
Authenticated Index Structures for Aggregation

Queries in Outsourced Databases

Feifei Li† Marios Hadjieleftheriou‡ George Kollios† Leonid Reyzin†

†CS Department, Boston University, USA. ‡AT&T Labs-Research, USA.
(lifeifei, gkollios, reyzin)@cs.bu.edu, marioh@research.att.com

Technical Report BUCS-TR-2006-011

July 20, 2006

Abstract

In an outsourced database system the data owner publishes infor-
mation through a number of remote, untrusted servers with the goal of
enabling clients to access and query the data more efficiently. As clients
cannot trust servers, query authentication is an essential component in
any outsourced database system. Clients should be given the capability
to verify that the answers provided by the servers are correct with respect
to the actual data published by the owner. While existing work provides
authentication techniques for selection and projection queries, there is a
lack of techniques for authenticating aggregation queries. This article in-
troduces the first known authenticated index structures for aggregation
queries. First, we design an index that features good performance char-
acteristics for static environments, where few or no updates occur to the
data. Then, we extend these ideas and propose more involved structures
for the dynamic case, where the database owner is allowed to update the
data arbitrarily. Our structures feature excellent average case perfor-
mance for authenticating queries with multiple aggregate attributes and
multiple selection predicates. We also implement working prototypes of
the proposed techniques and experimentally validate the correctness of
our ideas.

1 Introduction

Consider an automobile company, Speed, that wishes to make its ware-
house information accessible for sales representatives from different places
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of the world but does not want to invest time and money in maintaining
its own servers in foreign countries. Alternatively, Speed could disseminate
its inventory information to various service providers, which will assume the
responsibility of handling queries about product availability, sales informa-
tion, and so on. Distributing Speed’s database helps in two respects. First,
queries are answered closer to the source, reducing network latency. Second,
queries are not managed at a central location which poses a central point
of failure, as well as a bottleneck. Such Outsourced Database Systems [12]
have attracted considerable attention recently. Abstractly, three entities in-
teract in such systems: Data owners that need to publish their information,
a number of remote servers that help disseminate the information more ef-
ficiently, and clients that issue queries about the data. Since remote servers
cannot be fully trusted and moreover they could even be compromised by
third-parties, security concerns must be addressed if such systems are ever
to become viable in the real world. As a concrete example, a third-party
may compromise the systems of a service provider hosting Speed’s inventory
and tamper the database such that users are provided with incorrect sales
information.

To guard against malicious/compromised servers, the owner must give
the clients the ability to authenticate the answers they receive without hav-
ing to trust the servers. From that point of view, query authentication has
three important dimensions: correctness, completeness and freshness. Cor-
rectness means that the client must be able to validate that the answers to
queries really do exist in the database of the owner (guard against fabricated
results), and have not been modified in any way (guard against tampering of
values). Completeness means that no valid answers are omitted. Freshness
means that the results are based on the most current version of the database
that incorporates the latest owner updates. These three aspects constitute
the basic query authentication problem that has been recently examined by
a variety of works [8, 18, 19, 24, 27, 30, 31]. Existing literature concentrated
on authenticating selection and projection queries, e.g., “Retrieve all cars
with prices in the range $5000-$7000”.

An important aspect of query authentication in outsourced database
systems that has not been considered yet is handling aggregation queries.
For example, “Retrieve the total number of cars sold with price between
$5000 and $7000”. Currently available techniques for selection and projec-
tion queries can be straightforwardly applied to answer aggregation queries
on a single selection attribute. Albeit, they exhibit very poor performance.
Additionally, they cannot be generalized to multiple selection attributes
without incurring high query cost as we discuss later. Hence authenticating
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aggregation queries remains an open problem.

In this work, a first attempt is made to formally define the aggrega-
tion authentication problem and to provide efficient solutions that can be
deployed in practice. We categorize outsourced database scenarios into two
classes based on data update characteristics, and design solutions suited for
each case. Concentrating on SUM aggregates, we show that in static scenar-
ios authenticating aggregation queries is equivalent to authenticating prefix
sums [14]. When updates become an issue, maintaining the prefix sums and
the corresponding authentication structure becomes expensive. Hence, we
propose more involved structures for efficiently handling the updates, based
on authenticated B-tree [6] and R-tree structures [10]. Finally, we extend the
techniques for aggregates other than SUM, and discuss some issues related
to query freshness and data encryption for privacy preservation. Overall,
we present solutions for handling multi-aggregate queries with multiple se-
lection predicates, that work for a variety of aggregates like SUM, COUNT,
AVG, MIN and MAX.

The rest of the paper is organized as follows. Section 2 gives the formal
problem definition. Section 3 presents the necessary background and a brief
overview of related work. Section 4 discusses static outsourced database sce-
narios, while Section 5 presents our structures for the dynamic case. Section
6 generalizes the discussion for aggregates other than SUM, and discusses
advanced issues related to freshness and data encryption. An empirical eval-
uation is presented in Section 7. Finally, Section 8 concludes the paper.

2 Problem Definition

Consider the following SQL statement:

SELECT SUM(sales) FROM cars

WHERE price>$5000 and price<$7000

This statement contains one aggregated attribute (rating) and one selec-

tion attribute (price), in the form of a range predicate. In general, any
aggregation query can be represented as follows:

Q = 〈⊗(A1), · · · ,⊗(Ac)|S1, · · · , Sd〉,

where
⊗

is the associated aggregation operation, Ai correspond to the ag-
gregated attributes and Sj to the selection attributes contained in the pred-
icates of the query. Attributes Ai, Sj may correspond to any of the fields
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of a base table T. For simplicity and without loss of generality, we as-
sume that the schema of T consists of fields T(S1, . . . , Sd) with domains
D1, . . . , Dd, respectively. We refer to a query Q with d selection attributes
as a d-dimensional aggregation query.

In general, there are three different types of aggregation operations:
distributive, algebraic, and holistic. Distributive aggregates (like SUM,
COUNT, MAX, MIN) can be computed in a divide and conquer fashion,
i.e., by partitioning the data into disjoint sets, aggregating each set indi-
vidually and combining partial results to get the final answer. Algebraic
aggregates can be expressed as a function of distributive aggregates, e.g.,
AVG ≡ SUM/COUNT. Holistic aggregates (like MEDIAN) are harder to
compute as they usually require global knowledge on the input. In the rest,
we focus only on distributive aggregates. Algebraic aggregates are easily
computed once distributive aggregates are addressed. Holistic aggregates
are left as future work.

Finally, we concentrate on SQL queries with range predicates only.
That is, given selection attributes Sj, each predicate that Sj appears in
is of the form aj ≤ Sj ≤ bj , aj, bj ∈ Dj , j ∈ [1, d]. For simplicity and
without loss of generality, we let Sj denote both the attribute name and
the query predicate in which Sj appears in (assuming that each attribute
appears in one predicate only). The meaning will be clear from context.
The set of tuples from T that satisfy all query predicates Sj is denoted by
SAT (Q), and the final answer to Q as ANS(Q).

