Building Wavelet Histograms on Large Data in MapReduce

Jeffrey Jestes¹ Ke Yi² Feifei Li¹

²Department of Computer Science Hong Kong University of Science and Technology

November 16, 2011

Introduction

Record ID	User ID	Object ID	
1	1	12872	
2	8	19832	
3	4	231	
:	:	:	:

• For large data we often wish to obtain a concise summary.

Introduction

Record ID	User ID	Object ID	
1	1	12872	
2	8		
3	4	231	
:	i	i	:

• For large data we often wish to obtain a concise summary.

Introduction

Record ID	User ID	Object ID	
1	1	12872	
2	8	19832	
3	4	231	
:	i	i	÷

• For large data we often wish to obtain a concise summary.

Outline

- Introduction and Motivation
 - Histograms
 - MapReduce and Hadoop
- Exact Top-k Wavelet Coefficients
 - Naive Solution
 - Hadoop Wavelet Top-k: Our Efficient Exact Solution
- 3 Approximate Top-k Wavelet Coefficients
 - Linearly Combinable Sketch Method
 - Our First Sampling Based Approach
 - An Improved Sampling Approach
 - Two-Level Sampling
- 4 Experiments
- Conclusions
 - Hadoop Wavelet Top-k in Hadoop

• A widely accepted and utilized summarization tool is the Histogram.

- A widely accepted and utilized summarization tool is the Histogram.
 - Let A be an attribute of dataset R.

- A widely accepted and utilized summarization tool is the Histogram.
 - Let A be an attribute of dataset R.
 - Values of A are drawn from finite domain $[u] = \{1, \dots, u\}$.

- A widely accepted and utilized summarization tool is the Histogram.
 - Let A be an attribute of dataset R.
 - Values of A are drawn from finite domain $[u] = \{1, \dots, u\}$.
 - Define for each $x \in \{1, \dots, u\}$, $\mathbf{v}(x) = \{count(R.A = x)\}$.

- A widely accepted and utilized summarization tool is the Histogram.
 - Let A be an attribute of dataset R.
 - Values of A are drawn from finite domain $[u] = \{1, \dots, u\}$.
 - Define for each $x \in \{1, \dots, u\}$, $\mathbf{v}(x) = \{count(R.A = x)\}$.
 - Define frequency vector \mathbf{v} of R.A as $\mathbf{v} = (\mathbf{v}(1), \dots, \mathbf{v}(u))$.

- A widely accepted and utilized summarization tool is the Histogram.
 - Let A be an attribute of dataset R.
 - Values of A are drawn from finite domain $[u] = \{1, \dots, u\}$.
 - Define for each $x \in \{1, \dots, u\}$, $\mathbf{v}(x) = \{count(R.A = x)\}$.
 - Define frequency vector \mathbf{v} of R.A as $\mathbf{v} = (\mathbf{v}(1), \dots, \mathbf{v}(u))$.
 - A histogram over R.A is any compact (lossy) representation of \mathbf{v} .

- A widely accepted and utilized summarization tool is the Histogram.
 - Let A be an attribute of dataset R.
 - Values of A are drawn from finite domain $[u] = \{1, \dots, u\}$.
 - Define for each $x \in \{1, \dots, u\}$, $\mathbf{v}(x) = \{count(R.A = x)\}$.
 - Define frequency vector \mathbf{v} of R.A as $\mathbf{v} = (\mathbf{v}(1), \dots, \mathbf{v}(u))$.
 - A histogram over R.A is any compact (lossy) representation of \mathbf{v} .

Record ID	User ID	Object ID	
1	1	12872	
2	8		
3	4	231	
:	:	i.	÷

	X	1	2	3	4	5	6	7	8
V	(x)	3	5	10	8	2	2	10	14

• A common choice for a histogram is the *Haar wavelet histogram*.

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

Original data signal at level $\ell = \log_2 u$.

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

Select top-k w_i in the absolute value to obtain best k-term representation minimizing error in energy, i.e. minimize $\sum_{i=1}^{u} \mathbf{v}(i)^2 - \sum_{i=1}^{u} w_i^2$

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

Select top-k w_i in the absolute value to obtain best k-term representation minimizing error in energy, i.e. minimize $\sum_{i=1}^{u} \mathbf{v}(i)^2 - \sum_{i=1}^{u} w_i^2$

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

We maintain the best k-term w_i . Other w_i are treated as 0.

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

To reconstruct the original signal we compute the *average* and *difference coefficients* in reverse, i.e. top to bottom.

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

The reconstructed signal is a reasonably close approximation.

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- 1. We maintain $O(\log u)$ partial w_i s at a time.
- 2. Compute affected w_i and contribution from each $\mathbf{v}(x)$ in $O(\log u)$ time.
- 2. Process $\mathbf{v}(x)$ s in sorted order. [GKMS01]

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- 1. We maintain $O(\log u)$ partial w_i s at a time.
- 2. Compute affected w_i and contribution from each $\mathbf{v}(x)$ in $O(\log u)$ time.
- 2. Process $\mathbf{v}(x)$ s in sorted order. [GKMS01]

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- 1. We maintain $O(\log u)$ partial w_i s at a time.
- 2. Compute affected w_i and contribution from each $\mathbf{v}(x)$ in $O(\log u)$ time.
- 2. Process $\mathbf{v}(x)$ s in sorted order. [GKMS01]

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- 1. We maintain $O(\log u)$ partial w_i s at a time.
- 2. Compute affected w_i and contribution from each $\mathbf{v}(x)$ in $O(\log u)$ time.
- 2. Process $\mathbf{v}(x)$ s in sorted order. [GKMS01]

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- 1. We maintain $O(\log u)$ partial w_i s at a time.
- 2. Compute affected w_i and contribution from each $\mathbf{v}(x)$ in $O(\log u)$ time.
- 2. Process $\mathbf{v}(x)$ s in sorted order. [GKMS01]

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- 1. We maintain $O(\log u)$ partial w_i s at a time.
- 2. Compute affected w_i and contribution from each $\mathbf{v}(x)$ in $O(\log u)$ time.
- 2. Process $\mathbf{v}(x)$ s in sorted order. [GKMS01]

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- 1. We maintain $O(\log u)$ partial w_i s at a time.
- 2. Compute affected w_i and contribution from each $\mathbf{v}(x)$ in $O(\log u)$ time.
- 2. Process $\mathbf{v}(x)$ s in sorted order. [GKMS01]

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- 1. We maintain $O(\log u)$ partial w_i s at a time.
- 2. Compute affected w_i and contribution from each $\mathbf{v}(x)$ in $O(\log u)$ time.
- 2. Process $\mathbf{v}(x)$ s in sorted order. [GKMS01]

- A common choice for a histogram is the *Haar wavelet histogram*.
- We obtain the Haar wavelet coefficients w_i recursively as follows:

- 1. We maintain $O(\log u)$ partial w_i s at a time.
- 2. Compute affected w_i and contribution from each $\mathbf{v}(x)$ in $O(\log u)$ time.
- 2. Process $\mathbf{v}(x)$ s in sorted order. [GKMS01]

Introduction: Histograms

- We may also compute w_i with the wavelet basis vectors ψ_i .
 - $w_i = \mathbf{v} \cdot \psi_i$ for $i = 1, \dots, u$

Outline

- Introduction and Motivation
 - Histograms
 - MapReduce and Hadoop
- Exact Top-k Wavelet Coefficients
 - Naive Solution
 - Hadoop Wavelet Top-k: Our Efficient Exact Solution
- Approximate Top-k Wavelet Coefficients
 - Linearly Combinable Sketch Method
 - Our First Sampling Based Approach
 - An Improved Sampling Approach
 - Two-Level Sampling
- 4 Experiments
- Conclusions
 - Hadoop Wavelet Top-k in Hadoop

Introduction: MapReduce and Hadoop

R			
User ID	Object ID		
1	12872		
8	19832		
4	231		
:	:	:	
	User ID	User ID Object ID	

Traditionally data is stored in a centralized setting.

Introduction: MapReduce and Hadoop

- Traditionally data is stored in a centralized setting.
- Now stored data has sky rocketed, and is increasingly distributed.

Introduction: MapReduce and Hadoop

- Traditionally data is stored in a centralized setting.
- Now stored data has sky rocketed, and is increasingly distributed.
- We study computing the top-k coefficients efficiently on distributed data in MapReduce using Hadoop to illustrate our ideas.

 Hadoop Core consists of one master JobTracker and several TaskTrackers.

- Hadoop Core consists of one master JobTracker and several TaskTrackers.
- We assume one TaskTracker per physical machine.

- Hadoop Core consists of one master JobTracker and several TaskTrackers.
- We assume one TaskTracker per physical machine.

- Hadoop Core consists of one master JobTracker and several TaskTrackers.
- We assume one TaskTracker per physical machine.

- Hadoop Core consists of one master JobTracker and several TaskTrackers.
- We assume one TaskTracker per physical machine.

 In a Hadoop cluster one machine typically runs both the NameNode and JobTracker tasks and is called the master.

- In a Hadoop cluster one machine typically runs both the NameNode and JobTracker tasks and is called the master.
- The other machines run DataNode and TaskTracker tasks and are called slaves.

- In a Hadoop cluster one machine typically runs both the NameNode and JobTracker tasks and is called the master.
- The other machines run DataNode and TaskTracker tasks and are called slaves.

- In a Hadoop cluster one machine typically runs both the NameNode and JobTracker tasks and is called the *master*.
- The other machines run DataNode and TaskTracker tasks and are called slaves.

Next we look at an overview of a typical MapReduce Job.

• Job specific variables are first placed in the *Job Configuration* which is sent to each *Mapper Task* by the *JobTracker*.

 Large data such as files or libraries are then put in the Distributed Cache which is copied to each TaskTracker by the JobTracker.

 The JobTracker next assigns each InputSplit to a Mapper task on a TaskTracker, we assume m Mappers and m InputSplits.

• Each Mapper maps a (k_1, v_1) pair to an intermediate (k_2, v_2) pair and partitions by k_2 , i.e. $hash(k_2) = p_i$ for $i \in [1, r]$, r = |reducers|.

• An optional *Combiner* is executed over $(k_2, list(v_2))$.

• The *Combiner* aggregates v_2 for a k_2 and a (k_2, v_2) is written to a partition on disk.

• The JobTracker assigns two TaskTrackers to run the Reducers, each Reducer copies and sorts it's inputs from corresponding partitions.

• The JobTracker assigns two TaskTrackers to run the Reducers, each Reducer copies and sorts it's inputs from corresponding partitions.

• Each Reducer reduces a $(k_2, list(v_2))$ to a single (k_3, v_3) and writes the results to a DFS file, o_i for $i \in [1, r]$.

Outline

- Introduction and Motivation
 - Histograms
 - MapReduce and Hadoop
- Exact Top-k Wavelet Coefficients
 - Naive Solution
 - Hadoop Wavelet Top-k: Our Efficient Exact Solution
- 3 Approximate Top-k Wavelet Coefficients
 - Linearly Combinable Sketch Method
 - Our First Sampling Based Approach
 - An Improved Sampling Approach
 - Two-Level Sampling
- 4 Experiments
- Conclusions
 - Hadoop Wavelet Top-k in Hadoop

• Each of the *m* Mappers reads the input key *x* from its input split.

• Each Mapper emits (x, 1) for combining by the Combiner.

• Each Combiner emits $(x, v_j(x))$, where $v_j(x)$ is the local frequency of x.

• The Reducer utilizes a Centralized Wavelet Top-k algorithm, supplying the (x, v(x)) in a streaming fashion.

• At the end of the Reduce phase, the Reducer's close() method is invoked. The Reducer then requests the top- $k |w_i|$.

• The centralized algorithm computes the top- $k |w_i|$ and returns these to the Reducer.

• Finally, the Reducer writes the top- $k |w_i|$ to its HDFS output file o_1 .

