compression ratio
achieved in training batch, training tests and validation tests.
Thanks to the effective loss function design, the RL scheme
learns how to compress quickly. These ratios increase rapidly
in first 100 iterations, and after that the curve becomes stable.
Suppose we have a time series with 1024 blocks. According
to our findings, we only need to train 100 iterations to obtain
acceptable compression ratio, taking around 100 seconds.

AMMMO has a large number of control setting options,
and it is critical to have a mode selection strategy that
can find a proper one. Figure 10 shows the compression
ratios achieved by different mode selection strategies. As
can be seen, AMMMO Rnd1000Avg is the worst, and even
AMMMO Lazy outperforms it. Both AMMMO ML and
AMMMO Analyze sustain good performance in most cases.
Moreover, AMMMO ML achieves astonishing compression
ratio on Sever115 and Sever97. We observe that, AM-
MMO ML performs worse than AMMMO Rnd1000Best on
Sever109. With a closer look, we observe that block-level
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Fig. 11: Comparison of different mode selections.

compression ratios are still good in AMMMO ML. However,
these parameter values are quite diverse, which makes the
statistic polices hard to derive a proper global control setting.

In summary, AMMMO ML is able to learn patterns from
training set A and achieve excellent compression ratio on
validation set B. This confirms that machine-learning based
mode selection is effective, and can help to automate the
parameter tuning process. In fact, our initial AMMMO only
contains six control parameters and two major modes. This
automatic mode selection facilitates the discovery of nine
effective parameters and four representative modes as the
backbone of our AMMMO framework.

4) Parameter Verification: It is interesting to check whether
AMMMO ML figures out meaningful control setting. Ta-
ble IX lists the timeline control setting decisions made by
different AMMMO variants, on IoT1, IoT2, Server35 and
Server48 in set A. The results show that AMMMO ML is
able to find almost the same setting for maskByteShift and
offsetByteShift, which indicates that it understands the
effect of data resolution after transform. It also performs well
on majorMode selection and transform types selection.

Figure 10 shows the importance of top-level mode selection,
which indicates the advantages of AMMMO ML against other
variants that do not have mode selection. It is also interesting
to look at bottom-level mode selection effect. Figure 11a
shows the result when only submode 4 (i.e., similar mode as
Gorilla in Table V) is used, the performance is significantly
worse as can be expected. For the timeline length, if a timeline
contains different patterns in each sub-parts, splitting it into
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Fig. 12: Compression and decompression performance com-
parison among different schemes.

shorter timelines is able to take advantage of different scheme
spaces. Figure 11b shows that compression on split timelines
(i.e., shorter and with less diverse patterns) achieves better
compression ratio.

C. Compression Efficiency

Due to the massiveness of time series, the compression
and decompression efficiency also plays a crucial role in
compression algorithms. Here we provide throughput for both
operations achieved by AMMMO, Gorilla, MO and Snappy.

On a CPU+GPU platform6, the compression and decom-
pression performance of Gorilla, MO and Snappy are illus-
trated in Figure 12. From the result, we can see that Snappy’s
performance varies a lot. In most cases, the performance is
around 60MB/s (150MB/s). In some rare cases, it can reach up
to 4.5GB/s (11.5GB/s), because the compression ratio is less
than 1.1 and hence there is no or few compression. Gorilla
and MO are much stable, and the average performances are
around 100MB/s (100MB/s) and 1.3GB/s (2.9GB/s). In several
cases, Gorilla’s decompression performances is worse than
compression performances. It is because that Gorilla is a bit-
level coding, where the whole process has to be serialized
and involves frequent bit operations and condition checks
during decompression. With the same CPU resource, MO’s
performance is much better than Gorilla, which is attributed
to the simpler algorithm and byte-level coding. AMMMO is
also byte-level, and we evaluate its performance on GPU. Both
its compression and decompression performances are stable.
Compression procedure in AMMMO involves 2 stages7 , mode
selection stage and compression stage (Section IV-C). The
performance is around 900MB/s and 7.5GB/s8 respectively.
For decompression, the performance is around 5.6GB/s, which
is slightly worse compared to compression performance. It
is because compression procedure can leverage higher paral-
lelism during sub-mode selection for many points.

6CPU: Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz; GPU: Nvidia
gp100 with 16 GB video memory; Memory: 512 GB.

7The mode selection performance is for learning-based inference. In real
deployments, not all timelines need mode selection, since we usually can
reuse the last mode for subsequent timelines (due to time correlation). If the
inference performs badly, we can retrain the network, which costs about 100s.

8This performance includes data copy through PCIe. The compression
kernel itself achieves around 30GB/s.



TABLE IX: Control settings selected by different AMMMO variants.

Algorithm major trans trans trans offByte offByte offByte offUse maskByte
Mode Type1 Type2 Type3 Shift1 Shift2 Shift3 Sign Shift

IoT1
Analyze 3 0 5 0 3 0 0 0 1

RandomBest 3 0 5 3 3 1 1 0 1
ML 3 0 5 4 3 1 0 0 1

IoT2
Analyze 2 0 2 0 3 1 0 0 0

RandomBest 2 5 0 3 3 1 0 0 0
ML 2 0 0 5 3 1 0 0 0

Server35
Analyze 2 0 5 0 5 0 0 0 0

RandomBest 3 4 2 4 5 0 0 1 5
ML 3 3 2 5 5 0 0 0 5

Server48
Analyze 2 5 5 0 4 0 0 0 0

RandomBest 3 0 5 4 6 1 1 0 4
ML 3 4 5 0 4 0 0 0 4

VII. CONCLUSION AND FUTURE WORK

In order to improve compression ratio for time-series data,
we propose a two-level compression scheme selection model
to fully utilize diverse data characteristics. We design and
implement AMMMO framework, a byte-level parallel-oriented
compression method outperforming state-of-the-art approaches
in terms of compression ratio and efficiency. It achieves 50%
better compression ratio compared with Gorilla and MO.
In this framework, we introduce a machine learning based
method to learn diverse data patterns, and it helps perform
mode selection and tune parameters automatically. We have
used this automatic method to discover nine control parameters
and four major modes, which in turn advises the design of
AMMMO internal structures.

As future work, we will explore how to improve AMMMO
by adjusting major mode definition, working with major
modes, integrating with other compression tools and building
blocks (for example support scaling). Another valuable direc-
tion is to design another neural network to replace statistic
polices in generating timeline control settings. Lastly, it is an
interesting open problem to extend the proposed framework
to compress other data types.
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