The problem of authenticating aggregation queries in outsourced database
systems can now be defined as follows. A data owner compiles a set of
authenticated structures for its data that are disseminated along with its
database to a set of servers. Clients pose queries Q to the servers, which
in turn use the authenticated structures to provide users with the answer
to Q and special Verification Objects VO w.r.t. ANS(Q). VOs enable the
clients to verify the correctness, completeness and freshness of ANS(Q),
meaning that clients can be assured that ANS(Q) has been indeed com-
puted solely from SAT (Q). The problem is to design efficient authentica-
tion structures for aggregation queries, as well as to define the appropriate
verification objects for this purpose. In an outsourced database scenario we
measure efficiency using the following metrics [18]: query cost, that includes
the communication between server and clients and the verification at the
client side, storage cost, and update cost of the authentication structures at
the server side.
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3 Background and Related Work

This section briefly reviews the necessary background material for under-
standing how one can achieve query authentication in outsourced database
scenarios. Then, related work on selection queries is revisited, and a straight-
forward but quite expensive solution for authenticating aggregation queries
is presented.

3.1 Cryptographic Primitives

Collision-resistant hash functions: For our purposes, a hash function
h is an efficiently computable function that takes a variable-length input
x to a fixed-length output y = H(x). Collision resistance states that it is
computationally infeasible to find two inputs, x1 6= x2, such that h(x1) =
h(x2). Collision-resistant hash functions can be built provably based on
various cryptographic assumptions, such as hardness of discrete logarithms
[20]. However, in this work we concentrate on using heuristic hash functions,
which have the advantage of being very fast to evaluate, and specifically
focus on SHA1 [28] which takes variable-length inputs to 160-bit outputs
(and approximately 3-6 µs to compute on our testbed computer). SHA1
is currently considered collision-resistant in practice; we also note that any
eventual replacement to SHA1 developed by the cryptographic community
can be used instead of SHA1 in our solution.

Public-key digital signature schemes: A public-key digital signature
scheme, formally defined in [9], is a tool for authenticating the integrity and
ownership of the signed message. In such a scheme, the signer generates a
pair of keys (SK ,PK ), keeps the secret key SK secret, and publishes the
public key PK associated with her identity. Subsequently, for any message
m that she sends, a signature sm is produced by: sm = S(SK ,m). The
recipient of sm and m can verify sm via V(PK ,m, sm) that outputs “valid”
or “invalid.” A valid signature on a message assures the recipient that the
owner of the secret key intended to authenticate the message, and that the
message has not been changed. The most commonly used public digital
signature scheme is RSA [32]. Existing solutions [30, 31, 24, 27, 18] for
the query authentication problem chose to use this scheme, hence we adopt
the common 1024-bit RSA. Its signing and verification cost is one hash
computation and one modular exponentiation with 1024-bit modulus and
exponent. It produces a signature with 1024-bit length. In general, signing
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h2

h34 = H(h3|h4)h12

h1 h4 = H(r4)h3

h1234 = H(h12|h34)

Figure 1: Example of a Merkle hash tree.

and verifying are much more expensive operations than hashing (four orders
of magnitude more expensive in our testbed computer).

The Merkle hash tree: The Merkle hash tree [21] (see Figure 1) is used
for authenticating a set of data values. It is a binary tree where each leaf
contains the hash of a data value, and each internal node contains the hash
of the concatenation of its two children. The hash value of the root is signed
and published. To prove the authenticity of any data value the prover pro-
vides the verifier, in addition to the data value itself, with a Verification
Object VO that contains the hashes stored in the siblings of the path that
leads from the root of the tree to the requested value. The verifier, by
iteratively computing all the appropriate hashes up the tree, at the end
can simply check if the hash computed for the root node matches the au-
thentically published signature of the root. Given the collision resistance
properties of the hash function and the guarantees of the signature scheme,
it can be shown that it is computationally infeasible for an adversary (under
certain computational models) to fool the verifier by modifying any of the
data in the path from the leaf to the root. The Merkle tree can be straight-
forwardly extended to an f -way tree, where during construction of the VO
the prover needs to insert all the f − 1 siblings of every leaf and index entry
involved in the computation.

3.2 Previous Work

Previous work [8, 18, 19, 24, 27, 30, 31] on query authentication has focused
on studying the general selection and projection queries. The proposed
techniques can be categorized into two groups, namely signature-based ap-
proaches and index-based approaches. In general, the projection queries are
handled using the same techniques as selection queries. The only difference
is at the granularity level (i.e. tuple level or attribute level) that the sig-
nature/hash of the database tuple is computed. Hence, next, we focus on
discussing only selection queries.

In signature-based approaches [27, 30], the general idea is to produce
a signature for each tuple in the database. Suppose that there exists an
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authenticated index with respect to a query attribute Aq. The signatures
are produced by forcing the owner to sign the hash value of the concatenation
of every tuple with its right neighbor in the total ordering of Aq. To answer
a selection query for Aq ∈ [a, b], the server returns all tuples t with Aq ∈ [a−
1, b+1] along with a VO that contains a set of signatures s(ti) corresponding
to tuples in [a − 1, b]. The client authenticates the result by verifying these
signatures for all consecutive pairs of tuples ti, ti+1 in the result. It is possible
to reduce the number of signatures transmitted by using special aggregation
signature techniques [25].

Index-based approaches [8, 19, 24] utilize the Merkle hash tree to pro-
vide authentication. The owner builds a Merkle tree on the tuples in the
database, based on the query attribute. Subsequently, the server answers the
selection query using the tree, by returning all tuples t covering the result.
In addition, the server also returns the minimum set of hashes necessary
for the client to reconstruct the subtree of the Merkle tree corresponding to
the query result and compute the hash of the root. The reconstruction of
the whole subtree is necessary for providing the proof of completeness. An
extension of the Merkle tree to multi-way trees which are more appropriate
for database indices that are usually stored on disks appeared in [31]. A
thorough comparison of all possible alternatives, as well as a novel improved
structure (the EMB-tree) for authenticating selection queries, appeared in
[18]. In the same work, the important issue of result freshness was also
raised for the first time. A more detailed analysis of these techniques is
beyond the scope of this paper. The reader is referred to [18] for a more
detailed analysis of selection queries. To the best of our knowledge none of
the existing works has explored aggregation queries.

Furthermore, most of previous work focused on the one dimensional
selection queries except [27, 5]. Both works utilize the signature chaining
idea developed in [30] and extend it for multi-dimensional range selection
queries.

Related to query authentication in general (but not using the ODB
model), [4] has studied authentication techniques for publishing XML doc-
uments. [23] has studied implementing the hash tree based authenticated
index structure for a tamper-evident database system. Techniques for in-
tegrity in data exchange can be applied to query authentication and we refer
readers to an excellent thesis [22] for more details. Also, [26] has studied
the problem of computing aggregations over encrypted databases. For most
of the work, we consider unencrypted databases; encrypted databases are
discussed in Section 6.
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3.3 A Trivial Solution

Any solution for authenticating selection queries could provide a straight-
forward but very inefficient solution for authenticating aggregation queries.
The server simply answers the aggregation query Q as selection queries and
returns SAT (Q) along with the VO for the selection queries. The client
verifies the set SAT (Q) and then computes the aggregation locally. How-
ever, this approach is not desirable because: 1. The communication and
verification costs are linear to |SAT (Q)| (e.g., if the query is a SELECT *
statement the cost might be prohibitive); 2. The cost for multi-dimensional
aggregation queries is extremely high as a result of filtering (by different
query predicates) could only be done at client side. It is thus desirable to
design a solution that: 1. Has communication/verification cost sub-linear to
|SAT (Q)|. 2. Supports multi-dimensional aggregation queries efficiently.

4 The Static Case

In the static case, once the owner has initially created the database and
published it to the servers there are no or very few updates in the system.
In this section we address the problem of authenticating aggregation queries
in such environments.