Outline

- Introduction and Motivation
 - Histograms
 - MapReduce and Hadoop
- Exact Top-k Wavelet Coefficients
 - Naive Solution
 - Hadoop Wavelet Top-k: Our Efficient Exact Solution
- 3 Approximate Top-k Wavelet Coefficients
 - Linearly Combinable Sketch Method
 - Our First Sampling Based Approach
 - An Improved Sampling Approach
 - Two-Level Sampling
- 4 Experiments
- Conclusions
 - Hadoop Wavelet Top-k in Hadoop

• We can try to model the problem as a distributed top-k:

$$w_i = \mathbf{v} \cdot \psi_i = \left(\sum_{j=1}^m \mathbf{v}_j\right) \cdot \psi_i = \sum_{j=1}^m w_{i,j}.$$

• We can try to model the problem as a distributed top-k:

$$w_i = \mathbf{v} \cdot \psi_i = \left(\sum_{j=1}^m \mathbf{v}_j\right) \cdot \psi_i = \sum_{j=1}^m w_{i,j}.$$

 $w_{i,j}$ is the local value of w_i in split j.

split 1	
$w_{1,1}$	
w _{2,1}	
w _{3,1}	
:	
W _{11.1}	

split 2	
<i>w</i> _{1,2}	
w _{2,2}	
W _{3,2}	
:	
W o	

split 3
<i>w</i> _{1,3}
w _{2,3}
W _{3,3}
:

split 4
w _{1,4}
w _{2,4}
W _{3,4}
:

• We can try to model the problem as a distributed top-k:

$$w_i = \mathbf{v} \cdot \psi_i = (\sum_{j=1}^m \mathbf{v}_j) \cdot \psi_i = \sum_{j=1}^m w_{i,j}.$$

• We can try to model the problem as a distributed top-k:

$$w_i = \mathbf{v} \cdot \psi_i = (\sum_{j=1}^m \mathbf{v}_j) \cdot \psi_i = \sum_{j=1}^m w_{i,j}.$$

- We can try to model the problem as a distributed top-k: $\mathbf{w}_i = \mathbf{v} \cdot \psi_i = \left(\sum_{i=1}^m \mathbf{v}_i\right) \cdot \psi_i = \sum_{i=1}^m \mathbf{w}_{i,j}.$
- Previous solutions assume local score $s_{i,j} \geq 0$ and want the largest $s_i = \sum_{i=1}^m s_{i,j}$.

- We can try to model the problem as a distributed top-k: $\mathbf{w}_i = \mathbf{v} \cdot \psi_i = (\sum_{i=1}^m \mathbf{v}_i) \cdot \psi_i = \sum_{i=1}^m \mathbf{w}_{i,j}.$
- Previous solutions assume local score $s_{i,j} \geq 0$ and want the largest $s_i = \sum_{i=1}^m s_{i,j}$.
- We have $w_{i,j} < 0$ and $w_{i,j} \ge 0$ and want the largest $|w_i|$.

node 1		
id	х	$s_1(x)$
$e_{1,1}$	5	20
$e_{1,2}$	2	7
$e_{1,3}$	1	6
e _{1,4}	4	-2
$e_{1,5}$	6	-15
$e_{1,6}$	3	-30

node 2			
id	х	$s_2(x)$	
$e_{2,1}$	5	12	
e _{2,2}	4	7	
$e_{2,3}$	1	2	
e _{2,4}	2	-5	
e _{2,5}	3	-14	
$e_{2.6}$	6	-20	

node 3			
х	$s_3(x)$		
1	10		
3	6		
4	5		
2	-3		
5	-6		
6	-10		
	x 1 3 4 2		

• An item x has a local score $s_i(x)$ at node $i \ \forall i \in [1 \dots m]$, where if x does not appear $s_i(x) = 0$

node 1		
id	х	$s_1(x)$
$e_{1,1}$	5	20
$e_{1,2}$	2	7
$e_{1,3}$	1	6
$e_{1,4}$	4	-2
$e_{1,5}$	6	-15
$e_{1,6}$	3	-30

n	od	e 2
id	х	$s_2(x)$
$e_{2,1}$	5	12
$e_{2,2}$	4	7
$e_{2,3}$	1	2
e _{2,4}	2	-5
e _{2,5}	3	-14
e _{2.6}	6	-20

node 3			
id	х	$s_3(x)$	
$e_{3,1}$	1	10	
e _{3,2}	3	6	
e _{3,3}	4	5	
e _{3,4}	2	-3	
$e_{3,5}$	5	-6	
e _{3,6}	6	-10	

• The coordinator computes useful bounds for each received item.

	node 1			
	id	х	$s_1(x)$	
	$e_{1,1}$	5	20	
ĺ	$e_{1,2}$	2	7	
	$e_{1,3}$	1	6	
	$e_{1,4}$	4	-2	
	$e_{1,5}$	6	-15	l
	$e_{1,6}$	3	-30	ı

node 2			
id	х	$s_2(x)$	
$e_{2,1}$	5	12	1
$e_{2,2}$	4	7	
e _{2,3}	1	2	
e _{2,4}	2	-5	
e _{2,5}	3	-14	
$e_{2.6}$	6	-20	1

node 3					
id	х	$s_3(x)$			
$e_{3,1}$	1	10			
e _{3,2}	3	6			
$e_{3,3}$	4	5			
$e_{3,4}$	2	-3			
$e_{3,5}$	5	-6			
$e_{3,6}$	6	-10			

• $\hat{s}(x)$ denotes the partial score sum for x

n	od	e 1	
id	х	$s_1(x)$	
$e_{1,1}$	5	20	Ī
$e_{1,2}$	2	7	l
$e_{1,3}$	1	6	
$e_{1,4}$	4	-2	
$e_{1,5}$	6	-15	l
$e_{1,6}$	3	-30	ı

node 2					
id	х	$s_2(x)$			
$e_{2,1}$	5	12			
$e_{2,2}$	4	7			
$e_{2,3}$	1	2			
e _{2,4}	2	-5			
e _{2,5}	3	-14			
$e_{2.6}$	6	-20	1		

node 3					
id	х	$s_3(x)$			
$e_{3,1}$	1	10			
e _{3,2}	3	6			
$e_{3,3}$	4	5			
$e_{3,4}$	2	-3			
$e_{3,5}$	5	-6			
$e_{3,6}$	6	-10			

• $\hat{s}(x)$ denotes the partial score sum for x

	node 1					
	id	х	$s_1(x)$			
	$e_{1,1}$	5	20			
ĺ	$e_{1,2}$	2	7			
	$e_{1,3}$	1	6			
	$e_{1,4}$	4	-2			
	$e_{1,5}$	6	-15	l		
	$e_{1,6}$	3	-30	ı		

n	od	e 2	
id	х	$s_2(x)$	
$e_{2,1}$	5	12]
$e_{2,2}$	4	7	
e _{2,3}	1	2	
e _{2,4}	2	-5	
e _{2,5}	3	-14	
e _{2.6}	6	-20	1

node 3						
id $x s_3(x)$						
$e_{3,1}$	1	10				
e _{3,2}	3	6				
$e_{3,3}$	4	5				
$e_{3,4}$	2	-3				
$e_{3,5}$	5	-6				
<i>e</i> _{3,6}	6	-10				

			k = 1]					
	R	?					R		
id	х	$s_j(x)$	-	х	$\hat{s}(x)$	F_x	$\tau^+(x)$	$\tau^-(x)$	$\tau(x)$
$e_{1,1}$	5	20		1	10	001	42	-40	0
$e_{1,6}$	3	-30		3	-30	100	-8	-60	8
$e_{2,1}$	5	12		5	32	110	42	22	22
e _{2,6}	6	-20		6	-30	011	-10	-60	10
$e_{3,1}$	1	10							
e _{3,6}	6	-10							

• F_x is a receipt indication bit vector, if $s_i(x)$ is received $F_x(i) = 1$, else $F_x(i) = 0$.

	node 1						
	id	х	$s_1(x)$	ĺ			
	$e_{1,1}$	5	20	l			
ĺ	$e_{1,2}$	2	7	I			
	$e_{1,3}$	1	6	l			
	$e_{1,4}$	4	-2	l			
	$e_{1,5}$	6	-15	l			
	$e_{1,6}$	3	-30	ı			

node 2						
id $x s_2(x)$						
$e_{2,1}$	5	12				
$e_{2,2}$	4	7	I			
$e_{2,3}$	1	2	ı			
e _{2,4}	2	-5	l			
$e_{2,5}$	3	-14	l			
$e_{2.6}$	6	-20	ľ			

node 3				
id	$s_3(x)$			
$e_{3,1}$	1	10		
e _{3,2}	3	6		
$e_{3,3}$	4	5		
$e_{3,4}$	2	-3		
$e_{3,5}$	5	-6		
$e_{3,6}$	6	-10		

			k = 1]					
	R	'					R		
id	х	$s_j(x)$	-	х	$\hat{s}(x)$	F_{x}	$\tau^+(x)$	$\tau^-(x)$	$\tau(x)$
$e_{1,1}$	5	20	1	1	10	001	42	-40	0
$e_{1,6}$	3	-30		3	-30	100	-8	-60	8
$e_{2,1}$	5	12		5	32	110	42	22	22
e _{2,6}	6	-20		6	-30	011	-10	-60	10
$e_{3,1}$	1	10							
e _{3.6}	6	-10							

• F_x is a receipt indication bit vector, if $s_i(x)$ is received $F_x(i) = 1$, else $F_x(i) = 0$.

	node 1							
	id	х	$s_1(x)$					
	$e_{1,1}$	5	20	l				
ĺ	$e_{1,2}$	2	7					
	$e_{1,3}$	1	6					
	$e_{1,4}$	4	-2					
	$e_{1,5}$	6	-15	l				
	$e_{1,6}$	3	-30					

n	od	e 2	l			
id $x s_2(x)$						
$e_{2,1}$	5	12				
$e_{2,2}$	4	7	ľ			
$e_{2,3}$	1	2	l			
e _{2,4}	2	-5	l			
e _{2,5}	3	-14				
$e_{2.6}$	6	-20	ı			

node 3							
id	х	$s_3(x)$					
$e_{3,1}$	1	10					
e _{3,2}	3	6					
$e_{3,3}$	4	5					
$e_{3,4}$	2	-3					
$e_{3,5}$	5	-6					
$e_{3,6}$	6	-10					

			k = 1]					
	R	'					R		
id	х	$s_j(x)$	-	х	$\hat{s}(x)$	F_x	$\tau^+(x)$	$\tau^-(x)$	$\tau(x)$
$e_{1,1}$	5	20		1	10	001	42	-40	0
$e_{1,6}$	3	-30		3	-30	100	-8	-60	8
e _{2,1}	5	12		5	32	110	42	22	22
e _{2,6}	6	-20		6	-30	011	-10	-60	10
$e_{3,1}$	1	10							
e _{3,6}	6	-10							

• $\tau^+(x)$ is an upper bound on the total score s(x), if $s_i(x)$ received then $\tau^+(x) = \tau^+(x) + s_i(x)$ else $\tau^+(x) = \tau^+(x) + k$ 'th most positive from node i

	node 1							
	id	х	$s_1(x)$					
	$e_{1,1}$	5	20	Ī				
ĺ	$e_{1,2}$	2	7					
	$e_{1,3}$	1	6					
	$e_{1,4}$	4	-2					
	$e_{1,5}$	6	-15	l				
	$e_{1,6}$	3	-30	ı				

n	od	e 2	l				
id	id $x s_2(x)$						
$e_{2,1}$	5	12					
$e_{2,2}$	4	7	I				
$e_{2,3}$	1	2	ı				
e _{2,4}	2	-5	l				
$e_{2,5}$	3	-14	l				
$e_{2.6}$	6	-20	ľ				

node 3							
id	х	$s_3(x)$					
$e_{3,1}$	1	10					
e _{3,2}	3	6					
$e_{3,3}$	4	5					
e _{3,4}	2	-3					
$e_{3,5}$	5	-6					
<i>e</i> _{3,6}	6	-10					

			k = 1]						
	R			R						
id	х	$s_j(x)$		х	$\hat{s}(x)$	F_{\times}	$\tau^+(x)$	$\tau^-(x)$	$\tau(x)$	
$e_{1,1}$	5	20		1	10	001	42	-40	0	
$e_{1,6}$	3	-30	•	3	-30	100	-8	-60	8	
$e_{2,1}$	5	12		5	32	110	42	22	22	
e _{2,6}	6	-20		6	-30	011	-10	-60	10	
$e_{3,1}$	1	10								
e _{3,6}	6	-10	-							

• $\tau^+(x)$ is an upper bound on the total score s(x), if $s_i(x)$ received then $\tau^+(x) = \tau^+(x) + s_i(x)$ else $\tau^+(x) = \tau^+(x) + k$ 'th most positive from node i

	node 1							
	id	х	$s_1(x)$					
1	$e_{1,1}$	5	20	l				
1	$e_{1,2}$	2	7					
	$e_{1,3}$	1	6					
	$e_{1,4}$	4	-2					
	$e_{1,5}$	6	-15	l				
	$e_{1,6}$	3	-30					

node 2						
n	oa	e 2				
id	х	$s_2(x)$	l			
$e_{2,1}$	5	12				
$e_{2,2}$	4	7				
$e_{2,3}$	1	2				
e _{2,4}	2	-5				
$e_{2,5}$	3	-14				
$e_{2.6}$	6	-20	ĺ			

$\overline{}$	1.2							
L	node 3							
[i	d	х	$s_3(x)$					
е	3,1	1	10					
е	3,2	3	6					
е	3,3	4	5					
е	3,4	2	-3					
e	3,5	5	-6					
е	3,6	6	-10					

			k = 1]					
	R	?					R		
id	х	$s_j(x)$	-	х	$\hat{s}(x)$	F_{x}	$\tau^+(x)$	$\tau^-(x)$	$\tau(x)$
$e_{1,1}$	5	20		1	10	001	42	-40	0
$e_{1,6}$	3	-30		3	-30	100	-8	-60	8
$e_{2,1}$	5	12		5	32	110	42	22	22
e _{2,6}	6	-20		6	-30	011	-10	-60	10
$e_{3,1}$	1	10							
e _{3,6}	6	-10							

• $\tau^-(x)$ is a lower bound on the total score sum s(x), if $s_i(x)$ received then $\tau^-(x) = \tau^-(x) + s_i(x)$ else $\tau^-(x) = \tau^-(x) + k$ 'th most negative score from node i

node 1					
id	х	$s_1(x)$			
$e_{1,1}$	5	20	l		
$e_{1,2}$	2	7			
$e_{1,3}$	1	6			
$e_{1,4}$	4	-2			
$e_{1,5}$	6	-15	l		
$e_{1,6}$	3	-30	ĺ		

n	od	e 2	l			
id	х	$s_2(x)$	l			
$e_{2,1}$	5	12				
$e_{2,2}$	4	7				
$e_{2,3}$	1	2				
e _{2,4}	2	-5				
$e_{2,5}$	3	-14				
$e_{2.6}$	6	-20	ľ			

n	node 3						
id	х	$s_3(x)$					
$e_{3,1}$	1	10					
e _{3,2}	3	6					
$e_{3,3}$	4	5					
e _{3,4}	2	-3					
$e_{3,5}$	5	-6					
e _{3,6}	6	-10					

			k = 1]					
	R						R		
id	х	$s_j(x)$		х	$\hat{s}(x)$	F_{\times}	$\tau^+(x)$	$\tau^-(x)$	$\tau(x)$
$e_{1,1}$	5	20]	1	10	001	42	-40	0
$e_{1,6}$	3	-30	•	3	-30	100	-8	-60	8
$e_{2,1}$	5	12		5	32	110	42	22	22
e _{2,6}	6	-20		6	-30	011	-10	-60	10
$e_{3,1}$	1	10							
e _{3,6}	6	-10							

• $\tau^-(x)$ is a lower bound on the total score sum s(x), if $s_i(x)$ received then $\tau^-(x) = \tau^-(x) + s_i(x)$ else $\tau^-(x) = \tau^-(x) + k$ 'th most negative score from node i

	node 1					
	id	х	$s_1(x)$			
	$e_{1,1}$	5	20	Ī		
ĺ	$e_{1,2}$	2	7			
	$e_{1,3}$	1	6			
	$e_{1,4}$	4	-2			
	$e_{1,5}$	6	-15	l		
	$e_{1,6}$	3	-30	ı		

node 2						
id	х	s2(x)	l			
$e_{2,1}$	5	12				
$e_{2,2}$	4	7	Ī			
$e_{2,3}$	1	2	ı			
e _{2,4}	2	-5	l			
$e_{2,5}$	3	-14				
$e_{2.6}$	6	-20	ı			

node 3						
id	х	$s_3(x)$				
$e_{3,1}$	1	10				
e _{3,2}	3	6				
e _{3,3}	4	5				
e _{3,4}	2	-3				
$e_{3,5}$	5	-6				
$e_{3,6}$	6	-10				

			k = 1]					
	R	?					R		
id	х	$s_j(x)$	-	х	$\hat{s}(x)$	F_{x}	$\tau^+(x)$	$\tau^-(x)$	$\tau(x)$
$e_{1,1}$	5	20		1	10	001	42	-40	0
$e_{1,6}$	3	-30		3	-30	100	-8	-60	8
$e_{2,1}$	5	12		5	32	110	42	22	22
e _{2,6}	6	-20		6	-30	011	-10	-60	10
$e_{3,1}$	1	10							
e _{3,6}	6	-10							

• $\tau(x)$ is a lower bound on |s(x)| computed as, $\tau(x) = 0$ if $sign(\tau^+(x)) \neq sign(\tau^-(x))$

 $au(x) = \min(| au^+(x)|, | au^-(x)|)$ otherwise.

	node 1					
	id	х	$s_1(x)$			
	$e_{1,1}$	5	20	Ī		
ĺ	$e_{1,2}$	2	7			
	$e_{1,3}$	1	6			
	$e_{1,4}$	4	-2			
	$e_{1,5}$	6	-15	l		
	$e_{1,6}$	3	-30	ı		

n	od	e 2	l			
id $x s_2(x)$						
$e_{2,1}$	5	12				
$e_{2,2}$	4	7	ľ			
$e_{2,3}$	1	2	l			
e _{2,4}	2	-5	l			
e _{2,5}	3	-14	L			
$e_{2.6}$	6	-20	1			

node 3					
id	х	$s_3(x)$			
$e_{3,1}$	1	10			
e _{3,2}	3	6			
$e_{3,3}$	4	5			
$e_{3,4}$	2	-3			
$e_{3,5}$	5	-6			
$e_{3,6}$	6	-10			

			k = 1						
	R	'					R		
id	х	$s_j(x)$	-	х	$\hat{s}(x)$	F_{x}	$\tau^+(x)$	$\tau^-(x)$	$\tau(x)$
$e_{1,1}$	5	20		1	10	001	42	-40	0
$e_{1,6}$	3	-30		3	-30	100	-8	-60	8
$e_{2,1}$	5	12		5	32	110	42	22	22
e _{2,6}	6	-20		6	-30	011	-10	-60	10
$e_{3,1}$	1	10							
e _{3,6}	6	-10							

• $\tau(x)$ is a lower bound on |s(x)| computed as, $\tau(x) = 0$ if $sign(\tau^+(x)) \neq sign(\tau^-(x))$

 $au(x) = \min(| au^+(x)|, | au^-(x)|)$ otherwise.

node 1				
id	х	$s_1(x)$		
$e_{1,1}$	5	20	Ī	
$e_{1,2}$	2	7	l	
$e_{1,3}$	1	6		
$e_{1,4}$	4	-2		
$e_{1,5}$	6	-15	l	
$e_{1,6}$	3	-30	ı	

node 2				
id	х	$s_2(x)$	l	
$e_{2,1}$	5	12	I	
$e_{2,2}$	4	7	ſ	
$e_{2,3}$	1	2	l	
e _{2,4}	2	-5	l	
e _{2,5}	3	-14		
$e_{2.6}$	6	-20		

node 3			
id	х	$s_3(x)$	
$e_{3,1}$	1	10	
e _{3,2}	3	6	
e _{3,3}	4	5	
e _{3,4}	2	-3	
$e_{3,5}$	5	-6	
$e_{3,6}$	6	-10	

			k = 1						
	R	2					R		
id	х	$s_j(x)$		х	$\hat{s}(x)$	F_{x}	$\tau^+(x)$	$\tau^-(x)$	$\tau(x)$
$e_{1,1}$	5	20		1	10	001	42	-40	0
$e_{1,6}$	3	-30		3	-30	100	-8	-60	8
$e_{2,1}$	5	12		5	32	110	42	22	22
e _{2,6}	6	-20		6	-30	011	-10	-60	10
$e_{3,1}$	1	10		T.	= 22	. T ₁ /	m = 22	2/3	
$e_{3,6}$	6	-10		_		, 1,		, -	

• We select the item with the kth largest $\tau(x)$. $\tau(x)$ is a lower bound T_1 on the top-k |s(x)| for unseen item x.

	node 1				
	id	х	$s_1(x)$		
	$e_{1,1}$	5	20	Ī	
ĺ	$e_{1,2}$	2	7		
	$e_{1,3}$	1	6		
	$e_{1,4}$	4	-2		
	$e_{1,5}$	6	-15	l	
	$e_{1,6}$	3	-30	ı	

node 2				
id	х	$s_2(x)$	l	
$e_{2,1}$	5	12		
$e_{2,2}$	4	7	ľ	
$e_{2,3}$	1	2	l	
e _{2,4}	2	-5	l	
e _{2,5}	3	-14		
e _{2.6}	6	-20	Ī	

	node 3			
Γ	id	х	$s_3(x)$	
E	$e_{3,1}$	1	10	
Ŀ	e _{3,2}	3	6	
Г	e _{3,3}	4	5	
Г	e _{3,4}	2	-3	
	$e_{3,5}$	5	-6	
E	e _{3,6}	6	-10	

	R	'
id	х	$s_j(x)$
$e_{1,1}$	5	20
$e_{1,6}$	3	-30
$e_{2,1}$	5	12
$e_{2,6}$	6	-20
$e_{3,1}$	1	10
e _{3.6}	6	-10

k = 1						
				R		
	х	$\hat{s}(x)$	F_{x}	$\tau^+(x)$	$\tau^-(x)$	$\tau(x)$
	1	10	001	42	-40	0
	3	-30	100	-8	-60	8
	5	32	110	42	22	22
	6	-30	011	-10	-60	10
	$T_1 = 22, T_1/m = 22/3$					

• Any unseen item x must have at least: one $s_i(x) > T_1/m$ or one $s_i(x) < -T_1/m$

To get into the top-k.

node 1				
id	х	$s_1(x)$	l	
$e_{1,1}$	5	20	Ī	
$e_{1,2}$	2	7	l	
$e_{1,3}$	1	6		
$e_{1,4}$	4	-2		
$e_{1,5}$	6	-15	l	
$e_{1.6}$	3	-30	ı	

n	od	e 2		
id	id $x s_2(x)$			
$e_{2,1}$	5	12		
$e_{2,2}$	4	7	ľ	
$e_{2,3}$	1	2		
e _{2,4}	2	-5		
e _{2,5}	3	-14		
en c	6	-20	ı	

node 3			
id	х	$s_3(x)$	
$e_{3,1}$	1	10	
e _{3,2}	3	6	
$e_{3,3}$	4	5	
$e_{3,4}$	2	-3	
$e_{3,5}$	5	-6	
$e_{3.6}$	6	-10	

			k = 1]					
	R	2					R		
id	х	$s_j(x)$		х	$\hat{s}(x)$	F_{x}	$\tau^+(x)$	$\tau^-(x)$	$\tau(x)$
$e_{1,1}$	5	20		1	10	001	42	-40	0
$e_{1,6}$	3	-30		3	-30	100	-8	-60	8
$e_{2,1}$	5	12		5	32	110	42	22	22
e _{2,6}	6	-20		6	-30	011	-10	-60	10
$e_{3,1}$	1	10		$T_1 = 22, T_1/m = 22/3$					
e _{3,6}	6	-10	'			, 1/		, -	

Round 1 End

	node 2					
	id	х	$s_2(x)$			
/	$e_{2,1}$	5	12			
	e _{2,2}	4	7			
	$e_{2,3}$	1	2			
	e _{2,4}	2	-5			
	e _{2,5}	3	-14			
/	$e_{2,6}$	6	-20			

node 3					
id	х	$s_3(x)$			
 $e_{3,1}$	1	10			
e _{3,2}	3	6			
$e_{3,3}$	4	5			
$e_{3,4}$	2	-3			
$e_{3,5}$	5	-6			
 e _{3,6}	6	-10			

R	2
х	$s_j(x)$
5	20
3	-30
5	12
6	-20
1	10
6	-10
	x 5 3 5 6

k = 1						
				R		
	х	$\hat{s}(x)$	F _x	$\tau^+(x)$	$\tau^-(x)$	$\tau(x)$
	1	10	001	42	-40	0
	3	-30	100	-8	-60	8
	5	32	110	42	22	22
	6	-30	011	-10	-60	10
	$T_1 = 22, T_1/m = 22/3$					