4.1 The APS-tree: Authenticated Prefix Sums

Assume for simplicity discrete domains Dj = [0,Mj)
1, and query Q =

〈SUM(Aq)|S1 = [a1, b1], . . . , Sd = [ad, bd]〉. Each tuple in the database can
be viewed as a point in a d-dimensional space D1×· · ·×Dd, and the selection
query as a d-dimensional range query. The d-dimensional space can be
reduced to a D1 × · · · × Dd array C. Every coordinate of the array that
contains one or more database tuples stores the SUM of attribute Aq of
these tuples. The rest of the elements are initialized to zero. The answer of
the query is equal to

∑b1
i1=a1

. . .
∑bd

id=ad
C[i1, . . . , id]. Answering the query

requires accessing
∏d

i=1(bi − ai + 1) elements.

Alternatively, a prefix sums array can be used [14]. The prefix sum
array PS of C has the same structure as C and in every coordinate it

1For continuous or categorical domains existing values are just ordered and assigned
distinct identifiers, since we are dealing with static environments. In the next section
structures that do not require the domains to be discrete are presented.
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Figure 2: The tree encoding scheme.

stores: ∀xj ∈ Dj, j ∈ [1, d] :

PS[x1, . . . , xd] =

x1
∑

i1=0

. . .

xd
∑

id=0

C[i1, i2, . . . , id],

It has been shown in [14] that any range sum query on PS requires at most
2d element accesses. For all j ∈ [1, d], let I(j) = 1 if xj = bj and I(j) = −1
if xj = aj − 1, and PS[x1, . . . , xd] = 0 if xj = −1, then:

〈SUM(Aq)|S1 = [a1, b1], . . . , Sd = [ad, bd]〉 =

∑

∀xj∈{aj−1,bj}

{(
d

∏

i=1

I(i)) ∗ PS[x1, . . . , xd]}. (1)

Having computed PS for the aggregation attribute Aq, any query Q =
〈SUM(Aq)|S1, . . . , Sd〉 can be answered efficiently. Furthermore, authen-
ticating the answers becomes equivalent to authenticating these 2d prefix
sums required by equation 1. However, as we discuss next, we need to
authenticate both their values and their locations in the array. To authen-
ticate the elements of PS, we convert the PS into a one-dimensional ar-
ray PS1d, where element PS[i1, . . . , id] corresponds to element PS1d[k], k =
∑d−1

j=1(ij
∏d

n=j+1 Mn) + id, and build an f -way MHT on top of PS1d, as de-
scribed in Section 3.1. We call this structure the authenticated prefix sums
tree (APS-tree).

Suppose that a single element PS1d[k] needs to be authenticated. Travers-
ing the tree in order to find the k-th element requires computing the correct
path from the root to the leaf containing the entry, and can happen effi-
ciently by using the following tree encoding scheme. Let h be the height
of the tree (with 0 being the height of the root) and f its fanout. Every
node is encoded using a unique label, which is an integer in a base-f number
system. The root node has no label. The 1st level nodes have base-f rep-
resentations 0, 2, . . . f , from left to right respectively.2 The 2nd level nodes

2We use numbers from 1 to f instead of from 0 to f − 1 to simplify notation for the
purposes of exposition.
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have labels 11, . . . , 1f, 21, . . . , 2f, . . . , f1, . . . , ff , and so on all the way to
the leaves. An example is shown in Figure 2 with f = 2. Straightforwardly,
a leaf entry with PS1d offset k is converted into a base-f number λ1 · · · λh

with h digits (each digit, in our notation, ranging from 1 to f , and computed
as λi = 1+ bk/fh−ic mod f). Since the tree is full, element k lies in the k/f
leaf node, and this leaf node lies in the k/f 2 index node one level up, and
so on. Retrieving PS1d[k] is possible now by following the node with label
that is the prefix of the labels for k.

Given a query Q, the server will find all the 2d elements that are needed
to answer the query and for each one of them will create a part of the VO
object. In particular, the VO will contain the hash values of the MHT
that are needed to authenticate each such element k, i.e. hash values for
the sibling entries in the nodes along the query path from the root to leaf
node k. In addition, the VO will include the encoding of the path for each
element. That is, for the element PS1d[k], the encoding is exactly the label
λ1 · · · λh of k. After the retrieval of all the elements and the creation of
the VO object, the server returns all of them to the client. The encoding
must be included in the VO to allow the client correctly recompute the hash
values for nodes along the query path back to the root, as at each level,
the client must know where the computed hash value for the node from the
lower level should be placed.

Assuming that the hash function is collision resistant and signature
on the tree root is unforgeable, it can be shown that any change to the
structure of the APS-tree or the structure of a constructed VO will cause
the authentication procedure to fail, in exactly the same way as for the
normal MHT. The fact that encoding path of an element must be included
in the VO for successful verification ensures the next lemma:

Lemma 1. Given
∏d

i=1 Mi number of ordered elements in PS1d, the APS
tree can authenticate both the value and the position of the k-th element
∀k ∈ [1,

∏d
i=1 Mi].

For the client to authenticate the query result, it needs to know (i) the
signature of the MHT, (ii) the size of each domain (Mj), and (iii) the fanout
f3. Essentially, the client needs to authenticate each of the 2d elements of
the answer set. First, the client, using the MHT hashes and the encodings,
verifies each element, by computing the hash of the root for each path and
then comparing it with the digital signature. During this step, the client

3Domain sizes and fanout of the tree are static information. Both could be authenti-
cated only once directly from the owner at the system setup stage.
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Figure 3: Merging the overlapping paths in the APS-tree. At every black
node the remaining hashes can be inserted in the VO only once for all
verification paths towards the root.

also infers the position k for each element in PS1d based on its encoding and
f . Next, using the query ranges [ai, bi] and the domain sizes, maps each
element’s position value k back to the coordinate in the d dimensional prefix
sum array. Then, if all the elements are verified correctly, the client can check
whether all required elements are returned and compute the answer to the
query using equation 1.

Correctness and Completeness: Based on Lemma 1 and equation 1, we
can claim that the APS-tree guarantees both completeness and correctness
of the provided results.

Optimizations: A naive VO construction algorithm would return an indi-
vidual VO for each of the prefix sum values needed. Since the authentication
paths of these values may share a significant number of common edges (as
shown in Figure 3), a substantial improvement in the communication and
authentication costs can be achieved by combining their VOs using one tree
traversal. A sketch of this process is shown in Algorithm 1. In the algorithm,
SAT (Q) refers to the set of prefix sums required to answer the aggregation
query, which is equivalent to the actual set of tuples satisfying the query,
according to equation 1.

Let k1, . . . , kn be the indices of the PS1d values that need to be authenti-
cated. The construction algorithm essentially computes the base-f numbers
corresponding to indices k1, . . . , kn as already explained, and defines a n×h
matrix K with the base-f representations:

K =











λ1
1 λ1

2 . . . λ1
h

λ2
1 λ2

2 . . . λ2
h

...
...

. . .
...