• Each site finds items with

$$s_i(x) > T_1/m$$
 or

$$s_i(x) < T_1/m$$
.

	node 1				
	id	х	$s_1(x)$		
\checkmark	$e_{1,1}$	5	20		
	$e_{1,2}$	2	7		
	$e_{1,3}$	1	6		
	$e_{1,4}$	4	-2		
	$e_{1,5}$	6	-15		
\checkmark	$e_{1,6}$	3	-30		

	node 2				
	id	x	$s_2(x)$		
√	$e_{2.1}$	5	12		
•	$e_{2,2}$	4	7		
	$e_{2,3}$	1	2		
	e _{2,4}	2	-5		
	$e_{2,5}$	3	-14		
	$e_{2,6}$	6	-20		

node 3				
id	х	$s_3(x)$		
 $e_{3,1}$	1	10		
e _{3,2}	3	6		
$e_{3,3}$	4	5		
$e_{3,4}$	2	-3		
$e_{3,5}$	5	-6		
 e _{3.6}	6	-10		

k = 1

R					
id	х	$s_j(x)$			
$e_{1,1}$	5	20			
$e_{1,5}$	6	-15			
$e_{1,6}$	3	-30			
$e_{2,1}$	5	12			
$e_{2,5}$	3	-14			
$e_{2,6}$	6	-20			
$e_{3,1}$	1	10			
e _{3,6}	6	-10			

_					
			R		
х	$\hat{s}(x)$	F_{x}	$\tau^+(x)$	$\tau^-(x)$	$\tau(x)$
1	10	001	42	-40	0
3	-30	100	-8	-60	8
5	32	110	42	22	22
6	-30	011	-10	-60	10
=					

$$T_1 = 22$$
, $T_1/m = 22/3$

• Items with $|s_i(x)| > T_1/m$ are sent to coordinator.

	node 1				
	id	х	$s_1(x)$		
\checkmark	$e_{1,1}$	5	20		
	$e_{1,2}$	2	7		
	$e_{1,3}$	1	6		
	$e_{1,4}$	4	-2		
	$e_{1,5}$	6	-15		
	$e_{1,6}$	3	-30		

n	node 3				
id	х	$s_3(x)$			
 $e_{3,1}$	1	10			
e _{3,2}	3	6			
$e_{3,3}$	4	5			
$e_{3,4}$	2	-3			
$e_{3,5}$	5	-6			
 e _{3,6}	6	-10			

	n	node 1				
	id	х	$s_1(x)$			
\checkmark	$e_{1,1}$	5	20			
	$e_{1,2}$	2	7			
	$e_{1,3}$	1	6			
	$e_{1,4}$	4	-2			
	$e_{1,5}$	6	-15			
\checkmark	$e_{1.6}$	3	-30			

n	od	e 2	
id	х	$s_2(x)$	
 $e_{2,1}$	5	12	
$e_{2,2}$	4	7	
$e_{2,3}$	1	2	
e _{2,4}	2	-5	
$e_{2,5}$	3	-14	
 $e_{2,6}$	6	-20	

node 3				
id	х	$s_3(x)$		
 $e_{3,1}$	1	10		
e _{3,2}	3	6		
$e_{3,3}$	4	5		
$e_{3,4}$	2	-3		
$e_{3,5}$	5	-6		
 e _{3.6}	6	-10		

	R	
id	х	$s_j(x)$
$e_{1,1}$	5	20
$e_{1,5}$	6	-15
$e_{1,6}$	3	-30
$e_{2,1}$	5	12
$e_{2,5}$	3	-14
$e_{2,6}$	6	-20
e _{3,1}	1	10
e _{3,6}	6	-10

k = 1							
				F	?		
	х	$\hat{s}(x)$	F_{\times}	$\tau^+(x)$	$\tau^-(x)$	$\tau(x)$	$\tau'(x)$
]	1	10	001	24.6	-4.6	0	24.6
	3	-44	110	-36.6	-51.3	36.6	51.3
	5	32	110	39.3	24.6	24.6	39.3
]	6	-45	111	-45	-45	45	45
	T.	= 22	T.,	m = 2	2/3		

- The coordinator updates the bounds for each item it has ever received.
- Partial score sum s(5) = 20 + 12

	node 1				
	id	х	$s_1(x)$		
\checkmark	$e_{1,1}$	5	20		
	$e_{1,2}$	2	7		
	$e_{1,3}$	1	6		
	$e_{1,4}$	4	-2		
	$e_{1,5}$	6	-15		
\checkmark	$e_{1,6}$	3	-30		

n	od	e 2	
id	х	$s_2(x)$	
 $e_{2,1}$	5	12	
$e_{2,2}$	4	7	
$e_{2,3}$	1	2	
e _{2,4}	2	-5	
$e_{2,5}$	3	-14	1
 $e_{2,6}$	6	-20	ĺ

	node 3				
	id	х	$s_3(x)$		
	$e_{3,1}$	1	10		
	e _{3,2}	3	6		
	$e_{3,3}$	4	5		
	$e_{3,4}$	2	-3		
	$e_{3,5}$	5	-6		
\checkmark	e _{3,6}	6	-10		

	R	
id	х	$s_j(x)$
$e_{1,1}$	5	20
$e_{1,5}$	6	-15
$e_{1,6}$	3	-30
$e_{2,1}$	5	12
$e_{2,5}$	3	-14
$e_{2,6}$	6	-20
e _{3,1}	1	10
e _{3,6}	6	-10

k = 1							
				F	?		
	х	$\hat{s}(x)$	F_{\times}	$\tau^+(x)$	$\tau^-(x)$	$\tau(x)$	$\tau'(x)$
	1	10	001	24.6	-4.6	0	24.6
•	3	-44	110	-36.6	-51.3	36.6	51.3
	5	32	110	39.3	24.6	24.6	39.3
]	6	-45	111	-45	-45	45	45
-	T.	1 = 22	P. T ₁	m = 22	2/3		

- The coordinator updates the bounds for each item it has ever received.
- Receipt vector $F_5 = [110]$

	node 1				
	id	х	$s_1(x)$		
\checkmark	$e_{1,1}$	5	20		
	$e_{1,2}$	2	7		
	$e_{1,3}$	1	6		
	$e_{1,4}$	4	-2		
	$e_{1,5}$	6	-15		
\checkmark	$e_{1,6}$	3	-30		

node 3				
id	х	$s_3(x)$		
 $e_{3,1}$	1	10		
e _{3,2}	3	6		
$e_{3,3}$	4	5		
$e_{3,4}$	2	-3		
$e_{3,5}$	5	-6		
 e _{3,6}	6	-10		

	R	
id	х	$s_j(x)$
$e_{1,1}$	5	20
$e_{1,5}$	6	-15
$e_{1,6}$	3	-30
$e_{2,1}$	5	12
$e_{2,5}$	3	-14
e _{2,6}	6	-20
e _{3,1}	1	10
e _{3,6}	6	-10

k = 1									
		R							
	х	$\hat{s}(x)$	F_{\times}	$\tau^+(x)$	$\tau^-(x)$	$\tau(x)$	$\tau'(x)$		
	1	10	001	24.6	-4.6	0	24.6		
	3	-44	110	-36.6	-51.3	36.6	51.3		
	5	32	110	39.3	24.6	24.6	39.3		
	6	-45	111	-45	-45	45	45		
	T.	= 22	T ₁ /	m = 22	2/3				

- The coordinator updates the bounds for each item it has ever received.
- $\tau^+(\mathbf{x})$ is now tighter, if $s_i(\mathbf{x})$ received then $\tau^+(\mathbf{x}) = \tau^+(\mathbf{x}) + s_i(\mathbf{x})$ else $\tau^+(\mathbf{x}) = \tau^+(\mathbf{x}) + T_1/m$

node 1				
id	х	$s_1(x)$		
 $e_{1,1}$	5	20		
$e_{1,2}$	2	7		
$e_{1,3}$	1	6		
$e_{1,4}$	4	-2		
$e_{1,5}$	6	-15		
 $e_{1,6}$	3	-30		

-	.,						
	node 2						
	id	х	$s_2(x)$				
	$e_{2,1}$	5	12				
	$e_{2,2}$	4	7				
	$e_{2,3}$	1	2				
	e _{2,4}	2	-5				
	$e_{2,5}$	3	-14				
	$e_{2,6}$	6	-20				

	node 3					
	id	х	$s_3(x)$			
	$e_{3,1}$	1	10			
	e _{3,2}	3	6			
	$e_{3,3}$	4	5			
	$e_{3,4}$	2	-3			
	$e_{3,5}$	5	-6			
1/	e _{3.6}	6	-10			

	R	
id	х	$s_j(x)$
$e_{1,1}$	5	20
$e_{1,5}$	6	-15
$e_{1,6}$	3	-30
$e_{2,1}$	5	12
$e_{2,5}$	3	-14
$e_{2,6}$	6	-20
e _{3,1}	1	10
e _{3,6}	6	-10

k = 1							
				R	?		
	х	$\hat{s}(x)$	F_{\times}	$\tau^+(x)$	$\tau^-(x)$	$\tau(x)$	$\tau'(x)$
	1	10	001	24.6	-4.6	0	24.6
	3	-44	110	-36.6	-51.3	36.6	51.3
	5	32	110	39.3	24.6	24.6	39.3
	6	-45	111	-45	-45	45	45
	T	1 = 22	T_{1}	m = 22	2/3		

- The coordinator updates the bounds for each item it has ever received.
- $\tau^-(x)$ is also tighter, if $s_i(x)$ received then $\tau^-(x) = \tau^-(x) + s_i(x)$ else $\tau^-(x) = \tau^-(x) - T_1/m$

	node 1				
	id	х	$s_1(x)$		
	$e_{1,1}$	5	20		
	$e_{1,2}$	2	7		
	$e_{1,3}$	1	6		
	$e_{1,4}$	4	-2		
	$e_{1,5}$	6	-15		
\checkmark	$e_{1,6}$	3	-30		

.,					
node 2					
id	х	$s_2(x)$			
$e_{2,1}$	5	12			
$e_{2,2}$	4	7			
$e_{2,3}$	1	2			
$e_{2,4}$	2	-5			
$e_{2,5}$	3	-14			
$e_{2,6}$	6	-20			
	nid e _{2,1} e _{2,2} e _{2,3} e _{2,4} e _{2,5}	node id x e _{2,1} 5 e _{2,2} 4 e _{2,3} 1 e _{2,4} 2 e _{2,5} 3			

node 3						
id	х	$s_3(x)$				
 $e_{3,1}$	1	10				
e _{3,2}	3	6				
$e_{3,3}$	4	5				
$e_{3,4}$	2	-3				
$e_{3,5}$	5	-6				
 e _{3.6}	6	-10				

	R	·
id	х	$s_j(x)$
$e_{1,1}$	5	20
$e_{1,5}$	6	-15
$e_{1,6}$	3	-30
$e_{2,1}$	5	12
$e_{2,5}$	3	-14
$e_{2,6}$	6	-20
$e_{3,1}$	1	10
e _{3,6}	6	-10

k = 1]						
				R	2		
	х	$\hat{s}(x)$	F _x	$\tau^+(x)$	$\tau^-(x)$	$\tau(x)$	$\tau'(x)$
	1	10	001	24.6	-4.6	0	24.6
	3	-44	110	-36.6	-51.3	36.6	51.3
	5	32	110	39.3	24.6	24.6	39.3
	6	-45	111	-45	-45	45	45
	7	200	· -	/ 2/	1/2		

$$T_1 = 22$$
, $T_1/m = 22/3$

- The coordinator updates the bounds for each item it has ever received.
- Score absolute value bound $\tau(5) = \min(39.3, 24.6)$.