λn
1 λn

2 . . . λn
h











The paths that need to be followed at every step can be found by calculating
the longest common prefixes in the rows of K. Let G1 = {11, . . . , 1x} be a
set of groups, where each group contains all elements with equal λi

1 values in
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Algorithm 1: APSQuery(Query Q; APS-tree T; Stack VO; Stack
SAT )

VO = ∅, SAT = ∅, h = T.height1

VO.push(h), VO.push(domain sizes)2

for kx = i1, . . . , id ∈ {a1 − 1, b1}, . . . , {ad − 1, bd} do3

Compute matrix K = λ1
1 · · · λ

n
h for keys k1, . . . , kn

4

Compute G1 = {11, . . . , 1x} using K5

// set G1 contains x groups named 11, . . . , 1x

for S ∈ G1 do6

Recurse(root, 2, S, K)7

Recurse(Node N , Level l, Set S, Matrix K):8

begin9

Compute G = {S1, . . . , Sy} using K10

// group names will become {111, . . . , 11z}, {1111, . . . , 111w}, and

so on

VO.push(l), VO.push(N .children - |G|)11

for λl ≡ S′ ∈ G do12

// for λls corresponding to each S ′ in G

VO.push(λl)13

if l = h then SAT .push(N [λl].k)14

; // value λx
h is the offset of key kx in the leaf

for 1 ≤ i ≤ N .children do15

if i 6= λl,∀λl ∈ G then VO.push(N [i].η)16

if l < h then17

for λl ≡ S′ ∈ G do Recurse(N [λl], l + 1, S′)18

end19

the first column of K, and continue recursively for each of these groups and
for all remaining columns. Continue accordingly for all Gj , j ≤ h. The size of
every set Gj gives the number of paths that need to be followed every time
a split occurs in the verification paths of elements k1, . . . , kn. For every
group Gj the algorithm proceeds by normally constructing a VO for the
common nodes until a split occurs. The procedure is repeated recursively
for all subtrees that need to be explored, according to the remaining digits of
the base-f numbers. The verification procedure at the client follows similar
reasoning, but in a bottom-up fashion.

Furthermore, extending the APS-tree to support multiple aggregate
attributes is straightforward. A set of aggregate values and hash values is
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associated with every data entry PS1d[k] at the leaf level of the tree, one
pair of values for every aggregate attribute one wishes to be able to answer
queries for. This enables answering multi-aggregate queries with only one
traversal of the tree. (Alternatively, to save on storage costs at the expense of
larger VOs, a single hash value per node, hashing all the aggregate attributes
together, can be stored; then the VO will have to include all the aggregate
attributes, not just the ones in which the client is interested.) APS-tree
could be used to authenticate COUNT and AVG as well, as COUNT is a
special case of SUM and AVG is authenticated as SUM/COUNT.

4.1.1 Cost Analysis

Three cost factors affect the performance of any authenticated index struc-
ture: query, storage and update cost.

Query cost: The query cost can be broken up into communication and veri-
fication costs. The communication depends on the size of sets VO and SAT .
From Algorithm 1, the worst case communication cost can be expressed as:

Ccommunication = |VO| + |SAT |

≤
∑dlogf Ne

j=1 [(f − |Gj |) · |H| + (|Gj | + 1) · |I|] + 2d|I|, (2)

where N (= M1× . . .×Md) is the total size of the PS1d array, |H| is the size
of a hash value, |I| the size of an integer value (all in bytes), f is the fanout
of the tree and Gj are the longest common prefix groups at each column of
matrix K.

The verification cost at the client in the worst case is:

Cverification ≤

dlogf Ne
∑

j=1

|Gj | · CH + CV , (3)

where CH and CV denote the cost of one hashing operation and the cost of
one verification operation respectively.

Storage cost: The size of an APS-tree is equal to:

Cstorage =

dlogf Ne
∑

l=0

f l(|H| + |I|) + N |I|, (4)
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including one hash and one pointer per tree entry. Clearly, overall the APS-
tree is storage-expensive, especially if the original d-dimensional array C is
sparse (i.e., when only a few coordinates contain database tuples).

Update cost: The update cost of the APS-tree depends on the update
properties of the prefix sums array. Updating a single element of the prefix
sums array requires updating the values of all other elements that dominate
this entry. Assume that element PS[i1, . . . , id] is updated. Then, elements
PS[x1, . . . , xd] for ij < xj < Mj , 1 ≤ j ≤ d also need to be updated, for a

total of
∏d

j=1 (Mj − ij) values. Hence, the cost of updating the APS-tree is:

Cupdate =

d
∏

j=1

(Mj − ij)dlogfNe · CH + CS , (5)

where CS denotes the cost of a signing operation.

5 The Dynamic Case

The APS-tree is a good solution for non-sparse, static environments because
it has very small querying cost. It will not work well though for dynamic
settings. In the worst case, updating a single tuple in the database might ne-
cessitate updating the whole tree. This section creates advanced structures
that overcome this limitation.

5.1 One dimensional Queries: Authenticated Aggregation

B-tree

Consider Q = 〈SUM(Aq)|S1 = [a, b]〉, that has one selection predicate with
continuous or discrete domain D1, where the distinct number of values of field
S1 given the tuples contained in the database is N ≤ M1. An Authenticated
Aggregation B-tree (AAB-tree) is an extended B+-tree structure of fanout
f with key attribute S1, bulk-loaded bottom-up on the base table tuples.
AAB-tree nodes are extended with one hash value and one aggregate value
per entry. The exact structure of a leaf and an index node is shown in Figure
4. Each leaf entry corresponds to one database tuple t with key k = t.S1,
aggregate value α = t.Aq, and an associated hash value η = H(k|α). If
tuples with duplicate keys exist, then the tree stores only one entry for that
key and aggregates all Aq values in α. Hence the AAB-tree has exactly
N data entries. Index entries have keys k computed in the same way as
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... ... kj ηj = H(kj |αj)pj αj

ki pi αi = α1 + . . . + αf ηi = H(η1 |α1| . . . |ηf |αf )

Figure 4: The AAB-tree. On the top is an index node. On the bottom is a
leaf node. ki is a key, αi the aggregate value, pi the pointer, and ηi the hash
value associated with the entry.

in the normal B+-tree and each key is associated with an aggregate value
α = α1 + . . . + αf (which is the sum of the aggregate values of its children),
and a hash value H(η1|α1| . . . |ηf |αf ), which is a concatenation of both the
hash values and the aggregate values of the children.

To locate an entry with key k, a point B+-tree query is issued. Authen-
ticating this entry is done in a MHT fashion. The only difference is that the
VO includes both the hash values η and aggregate values α associated with
every index entry, and the key values k associated with every leaf entry. In
addition, auxiliary information is stored in the VO, so that the client can
find the right location of each hash value during the verification phase. For
ease of discussion, we use the same tree encoding scheme as in the previ-
ous section (see Figure 5). The only difference is that in an AAB-tree any
node could be incomplete and contain fewer than f entries. However, the
labelling scheme is imposed on the logical complete tree. As the auxiliary
information tells the client at each level where the computed hash value
should be placed, this ensures that:

Lemma 2. The AAB-tree can authenticate both the value associated with
the aggregate attribute and the label of any entry in the tree, including entries
at the index nodes.

Next, we present a method to authenticate aggregation queries effi-
ciently using the AAB-tree. The basic idea is that the aggregate information
at the index nodes of the tree can be used to answer and authenticate range
queries without having to traverse the tree all the way to the leaves. The
next two definitions and proposition are not new; they apply to aggregation
trees in general, with or without authentication. As we shall see shortly,
however, authentication interacts very nicely with the aggregation-related
structures.

Definition 1. The Label Cover LC of entry λ = λ1 · · · λl is the range of
labels of all data entries that have λ as an ancestor. The label cover of a
data entry is the label of the entry itself.
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Figure 5: Labelling scheme and the MCS entries.

Given a label λ, the range of labels in its LC can be computed by
padding it with enough 1s to get an h-digit number for the lower bound,
and enough fs to get an h-digit number for the upper bound. For example,
LC of λ = 12 in figure 5 is {121, 122, 123}.