	node 1					
	id	х	$s_1(x)$			
\checkmark	$e_{1,1}$	5	20			
	$e_{1,2}$	2	7			
	$e_{1,3}$	1	6			
	$e_{1,4}$	4	-2			
	$e_{1,5}$	6	-15			
\checkmark	$e_{1,6}$	3	-30			

node 2						
id	х	$s_2(x)$				
$e_{2,1}$	5	12				
$e_{2,2}$	4	7				
$e_{2,3}$	1	2				
$e_{2,4}$	2	-5				
$e_{2,5}$	3	-14	1			
$e_{2,6}$	6	-20	ĺ			
	id e _{2,1} e _{2,2} e _{2,3} e _{2,4} e _{2,5}	id x e _{2,1} 5 e _{2,2} 4 e _{2,3} 1 e _{2,4} 2 e _{2,5} 3				

	node 3					
	id	х	$s_3(x)$			
\checkmark	$e_{3,1}$	1	10			
	e _{3,2}	3	6			
	e _{3,3}	4	5			
	$e_{3,4}$	2	-3			
	$e_{3,5}$	5	-6			
	e _{3,6}	6	-10			

	R	·
id	х	$s_j(x)$
$e_{1,1}$	5	20
$e_{1,5}$	6	-15
$e_{1,6}$	3	-30
$e_{2,1}$	5	12
$e_{2,5}$	3	-14
$e_{2,6}$	6	-20
$e_{3,1}$	1	10
e _{3,6}	6	-10

k = 1								
		R						
	х	$\hat{s}(x)$	F_{\times}	$\tau^+(x)$	$\tau^-(x)$	$\tau(x)$	$\tau'(x)$	
	1	10	001	24.6	-4.6	0	24.6	
	3	-44	110	-36.6	-51.3	36.6	51.3	
	5	32	110	39.3	24.6	24.6	39.3	
	6	-45	111	-45	-45	45	45	
	=		-		. / 0]			

$$T_1 = 22$$
, $T_1/m = 22/3$

- The coordinator updates the bounds for each item it has ever received.
- $\tau'(x)$ is an upper bound on |s(x)|, $\tau'(x) = \max\{|\tau^+(x)|, |\tau^-(x)|\}$

	node 1					
	id	х	$s_1(x)$			
\checkmark	$e_{1,1}$	5	20			
	$e_{1,2}$	2	7			
	$e_{1,3}$	1	6			
	$e_{1,4}$	4	-2			
	$e_{1,5}$	6	-15			
	$e_{1,6}$	3	-30			

	node 3					
	id	х	$s_3(x)$			
\checkmark	$e_{3,1}$	1	10			
	e _{3,2}	3	6			
	$e_{3,3}$	4	5			
	$e_{3,4}$	2	-3			
	$e_{3,5}$	5	-6			
	e _{3.6}	6	-10			

	R	·
id	х	$s_j(x)$
$e_{1,1}$	5	20
$e_{1,5}$	6	-15
$e_{1,6}$	3	-30
$e_{2,1}$	5	12
$e_{2,5}$	3	-14
$e_{2,6}$	6	-20
$e_{3,1}$	1	10
e _{3,6}	6	-10

k = 1									
		R							
	х	$\hat{s}(x)$	F_{\times}	$\tau^+(x)$	$\tau^-(x)$	$\tau(x)$	$\tau'(x)$		
	1	10	001	24.6	-4.6	0	24.6		
	3	-44	110	-36.6	-51.3	36.6	51.3		
	5	32	110	39.3	24.6	24.6	39.3		
	6	-45	111	-45	-45	45	45		
ĺ	T:	$T_1 = 22, T_1/m = 22/3$							

- The coordinator updates the bounds for each item it has ever received.
- $\tau'(x)$ is an upper bound on |s(x)|, $\tau'(x) = \max\{|\tau^+(x)|, |\tau^-(x)|\}$

	node 1					
	id	х	$s_1(x)$			
\checkmark	$e_{1,1}$	5	20			
	$e_{1,2}$	2	7			
	$e_{1,3}$	1	6			
	$e_{1,4}$	4	-2			
	$e_{1,5}$	6	-15			
	$e_{1,6}$	3	-30			

	node 3						
	id	х	$s_3(x)$				
	$e_{3,1}$	1	10				
	e _{3,2}	3	6				
	$e_{3,3}$	4	5				
	$e_{3,4}$	2	-3				
	$e_{3,5}$	5	-6				
√	e _{3.6}	6	-10				

			k = 1]						
	R	1					R	?		
id	х	$s_j(x)$		х	$\hat{s}(x)$	F_x	$\tau^+(x)$	$\tau^-(x)$	$\tau(x)$	$\tau'(x)$
$e_{1,1}$	5	20		1	10	001	24.6	-4.6	0	24.6
$e_{1,5}$	6	-15		3	-44	110	-36.6	-51.3	36.6	51.3
e _{1,6}	3	-30		5	32	110	39.3	24.6	24.6	39.3
$e_{2,1}$	5	12		6	-45	111	-45	-45	45	45
$e_{2,5}$	3	-14		T.	= 22	2. T _{1.}	m = 22	2/3		
$e_{2,6}$	6	-20				, 1/		, -		
e _{3,1}	1	10								
e _{3,6}	6	-10								

• We select the item x with the kth largest $\tau(x)$, which serves as a new lower bound T_2 on |s(x)| for any item.

	node 1					
	id	х	$s_1(x)$			
\checkmark	$e_{1,1}$	5	20			
	$e_{1,2}$	2	7			
	$e_{1,3}$	1	6			
	$e_{1,4}$	4	-2			
	$e_{1,5}$	6	-15			
\checkmark	$e_{1,6}$	3	-30			

	node 2							
	id	х	$s_2(x)$					
	$e_{2,1}$	5	12					
•	$e_{2,2}$	4	7					
	$e_{2,3}$	1	2					
	e _{2,4}	2	-5					
	$e_{2,5}$	3	-14					
	$e_{2,6}$	6	-20					

	node 3							
	id	х	$s_3(x)$					
\checkmark	$e_{3,1}$	1	10					
	e _{3,2}	3	6					
	$e_{3,3}$	4	5					
	$e_{3,4}$	2	-3					
	$e_{3,5}$	5	-6					
	e _{3,6}	6	-10					

			k = 1]								
	R	?			R							
id	х	$s_j(x)$		х	$\hat{s}(x)$	F _x	$\tau^+(x)$	$\tau^-(x)$	$\tau(x)$	$\tau'(x)$		
$e_{1,1}$	5	20		1	10	001	24.6	-4.6	0	24.6		
$e_{1,5}$	6	-15		3	-44	110	-36.6	-51.3	36.6	51.3		
$e_{1,6}$	3	-30		5	32	110	39.3	24.6	24.6	39.3		
$e_{2,1}$	5	12		6	-45	111	-45	-45	45	45		
$e_{2,5}$	3	-14		T.	1 = 22	2. T _{1.}	m = 2	2/3				
$e_{2,6}$	6	-20		=				/ -				
e _{3,1}	1	10		1:	$_{2} = 45$	יו						
e _{3,6}	6	-10										

• We select the item x with the kth largest $\tau(x)$, which serves as a new lower bound T_2 on |s(x)| for any item.

	n	od	e 1
	id	х	$s_1(x)$
\checkmark	$e_{1,1}$	5	20
	$e_{1,2}$	2	7
	$e_{1,3}$	1	6
	$e_{1,4}$	4	-2
	$e_{1,5}$	6	-15
\checkmark	$e_{1,6}$	3	-30

			- 2						
	n	node 2							
	id	х	$s_2(x)$						
\checkmark	$e_{2,1}$	5	12						
	$e_{2,2}$	4	7						
	$e_{2,3}$	1	2						
	e _{2,4}	2	-5						
	$e_{2,5}$	3	-14						
	$e_{2,6}$	6	-20						

node 3							
	Houe 3						
id	x	$s_3(x)$					
 $e_{3,1}$	1	10					
e _{3,2}	3	6					
$e_{3,3}$	4	5					
$e_{3,4}$	2	-3					
$e_{3,5}$	5	-6					
 e _{3,6}	6	-10					

			k = 1]								
	R	2			R							
id	х	$s_j(x)$		х	$\hat{s}(x)$	F_{x}	$\tau^+(x)$	$\tau^-(x)$	$\tau(x)$	$\tau'(x)$		
$e_{1,1}$	5	20		1	10	001	24.6	4.6	0	24.6		
$e_{1,5}$	6	-15		3	-44	110	-36.6	-51.3	36.6	51.3		
e _{1.6}	3	-30		5	32	110	39.3	24.6	24.6	39.3		
$e_{2,1}$	5	12		6	-45	111	-45	-45	45	45		
$e_{2,5}$	3	-14		T.	= 22	. T ₁	m = 22	2/3				
$e_{2,6}$	6	-20		=				/ -				
e _{3,1}	1	10		1:	$_{2} = 45$	ו						
e _{3,6}	6	-10										

• Any item with $\tau'(x) < T_2$ cannot be in the top-k and is pruned from R.

	node 1						
	id	х	$s_1(x)$				
\checkmark	$e_{1,1}$	5	20				
	$e_{1,2}$	2	7				
	$e_{1,3}$	1	6				
	$e_{1,4}$	4	-2				
	$e_{1,5}$	6	-15				
\checkmark	$e_{1,6}$	3	-30				

	n	node 2						
	id	х	$s_2(x)$					
	$e_{2,1}$	5	12					
	$e_{2,2}$	4	7					
	$e_{2,3}$	1	2					
	e _{2,4}	2	-5					
	$e_{2,5}$	3	-14					
\checkmark	$e_{2,6}$	6	-20					

node 3							
id	х	$s_3(x)$					
 $e_{3,1}$	1	10					
e _{3,2}	3	6					
$e_{3,3}$	4	5					
$e_{3,4}$	2	-3					
$e_{3,5}$	5	-6					
 e _{3,6}	6	-10					

			k = 1]								
	R				R							
id	х	$s_j(x)$		х	$\hat{s}(x)$	F _x	$\tau^+(x)$	$\tau^-(x)$	$\tau(x)$	$\tau'(x)$		
$e_{1,1}$	5	20		1	10	001	24.6	4.6	0	24.6		
$e_{1.5}$	6	-15		3	-44	110	-36.6	-51.3	36.6	51.3		
$e_{1,6}$	3	-30		5	32	110	39.3	24.6	24.6	39.3		
$e_{2,1}$	5	12		6	-45	111	-45	-45	45	45		
e _{2,5}	3	-14		T.	= 22	2. T ₁	m = 2	2/3				
e _{2,6}	6	-20		=								
e _{3,1}	1	10		1:	$_{2} = 45$	2						
e _{3,6}	6	-10										

ullet Any remaining items with a 0 in vector F_x are selected.

	node 1			
	id	х	$s_1(x)$	
\checkmark	$e_{1,1}$	5	20	
	$e_{1,2}$	2	7	
	$e_{1,3}$	1	6	
	$e_{1,4}$	4	-2	
	$e_{1,5}$	6	-15	
\checkmark	$e_{1,6}$	3	-30	

	node 2					
	id	х	$s_2(x)$			
\checkmark	$e_{2,1}$	5	12			
	$e_{2,2}$	4	7			
	$e_{2,3}$	1	2			
	e _{2,4}	2	-5			
	$e_{2,5}$	3	-14			
\checkmark	$e_{2,6}$	6	-20	ľ		

node 3			
id	х	$s_3(x)$	
 $e_{3,1}$	1	10	
e _{3,2}	3	6	
$e_{3,3}$	4	5	
$e_{3,4}$	2	-3	
$e_{3,5}$	5	-6	
 e _{3,6}	6	-10	

	R	
id	х	$s_j(x)$
$e_{1,1}$	5	20
$e_{1,5}$	6	-15
$e_{1,6}$	3	-30
$e_{2,1}$	5	12
$e_{2,5}$	3	-14
$e_{2,6}$	6	-20
e _{3,1}	1	10
e _{3,6}	6	-10

k = 1							
]		R					
1	х	$\hat{s}(x)$	F _x	$\tau^+(x)$	$\tau^-(x)$	$\tau(x)$	$\tau'(x)$
1	1	10	001	24.6	4.6	0	24.6
1	3	-44	110	-36.6	-51.3	36.6	51.3
1	5	32	110	39.3	24.6	24.6	39.3
1	6	-45	111	-45	-45	45	45
1 .	=		-	/ 0/	2 (2)		

$$T_1 = 22, T_1/m = 22/3$$
 $T_2 = 45$

Round 2 End

node 3			
id	х	$s_3(x)$	
 $e_{3,1}$	1	10	
e _{3,2}	3	6	
$e_{3,3}$	4	5	
$e_{3,4}$	2	-3	
$e_{3,5}$	5	-6	
 e _{3.6}	6	-10	

node 1

 $e_{1,2}$ $e_{1.3}$

e_{1.4} 4

Round 3 End

node 3			
id	х	$s_3(x)$	
 $e_{3,1}$	1	10	
e _{3,2}	3	6	
$e_{3,3}$	4	5	
$e_{3,4}$	2	-3	
$e_{3,5}$	5	-6	
 e _{3,6}	6	-10	

Outline

- Introduction and Motivation
 - Histograms
 - MapReduce and Hadoop
- Exact Top-k Wavelet Coefficients
 - Naive Solution
 - Hadoop Wavelet Top-k: Our Efficient Exact Solution
- 3 Approximate Top-k Wavelet Coefficients
 - Linearly Combinable Sketch Method
 - Our First Sampling Based Approach
 - An Improved Sampling Approach
 - Two-Level Sampling
- 4 Experiments
- Conclusions
 - Hadoop Wavelet Top-k in Hadoop

• Hadoop Wavelet Top-k is a good solution if the exact top-k $|w_i|$ must be retrieved, but requires multiple phases.