Definition 2. The Minimum Covering Set MCS of the data entries in
query range S is the set of entries whose LCs are: 1. Disjoint; 2. Their
union covers S completely; 3. Their union covers only entries in S and no
more.

Given the labels λ−, λ+ of the entries as the lower and upper bound of
Q, MCS(Q) can be computed by traversing the tree top-down and inserting
in the MCS all entries whose LC is completely contained in [λ−, λ+] (and
whose ancestors are not in MCS). An entry with LC that intersects with
[λ−, λ+] is followed to the next level. An entry with LC that does not inter-
sect with [λ−, λ+] is ignored. An example is shown in Figure 5. {λ−, λ+}
for Q is {113, 212}. MCS(Q) will be the entries with label {113, 12, 13, 21}.
One can show that:

Proposition 1.

ANS(Q) =
∑

n∈MCS(Q)

αn, (6)

{λ−, λ+} ∈
⋃

n∈MCS(Q)

LC(n) ∈ [λ−, λ+], (7)

LC(m) ∩ LC(n) = ∅,∀n,m ∈ MCS(Q),m 6= n. (8)

Based on Proposition 1, the authentication of Q can now be converted
to the problem of authenticating MCS(Q). Next, we discuss the algorithm
for retrieving MCS(Q) and the sibling set SIB needed to verify it, in one
pass of the tree.

Given a query Q, the server first identifies the labels of the lower λ− and
upper λ+ bounds of the query range using two point B+-tree queries (note
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that these labels might correspond to keys with values a ≤ k− and k+ ≤ b).
Starting from the root, the server follows the following modified algorithm
for constructing the MCS, processing entries using a pre-order traversal of
the tree. When a node is visited, the algorithm looks at LC and [λ−, λ+]: if
LC is fully contained in [λ−, λ+], then the node is added to the MCS; if LC
intersects, but is not fully contained in [λ−, λ+], then the node’s children
are visited recursively; and if LC and [λ−, λ+] do not intersect at all, then
the node’s hash value (or key value for leaf nodes) and aggregate value is
added to the SIB. In our running example, the hash values (or key values
for leaf entries) and the aggregate values of entries {111, 112, 22, 23, 3} are
included in SIB.

The VO for the aggregation query contains MCS and SIB. For every
node in MCS or SIB, we include its label; this will enable the client to
find its correct position in the tree and reconstruct the hash value of its
ancestors. Finally, to ensure completeness, the server also includes in the VO
verification information for the two boundary data entries that lie exactly
to the left of λ− and to the right of λ+. Denote these entries by λ−

l , λ+
r

respectively. 4

Before discussing the verification algorithm at the client side, we define:

Definition 3. Two entries (or their labels) are neighbors if and only if: 1.
They are at the same level of the tree and no other entry at that level exists
in-between, or 2. Their LCs are disjoint and the left-most and right-most
labels in the LC of the right and left entry respectively are neighbors.

For example, in figure 5 entries with labels {11, 12} are neighbors, same
for {212, 221}. Entries {113, 12} are neighbors too (by second part of the
definition). An interesting observation is that:

Lemma 3. All consecutive MCS entries (in increasing order of labels) are
neighbors in the tree.

Proof. Suppose that two consecutive MCS entries m,n are not neighbors.
Hence, at some level of the tree there exists an entry p that is a neighbor of
m and is not contained in the MCS. Clearly, the LC of p contains a data
entry that is in-between two data entries that belong to the LCs of m and n.
This also stems from two B+-tree construction properties: 1. The fact that
in an incomplete B+-tree the missing subtrees are always the right-most
entries of a node and never intermediate entries; 2. Given that p has at

4For the left-most and right-most entries in the tree, dummy records are used.
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least one data entry as a descendant, otherwise p would have been deleted.
Thus, p or a descendant of p should also be an MCS entry since it contains
a data entry in the query range. This is a contradiction since m and n are
consecutive.

The client is able to check whether two entries are neighbors or not if
both entries are authenticated. The key point is that the client could infer
and authenticate thsee entries’ labels. And with the help of the auxiliary
information, which is ensured to be correct if authentication succeeds in
previous step, client could check whether it is possible to have another entry
in the tree between the two.

Lemma 4. Given two entries and associated VO from AAB tree, if the VO
authenticates both entries, client could check whether these two entries are
neighbors in the AAB tree or not, given the knowledge of the fanout f .

Proof. Successful authentication of these two entries provides client with: 1.
their labels, by lemma 2; 2. the auxiliary information in VO is correct and
complete, otherwise the authentication should have failed. These two infor-
mation enables the client performing the check as claimed. If their labels
are consecutive to each other, e.g. {11, 12} or {13, 21} the check is trivia.
If their labels are not consecutive, e.g. {212, 221}, the auxiliary informa-
tion will help client infer the result. For example, auxiliary information in
the VO for {212, 221} should contain information such as the node contains
entry 212 has two entries. This effectively eliminates the possibility of the
existence of entry 213 in the tree and the client could infer that {212, 221}
are neighbors. Other cases could be similarly argued.

The authentication at the client is a mirror process of that at the server.
The client first authenticates boundary entries: {λ−, λ−

l , λ+, λ+
r |}. After

successful authentication, the client first checks that k−
l < a ≤ k− and

k+ ≤ b < k+
r and that the entries {k−

l , k−} (similarly for {k+, k+
r }) are

neighbors. If this is satisfied (otherwise the client rejects the answer), the
client derives the labels of {λ−

l , λ+}. The second step is to verify each entry
in the MCS. This is simply a reverse process of the query steps in server
side. With the returned VO, the client can recompute the hash value of the
root node and verify it against the signature of the tree. If it fails, the client
rejects the answer. Otherwise the client infers the label for each entry in
the MCS and check whether consecutive MCS are neighbors or not using
lemma 4. If there are consecutive MCS entries that are not neighbors,
client rejects the result (missing MCS entry) based on lemma 3. The last
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Algorithm 2: AABQuery(Query Q; AAB-tree T; Stack VO)

Compute [λ−, λ+] from Q1

Recurse(T.root, VO, [λ−, λ+])2

Push information for verifying λ−
l , λ+

r into VO3

//

Recurse(Node N , Stack VO, Range R):4

begin5

VO.push(node start); VO.push(N .children)6

for N.children ≥ i ≥ 1 do7

if LC(N [i]) ∈ R then8

if N is a leaf then9

VO.push(N [i].k);10

else VO.push(N [i].η)11

else if LC(N [i]) ∩R 6= ∅ then12

Recurse(N [i], VO, R)13

else VO.push(N [i].η);14

VO.push(N [i].α)15

end16

step is to infer the LCs of all MCS entries using their labels, and check
proposition 1. If it is satisfied, the client simply computes the final result
from MCS. Otherwise, the client rejects the answer.

The complete algorithm for query and VO construction is presented
in algorithm 2 and the algorithm for client side verification is presented by
algorithm 3.

The AAB-tree can be used for authenticating one-dimensional aggre-
gate queries in a dynamic setting since the owner can easily issue deletions,
insertions and updates to the tree, which handles them similarly to a normal
B+-tree. In addition, extending the AAB-tree for multiple aggregate at-
tributes Aq can happen similarly to the APS-tree. Other than COUNT and
AVG, AAB-tree supports authentication of MIN and MAX as well, simply
replacing the SUM aggregate in each entry with the MIN/MAX aggregate.
The final answer could be, again, computed and authenticated using MCS.