- Hadoop Wavelet Top-k is a good solution if the exact top-k $|w_i|$ must be retrieved, but requires multiple phases.
- If we are allowed an approximation, we could further improve:

- Hadoop Wavelet Top-k is a good solution if the exact top-k $|w_i|$ must be retrieved, but requires multiple phases.
- If we are allowed an approximation, we could further improve:
 - communication cost

- Hadoop Wavelet Top-k is a good solution if the exact top-k $|w_i|$ must be retrieved, but requires multiple phases.
- If we are allowed an approximation, we could further improve:
 - communication cost
 - number of MapReduce rounds

- Hadoop Wavelet Top-k is a good solution if the exact top-k $|w_i|$ must be retrieved, but requires multiple phases.
- If we are allowed an approximation, we could further improve:
 - communication cost
 - on number of MapReduce rounds
 - amount of I/O incurred

Some natural improvement attempts:

- Some natural improvement attempts:
 - **①** Approximate distributed top-k.

- Some natural improvement attempts:
 - Approximate distributed top-k.
 - Approximating local coefficients with a linearly combinable sketch.

- Some natural improvement attempts:
 - \bigcirc Approximate distributed top-k.
 - Approximating local coefficients with a linearly combinable sketch.
 - For set $A = A_1 \cup A_2$, Sketch $(A) = \text{Sketch}(A_1)$ op Sketch (A_2) for operator op.

- Some natural improvement attempts:
 - \bullet Approximate distributed top-k.
 - Approximating local coefficients with a linearly combinable sketch.
 - For set $A = A_1 \cup A_2$,
 - $Sketch(A) = Sketch(A_1)$ op $Sketch(A_2)$ for operator op.
 - The state of the art wavelet sketch is the GCS Sketch [CGS06].

- Some natural improvement attempts:
 - \bullet Approximate distributed top-k.
 - Approximating local coefficients with a linearly combinable sketch.
 - For set $A = A_1 \cup A_2$, Sketch $(A) = \text{Sketch}(A_1)$ op Sketch (A_2) for operator op.
 - The state of the art wavelet sketch is the GCS Sketch [CGS06].
 - The GCS gives us, for $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$ $GCS(\mathbf{v}) = GCS(\mathbf{v}_1) + GCS(\mathbf{v}_2)$

- Some natural improvement attempts:
 - **4** Approximate distributed top-k.
 - Approximating local coefficients with a linearly combinable sketch.
 - For set $A = A_1 \cup A_2$, Sketch $(A) = \text{Sketch}(A_1)$ op Sketch (A_2) for operator op.
 - The state of the art wavelet sketch is the GCS Sketch [CGS06].
 - The GCS gives us, for $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$ $GCS(\mathbf{v}) = GCS(\mathbf{v}_1) + GCS(\mathbf{v}_2)$
 - Random sampling techniques.

Outline

- Introduction and Motivation
 - Histograms
 - MapReduce and Hadoop
- Exact Top-k Wavelet Coefficients
 - Naive Solution
 - Hadoop Wavelet Top-k: Our Efficient Exact Solution
- 3 Approximate Top-k Wavelet Coefficients
 - Linearly Combinable Sketch Method
 - Our First Sampling Based Approach
 - An Improved Sampling Approach
 - Two-Level Sampling
- 4 Experiments
- Conclusions
 - Hadoop Wavelet Top-k in Hadoop

Outline

- Introduction and Motivation
 - Histograms
 - MapReduce and Hadoop
- Exact Top-k Wavelet Coefficients
 - Naive Solution
 - Hadoop Wavelet Top-k: Our Efficient Exact Solution
- 3 Approximate Top-k Wavelet Coefficients
 - Linearly Combinable Sketch Method
 - Our First Sampling Based Approach
 - An Improved Sampling Approach
 - Two-Level Sampling
- 4 Experiments
- Conclusions
 - Hadoop Wavelet Top-k in Hadoop

 n_j Records in split j

Well known fact: to approximate each $\mathbf{v}(x)$ with standard deviation $\sigma = O(\varepsilon n)$ a sample of size $\Theta(1/\varepsilon^2)$ is required.

 n_j Records in split j

Well known fact: to approximate each $\mathbf{v}(x)$ with standard deviation $\sigma = O(\varepsilon n)$ a sample of size $\Theta(1/\varepsilon^2)$ is required.

Node j samples $t_i = n_i \cdot p$ records where $p = 1/\varepsilon^2 n$.

 n_j Records in split j

Well known fact: to approximate each $\mathbf{v}(x)$ with standard deviation $\sigma = O(\varepsilon n)$ a sample of size $\Theta(1/\varepsilon^2)$ is required.

Node j samples $t_i = n_i \cdot p$ records where $p = 1/\varepsilon^2 n$.

 n_i Records in split j

Well known fact: to approximate each $\mathbf{v}(x)$ with standard deviation $\sigma = O(\varepsilon n)$ a sample of size $\Theta(1/\varepsilon^2)$ is required.

Node j samples $t_i = n_i \cdot p$ records where $p = 1/\varepsilon^2 n$.

 n_j Records in split j

 $\mathbf{s}_{j}(x)$: Sampled Frequency Counts

• Note: ε must be small for $\widehat{\mathbf{v}}$ to approximate \mathbf{v} well.

- Note: ε must be small for $\widehat{\mathbf{v}}$ to approximate \mathbf{v} well.
 - Typical values for ε are 10^{-4} to 10^{-6} .

- Note: ε must be small for $\widehat{\mathbf{v}}$ to approximate \mathbf{v} well.
 - Typical values for ε are 10^{-4} to 10^{-6} .
- The communication for basic sampling is $O(1/\varepsilon^2)$.

- Note: ε must be small for $\widehat{\mathbf{v}}$ to approximate \mathbf{v} well.
 - Typical values for ε are 10^{-4} to 10^{-6} .
- The communication for basic sampling is $O(1/\varepsilon^2)$.
 - With 1 byte keys, 100MB to 1TB of data must be communicated!

- Note: ε must be small for $\widehat{\mathbf{v}}$ to approximate \mathbf{v} well.
 - Typical values for ε are 10^{-4} to 10^{-6} .
- The communication for basic sampling is $O(1/\varepsilon^2)$.
 - With 1 byte keys, 100MB to 1TB of data must be communicated!
- We improve basic random sampling with Improved Sampling.

- Note: ε must be small for $\widehat{\mathbf{v}}$ to approximate \mathbf{v} well.
 - Typical values for ε are 10^{-4} to 10^{-6} .
- The communication for basic sampling is $O(1/\varepsilon^2)$.
 - With 1 byte keys, 100MB to 1TB of data must be communicated!
- We improve basic random sampling with Improved Sampling.
 - Key idea: ignore sampled keys with small frequencies in a split.

Outline

- Introduction and Motivation
 - Histograms
 - MapReduce and Hadoop
- 2 Exact Top-k Wavelet Coefficients
 - Naive Solution
 - Hadoop Wavelet Top-k: Our Efficient Exact Solution
- 3 Approximate Top-k Wavelet Coefficients
 - Linearly Combinable Sketch Method
 - Our First Sampling Based Approach
 - An Improved Sampling Approach
 - Two-Level Sampling
- 4 Experiments
- Conclusions
 - Hadoop Wavelet Top-k in Hadoop

Approximate Top-k Wavelet Coefficients: Improved Sampling

nj Records in split

Approximate Top-k Wavelet Coefficients: Improved Sampling

Node *j* samples $t_j = n_j \cdot p$ records using Basic Sampling, where $p = 1/\epsilon^2 n$.

n_i Records in split

Node j samples $t_j = n_j \cdot p$ records using Basic Sampling, where $p = 1/\epsilon^2 n$.

nj Records in split

Node j samples $t_j = n_j \cdot p$ records using Basic Sampling, where $p = 1/\varepsilon^2 n$.

n_j Records in split

 $\mathbf{s}_{j}(x)$: Sampled Frequency Counts

Node j sends $(x, \mathbf{s}_j(x))$ only if $\mathbf{s}_j(x) > \varepsilon t_j$.

• The error in $\mathbf{s}(x)$ is $\leq \sum_{j=1}^{m} \varepsilon t_j = \varepsilon p n = 1/\varepsilon$.

 $\mathbf{s}_{i}(x)$: Sampled Frequency Counts

Node j sends $(x, \mathbf{s}_{j}(x))$ only if $\mathbf{s}_{j}(x) > \varepsilon t_{j}$.

• The error in s(x) is $\leq \sum_{j=1}^{m} \varepsilon t_j = \varepsilon pn = 1/\varepsilon$.

 $\mathbf{s}_{i}(x)$: Sampled Frequency Counts

Node j sends $(x, \mathbf{s}_i(x))$ only if $\mathbf{s}_i(x) > \varepsilon t_i$.

• The error in $\mathbf{s}(x)$ is $\leq \sum_{j=1}^{m} \varepsilon t_j = \varepsilon pn = 1/\varepsilon$.

 $\mathbf{s}_i(x)$: Sampled Frequency Counts

Node j sends $(x, \mathbf{s}_i(x))$ only if $\mathbf{s}_i(x) > \varepsilon t_i$.

• The error in $\mathbf{s}(x)$ is $\leq \sum_{j=1}^{m} \varepsilon t_j = \varepsilon pn = 1/\varepsilon$.

 $\mathbf{s}_{j}(x)$: Sampled Frequency Counts

• Each node sends at most $t_j/(\varepsilon t_j) = 1/\varepsilon$ keys.

- Each node sends at most $t_j/(\varepsilon t_j) = 1/\varepsilon$ keys.
 - The total communication is $O(m/\varepsilon)$.

- Each node sends at most $t_i/(\varepsilon t_i) = 1/\varepsilon$ keys.
 - The total communication is $O(m/\varepsilon)$.
- $\mathbf{E}[\widehat{\mathbf{v}}(x)]$ may be εn away from $\mathbf{v}(x)$ as $s_j(x) < \varepsilon t_j$ are ignored.

Outline

- Introduction and Motivation
 - Histograms
 - MapReduce and Hadoop
- Exact Top-k Wavelet Coefficients
 - Naive Solution
 - Hadoop Wavelet Top-k: Our Efficient Exact Solution
- 3 Approximate Top-k Wavelet Coefficients
 - Linearly Combinable Sketch Method
 - Our First Sampling Based Approach
 - An Improved Sampling Approach
 - Two-Level Sampling
- 4 Experiments
- Conclusions
 - Hadoop Wavelet Top-k in Hadoop

n_j Records in split

Node j samples $t_j = n_j \cdot p$ records using Basic Sampling, where $p = 1/\varepsilon^2 n$.

n; Records in split

Node j samples $t_j = n_j \cdot p$ records using Basic Sampling, where $p = 1/\varepsilon^2 n$.

n_i Records in split

Node j samples $t_j = n_j \cdot p$ records using Basic Sampling, where $p = 1/\epsilon^2 n$.

n; Records in split

 $\mathbf{s}_{j}(x)$: Sampled Frequency Counts

Sample record x with probability min $\{\varepsilon\sqrt{m}\cdot\mathbf{s}_i(x),1\}$.

- If $\mathbf{s}_i(x) \geq 1/(\varepsilon \sqrt{m})$, emit $(x, \mathbf{s}_i(x))$.
- Else emit (x, null) with probability $\varepsilon \sqrt{m} \cdot \mathbf{s}_{j}(x)$.

 $\mathbf{s}_i(x)$: Sampled Frequency Counts

Sample record x with probability min $\{\varepsilon\sqrt{m}\cdot\mathbf{s}_i(x),1\}$.

- If $\mathbf{s}_i(x) \geq 1/(\varepsilon \sqrt{m})$, emit $(x, \mathbf{s}_i(x))$.
- Else emit (x, null) with probability $\varepsilon \sqrt{m} \cdot \mathbf{s}_i(x)$.

 $\mathbf{s}_i(x)$: Sampled Frequency Counts

Sample record x with probability $\min\{\varepsilon\sqrt{m}\cdot\mathbf{s}_{j}(x),1\}$.

- If $\mathbf{s}_j(x) \geq 1/(\varepsilon \sqrt{m})$, emit $(x, \mathbf{s}_j(x))$.
- Else emit (x, null) with probability $\varepsilon \sqrt{m} \cdot \mathbf{s}_j(x)$.

Sample record x with probability min $\{\varepsilon\sqrt{m}\cdot\mathbf{s}_i(x),1\}$.

- If $s_j(x) \ge 1/(\varepsilon \sqrt{m})$, emit $(x, s_j(x))$.
- Else emit (x, null) with probability $\varepsilon \sqrt{m} \cdot \mathbf{s}_{j}(x)$.

 $\mathbf{s}_{i}(x)$: Sampled Frequency Counts

Sample record x with probability min $\{\varepsilon\sqrt{m}\cdot\mathbf{s}_i(x),1\}$.

- If $\mathbf{s}_i(x) \geq 1/(\varepsilon \sqrt{m})$, emit $(x, \mathbf{s}_i(x))$.
- Else emit (x, null) with probability $\varepsilon \sqrt{m} \cdot \mathbf{s}_i(x)$.

 $\mathbf{s}_{j}(x)$: Sampled Frequency Counts

- To construct $\hat{\mathbf{s}}(x)$.

- To construct $\hat{\mathbf{s}}(x)$.
 - If $(x, \mathbf{s}_j(x))$ received, $\rho(x) = \rho(x) + \mathbf{s}_j(x)$.

- To construct $\widehat{\mathbf{s}}(x)$.
 - If $(x, \mathbf{s}_j(x))$ received, $\rho(x) = \rho(x) + \mathbf{s}_j(x)$.
 - Else if (x, null) received, M(x) = M(x) + 1.

- To construct $\widehat{\mathbf{s}}(x)$.
 - If $(x, \mathbf{s}_j(x))$ received, $\rho(x) = \rho(x) + \mathbf{s}_j(x)$.
 - Else if (x, null) received, M(x) = M(x) + 1.
- Finally, $\widehat{\mathbf{s}}(x) = \rho(x) + M(x)/\varepsilon\sqrt{m}$.

- To construct $\widehat{\mathbf{s}}(x)$.
 - If $(x, \mathbf{s}_i(x))$ received, $\rho(x) = \rho(x) + \mathbf{s}_i(x)$.
 - Else if (x, null) received, M(x) = M(x) + 1.
- Finally, $\widehat{\mathbf{s}}(x) = \rho(x) + M(x)/\varepsilon\sqrt{m}$.
- Then, $\widehat{\mathbf{v}}(x) = \widehat{\mathbf{s}}(x)/p$ is an unbiased estimator for $\mathbf{v}(x)$.

Theorem

 $\hat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$.

Theorem

 $\widehat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$.

Corollary

 $\widehat{\mathbf{v}}(x)$ is an unbiased estimator of $\mathbf{v}(x)$ with standard deviation at most εn .

Theorem

 $\widehat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$.

Corollary

 $\widehat{\mathbf{v}}(x)$ is an unbiased estimator of $\mathbf{v}(x)$ with standard deviation at most εn .

Theorem

- \widehat{w}_i is an unbiased estimator for any w_i .
- Recall $w_i = \langle \mathbf{v}, \psi_i \rangle$, for $\psi_i = (-\phi_{j+1,2k} + \phi_{j+1,2k+1})/\sqrt{u/2^j}$ where ϕ is a [0,1] vector defined for $j=1,\ldots,\log u$ and $k=0,\ldots,2^j-1$. The variance of \widehat{w}_i is bounded by $\frac{\varepsilon 2^j n}{u\sqrt{m}} \sum_{x=2ku/2^{j+1}+1}^{(2k+2)u/2^{j+1}} \mathbf{s}(x)$.

Theorem

 $\widehat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$.

Corollary

 $\widehat{\mathbf{v}}(x)$ is an unbiased estimator of $\mathbf{v}(x)$ with standard deviation at most εn .

Theorem

- \widehat{w}_i is an unbiased estimator for any w_i .
- Recall $w_i = \langle \mathbf{v}, \psi_i \rangle$, for $\psi_i = (-\phi_{j+1,2k} + \phi_{j+1,2k+1})/\sqrt{u/2^j}$ where ϕ is a [0,1] vector defined for $j=1,\ldots,\log u$ and $k=0,\ldots,2^j-1$. The variance of \widehat{w}_i is bounded by $\frac{\varepsilon 2^j n}{u\sqrt{m}} \sum_{x=2ku/2^{j+1}+1}^{(2k+2)u/2^{j+1}} \mathbf{s}(x)$.

Theorem

The expected total communication cost of our two-level sampling algorithm is $O(\sqrt{m}/\varepsilon)$.

1 RandomizedRecordReader j (RR_j) samples $n_j/\varepsilon^2 n$ records.

- **1** RandomizedRecordReader j (RR_j) samples $n_j/\varepsilon^2 n$ records.
 - **1** RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j.

- **1** RandomizedRecordReader j (RR_j) samples $n_j/\varepsilon^2 n$ records.
 - RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j.
 - $oldsymbol{\circ}$ RR_{j} sorts the offsets in ascending order then seeks the record at each sampled offset.

- **1** RandomizedRecordReader j (RR_j) samples $n_j/\varepsilon^2 n$ records.
 - RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j.
 - $oldsymbol{\circ}$ RR_{j} sorts the offsets in ascending order then seeks the record at each sampled offset.

- RandomizedRecordReader j (RR_i) samples $n_i/\varepsilon^2 n$ records.
 - **1** RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j.
 - $oldsymbol{0}$ RR_{j} sorts the offsets in ascending order then seeks the record at each sampled offset.

- RandomizedRecordReader j (RR_i) samples $n_i/\varepsilon^2 n$ records.
 - RR_i randomly selects $n_i/\varepsilon^2 n$ offsets in split j.
 - $oldsymbol{\circ}$ RR_{j} sorts the offsets in ascending order then seeks the record at each sampled offset.

- RandomizedRecordReader j (RR_i) samples $n_i/\varepsilon^2 n$ records.
 - RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j.
 - $oldsymbol{\circ}$ RR_{j} sorts the offsets in ascending order then seeks the record at each sampled offset.

② Mapper j samples key x from \mathbf{s} with probability $\min\{\varepsilon\sqrt{m}\cdot\mathbf{s}_{j}(x),1\}$.

② Mapper j samples key x from \mathbf{s} with probability $\min\{\varepsilon\sqrt{m}\cdot\mathbf{s}_j(x),1\}$.

• If $\mathbf{s}_j(x) \geq 1/(\varepsilon\sqrt{m})$, emit $(x,\mathbf{s}_j(x))$.

- **②** Mapper j samples key x from \mathbf{s} with probability $\min\{\varepsilon\sqrt{m}\cdot\mathbf{s}_j(x),1\}$.
 - If $\mathbf{s}_j(x) \geq 1/(\varepsilon \sqrt{m})$, emit $(x, \mathbf{s}_j(x))$.
 - Else emit (x,0) with probability $\varepsilon \sqrt{m} \cdot \mathbf{s}_j(x)$.

- **②** Mapper j samples key x from \mathbf{s} with probability $\min\{\varepsilon\sqrt{m}\cdot\mathbf{s}_j(x),1\}$.
 - If $\mathbf{s}_j(x) \geq 1/(\varepsilon \sqrt{m})$, emit $(x, \mathbf{s}_j(x))$.
 - Else emit (x,0) with probability $\varepsilon \sqrt{m} \cdot \mathbf{s}_i(x)$.

- **3** Construct $\widehat{\mathbf{s}}(x)$.
 - If $(x, \mathbf{s}_j(x))$ received, $\rho(x) = \rho(x) + \mathbf{s}_j(x)$.

- **3** Construct $\widehat{\mathbf{s}}(x)$.
 - If $(x, \mathbf{s}_i(x))$ received, $\rho(x) = \rho(x) + \mathbf{s}_i(x)$.
 - Else if (x,0) received, M(x) = M(x) + 1.

- **3** Construct $\widehat{\mathbf{s}}(x)$.
 - If $(x, \mathbf{s}_j(x))$ received, $\rho(x) = \rho(x) + \mathbf{s}_j(x)$.
 - Else if (x, 0) received, M(x) = M(x) + 1.
- Finally, $\widehat{\mathbf{s}}(x) = \rho(x) + M(x)/\varepsilon\sqrt{m}$.

- **3** Construct $\widehat{\mathbf{s}}(x)$.
 - If $(x, \mathbf{s}_i(x))$ received, $\rho(x) = \rho(x) + \mathbf{s}_i(x)$.
 - Else if (x,0) received, M(x) = M(x) + 1.
- Finally, $\hat{\mathbf{s}}(x) = \rho(x) + M(x)/\varepsilon\sqrt{m}$.
- **Solution** Reducer uses $\hat{\mathbf{v}}(x) = \hat{\mathbf{s}}(x)/p$, our unbiased estimator for $\mathbf{v}(x)$.

- **3** Construct $\widehat{\mathbf{s}}(x)$.
 - If $(x, \mathbf{s}_i(x))$ received, $\rho(x) = \rho(x) + \mathbf{s}_i(x)$.
 - Else if (x, 0) received, M(x) = M(x) + 1.
- Finally, $\widehat{\mathbf{s}}(x) = \rho(x) + M(x)/\varepsilon\sqrt{m}$.
- **Solution** Reducer uses $\hat{\mathbf{v}}(x) = \hat{\mathbf{s}}(x)/p$, our unbiased estimator for $\mathbf{v}(x)$.

- **3** Construct $\widehat{\mathbf{s}}(x)$.
 - If $(x, \mathbf{s}_i(x))$ received, $\rho(x) = \rho(x) + \mathbf{s}_i(x)$.
 - Else if (x,0) received, M(x) = M(x) + 1.
- Finally, $\widehat{\mathbf{s}}(x) = \rho(x) + M(x)/\varepsilon\sqrt{m}$.
- **Solution** Reducer uses $\hat{\mathbf{v}}(x) = \hat{\mathbf{s}}(x)/p$, our unbiased estimator for $\mathbf{v}(x)$.

- **3** Construct $\hat{\mathbf{s}}(x)$.
 - If $(x, \mathbf{s}_j(x))$ received, $\rho(x) = \rho(x) + \mathbf{s}_j(x)$.
 - Else if (x,0) received, M(x) = M(x) + 1.
- Finally, $\widehat{\mathbf{s}}(x) = \rho(x) + M(x)/\varepsilon\sqrt{m}$.
- **Solution** Reducer uses $\hat{\mathbf{v}}(x) = \hat{\mathbf{s}}(x)/p$, our unbiased estimator for $\mathbf{v}(x)$.

- **3** Construct $\widehat{\mathbf{s}}(x)$.
 - If $(x, \mathbf{s}_j(x))$ received, $\rho(x) = \rho(x) + \mathbf{s}_j(x)$.
 - Else if (x,0) received, M(x) = M(x) + 1.
- Finally, $\hat{\mathbf{s}}(x) = \rho(x) + M(x)/\varepsilon\sqrt{m}$.
- **9** Reducer uses $\hat{\mathbf{v}}(x) = \hat{\mathbf{s}}(x)/p$, our unbiased estimator for $\mathbf{v}(x)$.

ullet Consider: $arepsilon=10^{-4}$, $m=10^3$, and 4-byte keys .

- ullet Consider: $arepsilon=10^{-4}$, $m=10^3$, and 4-byte keys .
- The communication for basic sampling is $O(1/\varepsilon^2)$.