Correctness and Completeness: Based on lemmata 2, 3, 4 and propo-
sition 1, AAB-tree ensures the both correctness and completeness.
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Algorithm 3: AABAuthenticate(Query Q; Stack VO)

Retrieve and verify λ−, λ+ from VO1

MCS = ∅2

η = Recurse(VO, MCS)3

Remove entries from MCS accoring to [λ−, λ+]4

Verify neighbor integrity of MCS or Reject5

Verify η or Reject6

//

Recurse(Stack VO, Stack MCS):7

begin8

c = VO.pop()9

η = ∅10

for 1 ≤ i ≤ c do11

e = VO.pop()12

switch e do13

case node start: η = η| Recurse(VO, R)14

α = VO.pop()15

η = η|e|α16

MCS.push(e)17

Return H(η)18

end19

5.1.1 Cost Analysis

To authenticate any aggregate value either in a leaf entry or an index entry,
or the key of a leaf entry, in the worst case the VO constructed by the
AAB-tree has size:

|VO| ≤ dlogf Ne[f(|H| + 2|I|) + 2|I|], (9)

where N is the distinct number of values in attribute S. In addition, the
size of the MCS can be upper bounded as well. For any key range [a, b]:

|MCS| ≤ 2(f − 1)dlogf (b − a + 1)e. (10)

The subtree containing all entries in range [a, b] has height dlogf (b − a + 1)e.
In the worst case at every level of the tree the MCS includes f − 1 entries
for the left sub-range, and f − 1 for the right sub-range, until the two paths
meet.

Query cost: By combining Equations 9 and 10 the communication cost
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can be bounded by:

Ccommunication ≤ 2|VO| + |MCS| · |VO|, (11)

for the VOs corresponding to the boundary labels, and the VO for the MCS.
The verification at the client, counting hashing and verification operations
only, is bounded by:

Cverification ≤ (|MCS| + dlogf
N

b−a+1e) · CH

+2 logf N · CH + 3CV , (12)

including the hashes for the nodes containing MCS entries, the remaining
hashes in the path to the root, and the authentication cost of the boundary
entries.

Storage cost: The size of the AAB-tree is:

Cstorage =

dlogf Ne
∑

l=1

f l(|H| + 4|I|), (13)

which includes the hash value, aggregate value, key and one pointer per
entry. The AAB-tree has much better space utilization than the APS-tree,
especially given that the size of the tree is a function of the base table size
and not of the domain size.

Update cost: Updating the AAB-tree is similar to updating a normal B+-
tree with the additional cost of recomputing the hash values and aggregate
values when nodes merge or split. The cost is bounded by:

Cupdate ≤ 2dlogfNeCH + CS , (14)

given the worst case update cost of a B+-tree.

5.1.2 Optimizations

A potential optimization for reducing the VO size of a given range Q, is to
authenticate a special complement range of Q. Define the following:

Definition 4. The Least Covering Ancestors LCA of the data entries in
range Q is the two entries whose LCs are: 1. Disjoint; 2. Completely cover
the data entries in [λ−, λ+] of Q; 3. their union of LC is the minimum.
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Figure 6: AAR-tree.

It can be shown that set LCA contains at most two entries in the worst
case. Denote with R the range of data entries covered by LCA(Q). In Figure
5, LCA(Q) contains entries 1 and 21. Range R covers data entries 111 to
213. Depending on the size of MCS(Q), it might be beneficial to answer
the query by authenticating the aggregate of range R, then the aggregate of
range R−Q (denoted by Q), and subtract the result for the final answer. It is
possible to estimate the size of these sets using statistical information about
the average per level utilization of the tree. Hence the server can decide
without having to traverse the tree. Furthermore, if the tree is complete, the
exact size of these sets can be analytically computed. Nevertheless, for both
cases the server first has to run two point B+-tree queries for identifying the
labels of the boundary entries, which in some cases might negatively affect
the server side querying cost.

5.2 Multi-dimensional Queries: Authenticated Aggregation
R-tree

The AAB-tree can answer only one-dimensional queries. For the purpose of
answering multi-dimensional queries we extend the Aggregate R-tree (AR-
tree)[17] to get the Authenticated Aggregation R-tree (AAR-tree).

Let Q = 〈SUM(Aq)|S1 = [a1, b1], . . . , Sd = [ad, bd]〉, be a d-dimensional
aggregate query. AAR-tree indexes all tuples in the base table, according
to the selection attributes Si where i ∈ [1, d]. Every dimension of the tree
corresponds to a single attribute, and every node entry is associated with an
aggregate value α and a hash value η. The hash value is computed on the
concatenation of the entry’s children node MBRs mi, aggregate values αi

and hash values ηi (η = H(. . . |mi|αi|ηi| . . .)). The structure of an AAR-tree
node looks the same with that of the AAB-tree in Figure 4 after replacing
keys k with MBRs m. The MBR of each entry is included in the hash
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computation because the client should have the capability to authenticate
the extent of the tree nodes in order to verify completeness of the results,
as will be seen shortly. Notice that in a d-dimensional space, the MBR m is
simply a d-dimensional rectangle represented by two d-dimensional points.
The query Q becomes a d-dimensional query rectangle. An example of
AAR-tree is shown in figure 6.

We can define the concept of MCS similarly to the AAB-tree. It is the
minimum set of nodes whose MBRs totally contain the points covered by
the query rectangle, not less and not more. The VO construction is similar
to that of the AAB-tree, and uses the concept of computing the answer
by authenticating the MCS entries. Even though correctness verification
for any range query can be achieved simply by authenticating the root of
the tree, completeness in the AAR-tree requires extra effort by the client.
Specifically, the client needs to check if the MBR associated with each node
in the VO intersects or is contained in the query MBR. If it is contained, it
belongs in the MCS . If it intersects, then the client expects to have already
encountered a descendant of this node which is either fully contained in the
query range or disjoint. This check is possible since the MBRs of all entries
are included in the hash computation. The server has to return all MBRs
of the entries encountered during the querying phase in order for the client
to be able to recompute the hash of the root, and to be able to check for
completeness. Therefore, the VO contains all the MBRs (with their hash
values), for all the nodes of the R-tree visited during the search procedure.
Extending the AAR-tree to support multi-aggregate queries can be achieved
with the techniques discussed for the APS-tree and AAB-trees.

Correctness and Completeness: The method that we describe above
gives an authentication procedure that gurantees correctness and complete-
ness. The basic idea behind proving this, is the fact that the server has
to authenticate every entry of the the AAR-tree that it accesses in order
to answer the query. The proof is a special case of [19, Theorem 3], which
holds for more general structures (any DAG with a single entry node) and
can be directly applied to the AAR-tree method that we use here.

5.2.1 Cost Analysis

Query cost: Let an AAR-tree indexing N d-dimensional points, with av-
erage fan-out f and height h = logP (N

f ) (where P is the page size, and once
more the level of the root being zero and the conceptual level of the data
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entries being h). The size of the VO for authenticating one AAR-tree entry
at level l (equivalent to a node at level l+1), either a data entry or an index
entry, is upper bounded by:

|VO| ≤ fl[2d · |I| + |I| + |H|], (15)

(assuming that MBRs are represented by |I|-byte floating point numbers).
The cost is equal to the level of the entry times the amount of information
needed for computing the hash of every node on the path from the entry to
the root.

The size of the MCS is clearly related to the relationship between the
query range MBR q and the MBRs of the tree nodes. Let m be a node
MBR, and P (m � q) represent the probability that the query MBR fully
contains m. Assuming uniformly distributed data, it has been shown in [15]
that

P (m � q) =

{
∏d

j=1(qj − mj) , if ∀j : qj > mj

0 , otherwise.

where qj,mj represent the length of q and m on the j-th dimension. Further-
more, it has been shown in [16] that the probability of intersection between

q and m is P (m⊕ q) =
∏d

j=1(qj +mj). Thus, the probability of an intersec-
tion but not containment is equal to P (m	 q) = P (m⊕ q)−P (m� q). Let
ml be the average length of the side of an MBR at the l-th level of the tree.
It has been shown by [33] that ml = min {(fh−l/N)1/d, 1}, 0 ≤ l ≤ h − 1,
which enables us to estimate the above probability.

The expected number of nodes at level l is Nl = N
fh−l . It can be shown

that Jl = Jl−1 · P (m 	 q), 1 ≤ l ≤ h, J0 = f · P (m 	 q) is the number
of nodes that intersect with query q at level l, given that all its ancestors
also intersect with q. The size of the MCS is upper bounds by |MCS| ≤

[N1 +
∑h−1

l=0 Jl] · P (m � q). Essentially, we estimate the number of children
entries that are contained in the query, for every node that intersects with
the query at a given level.

Hence, the communication cost in the worst case can be expressed by
the following estimate:

Ccommunication ≤ |MCS| · |VO|. (16)

The verification cost is similarly bounded by:

Cverification ≤ |MCS| · CH + CV . (17)
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Storage cost: The storage cost is:

Cstorage =

h−1
∑

l=0

N

fh−l
· f · [|H| + 2d · |I| + |I| + |I|], (18)

since we extend every entry with a hash value and an aggregate value, and
include the d-dimensional MBRs and one pointer per entry.

Update cost: Updating the AAR-tree is similar to updating an R-tree.
Hence:

Cupdate = logP (
N

f
) · CH + CS . (19)

6 Extensions

This section extends our discussion to other interesting topics that are re-
lated to the problem. So far, we have presented solutions for SUM queries
which can support multiple aggregated predicates, with multiple selection
predicates on discrete and continuous domains.

6.1 Other Aggregates

COUNT is a special case of SUM and is thus handled similarly. The combi-
nation of SUM and COUNT provides a solution for AVG as well. AAB-tree
and AAR-tree can be modified to support MIN and MAX queries, simply by
replacing the aggregate values stored in the index nodes of the trees, with
the MIN/MAX of their children. The APS-tree cannot handle MIN/MAX
aggregates. Authentication of holistic aggregates, like MEDIAN, is much
harder and left as future work.

6.2 Handling Encrypted Data

In some scenarios it might be necessary for the owner to publish only en-
crypted versions of its data for privacy preservation purposes [11, 2]. It
should be made clear that an encrypted database does not provide a solu-
tion to the query authentication problem — the servers could still purposely
omit from the results tuples that actually satisfy the query conditions. It
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is interesting though to mention that the APS-tree can work without mod-
ifications with encrypted data as long as the client knows the encryption
key. The server does not need to access the data or perform any computa-
tions or comparisons on the data. It only needs to retrieve the encrypted
data at a specific location of the one-dimensional prefix sums array, which
can be provided by the client. On the other hadn, the AAB-tree and the
AAR-tree structures cannot support encrypted data in a strong sense. Using
homomorphic encryption, such as [13], we can allow the server to compute
aggregate values without learning any information. However, the difficulty
arises in enabling the server to traverse the index structure for finding the
data entries contained in the query result. This requires the server to per-
form comparisons on encrypted data, which by definition reveals too much
information from a security point of view. Hence, we do not consider here
techniques like order-preserving encryption [1] to be applicable in our set-
ting.

6.3 Query Freshness

Query freshness was introduced by [18], and is a problem that stems from
the fact that in dynamic environments the servers, having obtained a cor-
rect authenticated structure, may choose to ignore further updates from the
owners and answer client queries on stale data. In this situation the client
has no way of knowing that the query answers are not fresh. Various so-
lutions for solving this problem are based on certain signature certificate
techniques. Li et al. [18] show that the cost of solving the query freshness
problem is proportional to the number of signatures used to authenticate
the structure. Since all of the techniques proposed here utilize only one sig-
nature, query freshness can easily be addressed using the same techniques.
For further details the reader is referred to [18].

7 Performance Evaluation

In this section we evaluate the performance of the proposed approaches with
respect to query, authentication, storage, and update cost. We implemented
the APS-tree, AAB-tree and AAR-tree as part of the Authenticated Index
Structures Library which can be download from here [3]. We also evaluate
the only known previous solutions that can be used for authenticating ag-
gregation queries, namely the authentication structures for selection queries.
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Figure 7: One-dimensional queries. Server-side cost.
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7.1 Setup

We use synthetic datasets for our experiments. We generate d-dimensional
tuples, with multiple sizes for the attribute domains Di, of decimal values
that are generated uniformly at random (the distribution of the data does
not affect our authentication techniques, only the underlying structures).
We also vary the density δ of the data, where δ = N

Qd
i=1

Mi
, and N the

number of tuples. We also generate synthetic query workloads with one
aggregate attribute Aq and up to 3 selection attributes. Every workload
contains 100 queries, and we report averages in the plots. All experiments
are performed on a Linux box with a 2.8GHz Intel Pentium4 CPU. The
page size of the structures is set to be 1KByte. We use the OpenSSL [29]
and Crypto++ [7] libraries for hashing, verification and signing operations
(SHA1 and RSA, respectively).

7.2 One-dimensional Queries

First, we evaluate the structures for one-dimensional queries. Candidates
are the APS-tree, the AAB-tree, and the structures for selection queries,
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like the MB-tree, and EMB−-tree [18]. For the naive approaches in order to
authenticate a query, first we answer the range query and report all values to
the client, which then reconstructs the result. For the AAB-tree we evaluate
both the structure based on MCS and the optimization based on LCA. We
generate a database with domain size of M = 100, 000, N = δM and vary
the density of the database δ ∈ [0.1, 0.9], as well as the query selectivity
ρ ∈ [0.1, 0.9].

Figure 7(a) shows the I/O cost at the server side. The best structure
overall is the APS-tree, since it only needs to verify two PS entries, with a
cost proportional to the height of the tree. The naive approaches are one
to two orders of magnitude more expensive than the other techniques, since
they need to do a linear scan on the leaf pages, which increases the cost as
the queries become less selective. For the AAB-trees it is interesting to note
that the optimized version has slightly higher query I/O, due to the extra
point queries that are needed for retrieving the query range boundaries.
In this case, reducing the size of the VO did not reduce the I/O overall.
In addition, for both AAB-tree approaches the cost decreases as queries
become less selective, since the MCS (and its complement MCS ∪ LCA)
become smaller at the same time due to larger aggregation opportunities.
This is clearly illustrated in Figure 7(b) that shows the actual sizes of MCS,
MCS ∪LCA, and the best of the two for the average case over 100 queries.

Figures 8(a) and 8(b) show the communication cost and verification cost
at the client side. For the communication cost we observe similar trends with
the MCS size, since the size of the VO is directly related to the size of MCS.
Notice also that the optimized version has smaller communication cost. The
same is true for the verification cost for the APS-tree and AAB-tree. For the
naive approaches the communication cost increases linearly with the query
selectivity, which is simply explained by the fact that they have to return
ρN number of aggregate values and keys. The verification cost is several
orders of magnitude slower in terms of hash computations, due to the fact
that all the results in the query range need to be authenticated, which is an
overhead when queries are not very selective.

The query efficiency of the APS-tree is achieved with the penalty of high
storage and update cost. This is indicated in Figures 9(a) and 9(b). For this
set of experiments we vary the database density δ. The storage cost of the
APS-tree depends only on the domain sizes and is not affected by δ. The
other approaches have storage that increases linearly with δ. Notice that, as
expected, for very dense datasets all the trees have comparable storage cost.
AAB-tree consumes slightly more space than MB-tree and EMB−-tree, the
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Figure 9: One-dimensional queries. Storage and update cost.

reason is being that it has to store aggregate values for entries in index nodes.
For the update experiment, we uniformly at random generate 100 updates
and report the average. The update cost is measured in number of hash
computations required. The APS-tree has to update half of the data entries
on average. For the AAB-tree and MB-tree the update cost is bounded by
the height of the tree. The EMB−-tree has slightly increased cost due to the
embedded trees stored in every node that conceptually increase the height of
the tree. We can see that the AAB-tree has competitive storage and update
cost comparing to the naive approaches, and is orders of magnitude better
than the APS-tree in terms of update cost.

7.3 Multi-dimensional Queries

In this section we compare the APS-tree and AAR-tree approaches for 3-
dimensional queries. The naive approaches can be used for answering multi-
dimensional queries by constructing one tree for every dimension, querying
all the trees, and sending back all the results along with the necessary VO.
Finally, the client verifies the result at each dimension and finds the inter-
section of the results. This approach becomes extremely expensive in high-
dimensional spaces, so we do not consider it here. To have similar database
size as the experimental study in one-dimensional queries, we generate syn-
thetic datasets with maximum of unique elements of

∏3
i=1 Mi = 125, 000

tuples, query workload with 100 queries with varying values of ρ on database
with δ = 0.8, the storage and update costs are studied for databases with
different density values of δ.

The I/O cost of the structures as a function of query selectivity is
reported in Figure 10(a). The APS-tree once again has the best performance
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Figure 10: 3-dimensional queries. Server-side cost.
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Figure 11: 3-dimensional queries. Communication and verification cost.

overall, since it only needs to authenticate eight PS elements. The AAR-tree
has much higher I/O since it needs to construct the MCS which requires
traversing many different paths of the R-tree structure, due to multiple MBR
overlaps at every level of the tree. Notice also that the I/O of the AAR-tree
increases as queries become less selective, since larger query rectangles result
into a larger number of leaf node MBRs included in the MCS as indicated
in Figure 10(b). This becomes clear in Figure 10(a) which shows that most
I/O operations come from the leaf level of the tree.

The authentication and verification costs are shown in Figure 11. The
APS-tree has small communication cost and verification cost, both bounded
by eight times the height of the tree; notice that our algorithm by merging
the common paths has reduced the costs from this worst case bound. The
AAR-tree has much higher communication cost due to larger MCS sizes
and because it has to return the MBRs of all MCS entries. The verification
costs follow similar trends, since the number of hash computations is directly
related to the number of entries in the MCS.

Figure 12(a) shows the storage cost as a function of δ, for the APS-
tree and AAR-tree. In higher dimensions the AAR-tree consumes more
space when the database becomes relatively dense, in contrast to the one-
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Figure 12: 3-dimensional queries. Storage and update cost.

dimensional case. This is due to the fact that the AAR-tree has to store
the 3-dimensional MBRs for all nodes. In our experiments we use 8-byte
floating point numbers and a small page size, but the trend is indicative.

Figure 12(b) plot the update cost as a function of δ. The superior
query cost of the APS-tree is offset by its extremely high update cost. For
100 updates generated uniformly at random, regardless of database density
the APS-tree has to update half of the data entries on average. In contrast,
the AAR-tree inherits the good update characteristics of the R-tree.

7.4 Discussion

Our experimental results clearly indicate the efficiency of the proposed au-
thenticated aggregation index structures over the straightforward approaches.
In general, our approach has multiple orders of magnitude smaller query cost
with almost the same storage and update cost as the existing approaches.
Among the new techniques proposed, the APS-tree has very small query
cost but expensive updates, and considerable space overhead in the case of
sparse datasets. The AAB-tree and AAR-tree have higher query cost but
better space usage, especially for sparse datasets, and superior update cost.

8 Conclusion

In this paper, we proposed several authenticated indexing schemes for aggre-
gation queries. We provided a structure with excellent query performance in
static environments. However, it has increased space utilization for sparse
databases and high update overhead. Therefore, we presented structures
for dynamic settings that gracefully adapt to data updates and have better
space utilization for sparse datasets. We also showed how to extend these
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techniques to handle multiple aggregates and multiple selection predicates
per query. For future work, we plan to explore solutions for holistic aggre-
gates and investigate the application of our techniques to authenticate data
cubes in OLAP system.
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[13] H. Hacigümüs, B. R. Iyer, and S. Mehrotra. Efficient execution of
aggregation queries over encrypted relational databases. In DASFAA,
pages 125–136, 2004.

[14] C.-T. Ho, R. Agrawal, N. Megiddo, and R. Srikant. Range queries in
OLAP data cubes. In SIGMOD, pages 73–88, 1997.

[15] M. Jürgens and H. Lenz. Pisa: Performance models for index structures
with and without aggregated data. In SSDBM, pages 78–87, 1999.

[16] I. Kamel and C. Faloutsos. On packing R-Trees. In CIKM, pages 490–
499, 1993.

[17] I. Lazaridis and S. Mehrotra. Progressive approximate aggregate queries
with a multi-resolution tree structure. In SIGMOD, pages 401–412,
2001.

[18] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic au-
thenticated index structures for outsourced databases. In SIGMOD,
2006.

[19] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. Stub-
blebine. A general model for authenticated data structures. Algorith-
mica, 39(1):21–41, 2004.

[20] K. McCurley. The discrete logarithm problem. In Proc. of the Sym-
posium in Applied Mathematics, pages 49–74. American Mathematical
Society, 1990.

[21] R. C. Merkle. A certified digital signature. In CRYPTO, pages 218–238,
1989.

[22] G. Miklau. Confidentiality and Integrity in Data Exchange. PhD thesis,
University of Washington, 2005.

[23] G. Miklau and D. Suciu. Implementing a tamper-evident database
system. In ASIAN, 2005.

[24] E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and in-
tegrity in outsourced databases. In NDSS, 2004.

33



[25] E. Mykletun, M. Narasimha, and G. Tsudik. Signature bouquets: Im-
mutability for aggregated/condensed signatures. In ESORICS, pages
160–176, 2004.

[26] E. Mykletun and G. Tsudik. Aggregation queries in the database-as-a-
service model. In DBSec, 2006.

[27] M. Narasimha and G. Tsudik. Dsac: Integrity of outsourced databases
with signature aggregation and chaining. In CIKM, pages 235–236,
2005.

[28] National Institute of Standards and Technology. FIPS PUB 180-1:
Secure Hash Standard. National Institute of Standards and Technology,
1995.

[29] OpenSSL. http://www.openssl.org.

[30] H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan. Verifying com-
pleteness of relational query results in data publishing. In SIGMOD,
pages 407–418, 2005.

[31] H. Pang and K.-L. Tan. Authenticating query results in edge comput-
ing. In ICDE, pages 560–571, 2004.

[32] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. CACM, 21(2):120–
126, 1978.

[33] Y. Theodoridis and T. K. Sellis. A model for the prediction of r-tree
performance. In PODS, pages 161–171, 1996.

34