- ullet Consider: $arepsilon=10^{-4}$, $m=10^3$, and 4-byte keys .
- The communication for basic sampling is $O(1/\varepsilon^2)$.
 - Approximately 400MB of data must be communicated!

- ullet Consider: $arepsilon=10^{-4}$, $m=10^3$, and 4-byte keys .
- The communication for basic sampling is $O(1/\varepsilon^2)$.
 - Approximately 400MB of data must be communicated!
- The communication for improved sampling is $O(m/\varepsilon)$.

- ullet Consider: $arepsilon=10^{-4}$, $m=10^3$, and 4-byte keys .
- The communication for basic sampling is $O(1/\varepsilon^2)$.
 - Approximately 400MB of data must be communicated!
- The communication for improved sampling is $O(m/\varepsilon)$.
 - Approximately 40MB of data must be communicated.

- ullet Consider: $arepsilon=10^{-4}$, $m=10^3$, and 4-byte keys .
- The communication for basic sampling is $O(1/\varepsilon^2)$.
 - Approximately 400MB of data must be communicated!
- The communication for improved sampling is $O(m/\varepsilon)$.
 - Approximately 40MB of data must be communicated.
- The communication for two-level sampling is $O(\sqrt{m}/\varepsilon)$.

- ullet Consider: $arepsilon=10^{-4}$, $m=10^3$, and 4-byte keys .
- The communication for basic sampling is $O(1/\varepsilon^2)$.
 - Approximately 400MB of data must be communicated!
- The communication for improved sampling is $O(m/\varepsilon)$.
 - Approximately 40MB of data must be communicated.
- The communication for two-level sampling is $O(\sqrt{m}/\varepsilon)$.
 - Only 1.2MB of data needs to be communicated!

- ullet Consider: $arepsilon=10^{-4}$, $m=10^3$, and 4-byte keys .
- The communication for basic sampling is $O(1/\varepsilon^2)$.
 - Approximately 400MB of data must be communicated!
- The communication for improved sampling is $O(m/\varepsilon)$.
 - Approximately 40MB of data must be communicated.
- The communication for two-level sampling is $O(\sqrt{m}/\varepsilon)$.
 - Only 1.2MB of data needs to be communicated!
 - 330-fold reduction over basic sampling and 33-fold reduction over improved sampling!

Outline

- Introduction and Motivation
 - Histograms
 - MapReduce and Hadoop
- Exact Top-k Wavelet Coefficients
 - Naive Solution
 - Hadoop Wavelet Top-k: Our Efficient Exact Solution
- 3 Approximate Top-k Wavelet Coefficients
 - Linearly Combinable Sketch Method
 - Our First Sampling Based Approach
 - An Improved Sampling Approach
 - Two-Level Sampling
- 4 Experiments
- Conclusions
 - Hadoop Wavelet Top-k in Hadoop

• We implement the following methods in Hadoop 0.20.2:

- We implement the following methods in Hadoop 0.20.2:
 - Exact Methods:
 - The baseline solution is denoted Send-V,

- We implement the following methods in Hadoop 0.20.2:
 - Exact Methods:
 - The baseline solution is denoted Send-V,
 - Our three round exact solution is denoted H-WTopk, (meaning "Hadoop Wavelet Top-k").

- We implement the following methods in Hadoop 0.20.2:
 - Exact Methods:
 - The baseline solution is denoted Send-V,
 - Our three round exact solution is denoted H-WTopk, (meaning "Hadoop Wavelet Top-k").
 - Approximate Methods:

- We implement the following methods in Hadoop 0.20.2:
 - Exact Methods:
 - The baseline solution is denoted Send-V,
 - Our three round exact solution is denoted H-WTopk, (meaning "Hadoop Wavelet Top-k").
 - Approximate Methods:
 - Improved Sampling is denoted Improved-S.

- We implement the following methods in Hadoop 0.20.2:
 - Exact Methods:
 - The baseline solution is denoted Send-V,
 - Our three round exact solution is denoted H-WTopk, (meaning "Hadoop Wavelet Top-k").
 - Approximate Methods:
 - Improved Sampling is denoted Improved-S.
 - Two-Level Sampling is denoted TwoLevel-S.

- We implement the following methods in Hadoop 0.20.2:
 - Exact Methods:
 - The baseline solution is denoted Send-V,
 - Our three round exact solution is denoted H-WTopk, (meaning "Hadoop Wavelet Top-k").
 - Approximate Methods:
 - Improved Sampling is denoted Improved-S.
 - Two-Level Sampling is denoted TwoLevel-S.
 - The Sketch-Based Approximation using the GCS-Sketch is denoted Send-Sketch.

Experiments: Setup

 Experiments are performed in a heterogeneous Hadoop cluster with 16 machines:

Experiments: Setup

- Experiments are performed in a heterogeneous Hadoop cluster with 16 machines:
 - 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU

- Experiments are performed in a heterogeneous Hadoop cluster with 16 machines:
 - 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU
 - 4 machines with 4GB of RAM and an Intel Xeon 2GHz CPU

- Experiments are performed in a heterogeneous Hadoop cluster with 16 machines:
 - 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU
 - 4 machines with 4GB of RAM and an Intel Xeon 2GHz CPU
 - One is reserved for the master (running JobTracker and NameNode).

- Experiments are performed in a heterogeneous Hadoop cluster with 16 machines:
 - 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU
 - 4 machines with 4GB of RAM and an Intel Xeon 2GHz CPU
 - One is reserved for the master (running JobTracker and NameNode).
 - 3 2 machines with 6GB of RAM and an Intel Xeon 2.13GHz CPU

- Experiments are performed in a heterogeneous Hadoop cluster with 16 machines:
 - 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU
 - 4 machines with 4GB of RAM and an Intel Xeon 2GHz CPU
 - One is reserved for the master (running JobTracker and NameNode).
 - 3 2 machines with 6GB of RAM and an Intel Xeon 2.13GHz CPU
 - One is reserved for the (only) Reducer.

- Experiments are performed in a heterogeneous Hadoop cluster with 16 machines:
 - 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU
 - ② 4 machines with 4GB of RAM and an Intel Xeon 2GHz CPU
 - One is reserved for the master (running JobTracker and NameNode).
 - 2 machines with 6GB of RAM and an Intel Xeon 2.13GHz CPU
 - One is reserved for the (only) Reducer.
 - 1 machine with 2GB of RAM and an Intel Core 2 1.86GHz CPU

- Experiments are performed in a heterogeneous Hadoop cluster with 16 machines:
 - 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU
 - 4 machines with 4GB of RAM and an Intel Xeon 2GHz CPU
 - One is reserved for the master (running JobTracker and NameNode).
 - 2 machines with 6GB of RAM and an Intel Xeon 2.13GHz CPU
 One is reserved for the (only) Reducer.
 - 1 machine with 2GB of RAM and an Intel Core 2 1.86GHz CPU
- All machines are directly connected to a 1000Mbps switch.

• We utilize the WorldCup dataset to test all algorithms on real data.

- We utilize the WorldCup dataset to test all algorithms on real data.
 - There are a total of 1.35 billion records.

- We utilize the WorldCup dataset to test all algorithms on real data.
 - There are a total of 1.35 billion records.
 - Each record has 10 4 byte integer attributes including a client id and object id.

- We utilize the WorldCup dataset to test all algorithms on real data.
 - There are a total of 1.35 billion records.
 - Each record has 10 4 byte integer attributes including a client id and object id.
 - We assign each record a *clientobject* 4 byte integer id in $u = 2^{29}$ which is distinct for unique parings of a client id and object id.

- We utilize the WorldCup dataset to test all algorithms on real data.
 - There are a total of 1.35 billion records.
 - Each record has 10 4 byte integer attributes including a client id and object id.
 - We assign each record a *clientobject* 4 byte integer id in $u = 2^{29}$ which is distinct for unique parings of a client id and object id.
 - WorldCup is stored in binary format, in total it is 50GB.

- We utilize the WorldCup dataset to test all algorithms on real data.
 - There are a total of 1.35 billion records.
 - Each record has 10 4 byte integer attributes including a client id and object id.
 - We assign each record a *clientobject* 4 byte integer id in $u = 2^{29}$ which is distinct for unique parings of a client id and object id.
 - WorldCup is stored in binary format, in total it is 50GB.
- We utilize large synthetic Zipfian datasets to evaluate all methods.

- We utilize the WorldCup dataset to test all algorithms on real data.
 - There are a total of 1.35 billion records.
 - Each record has 10 4 byte integer attributes including a client id and object id.
 - We assign each record a *clientobject* 4 byte integer id in $u = 2^{29}$ which is distinct for unique parings of a client id and object id.
 - WorldCup is stored in binary format, in total it is 50GB.
- We utilize large synthetic Zipfian datasets to evaluate all methods.
 - Keys are randomly permuted and discontiguous in a dataset.

- We utilize the WorldCup dataset to test all algorithms on real data.
 - There are a total of 1.35 billion records.
 - Each record has 10 4 byte integer attributes including a client id and object id.
 - We assign each record a *clientobject* 4 byte integer id in $u = 2^{29}$ which is distinct for unique parings of a client id and object id.
 - WorldCup is stored in binary format, in total it is 50GB.
- We utilize large synthetic Zipfian datasets to evaluate all methods.
 - Keys are randomly permuted and discontiguous in a dataset.
 - Each key is a 4-byte integer and stored in binary format.

Experiments: Defaults

Default values:

Symbol	Definition	Default
α	Zipfian skewness	1.1
и	max key in domain	$\log_2 u = 29$
n	total records	13.4 billion
	dataset size	50GB
β	split size	256MB
m	number of splits	200
В	network bandwidth	500Mbps

Experiments: Vary k

Experiments: Vary k

Experiments: Vary k

Experiments: Vary ε

Experiments: Vary ε

Experiments: Vary ε

Experiments: Vary n

Experiments: Vary n

Experiments: Vary u

Experiments: Vary u

Experiments: Vary β

Experiments: Vary β

Experiments: Vary α

Experiments: Vary α

Experiments: Vary B

Experiments: WorldCup Dataset

Experiments: WorldCup Dataset

 We study the problem of efficiently computing wavelet histograms in MapReduce clusters.

- We study the problem of efficiently computing wavelet histograms in MapReduce clusters.
 - We present both exact and approximate algorithms.

- We study the problem of efficiently computing wavelet histograms in MapReduce clusters.
 - We present both exact and approximate algorithms.
 - TwoLevel-S is especially easy to implement and ideal in practice.

- We study the problem of efficiently computing wavelet histograms in MapReduce clusters.
 - We present both exact and approximate algorithms.
 - TwoLevel-S is especially easy to implement and ideal in practice.
 - For 200GB of data with $\log_2 u = 29$ it takes 10 minutes with only 2MB of communication!

Conclusions

- We study the problem of efficiently computing wavelet histograms in MapReduce clusters.
 - We present both exact and approximate algorithms.
 - TwoLevel-S is especially easy to implement and ideal in practice.
 - For 200GB of data with log₂ u = 29 it takes 10 minutes with only 2MB of communication!
- Our work is just the tip of the iceberg for data summarization techniques in MapReduce.

Conclusions

- We study the problem of efficiently computing wavelet histograms in MapReduce clusters.
 - We present both exact and approximate algorithms.
 - TwoLevel-S is especially easy to implement and ideal in practice.
 - For 200GB of data with $log_2 u = 29$ it takes 10 minutes with only 2MB of communication!
- Our work is just the tip of the iceberg for data summarization techniques in MapReduce.
- Many others remain including:

Conclusions¹

- We study the problem of efficiently computing wavelet histograms in MapReduce clusters.
 - We present both exact and approximate algorithms.
 - TwoLevel-S is especially easy to implement and ideal in practice.
 - For 200GB of data with log₂ u = 29 it takes 10 minutes with only 2MB of communication!
- Our work is just the tip of the iceberg for data summarization techniques in MapReduce.
- Many others remain including:
 - other histograms including the V-optimal histogram,
 - sketches and synopsis,
 - geometric summaries (ε -approximations and coresets),
 - graph summaries (distance oracles).

The End

Thank You

Q and A

• The JobTracker assigns an InputSplit to a TaskTracker, a MapRunner task runs on the TaskTracker to process the split.

• The MapRunner acquires a RecordReader from the InputFormat for the file to view the InputSplit as a stream of records, (k_1, v_1) .

• The MapRunner invokes the user specified *Mapper* for each (k_1, v_1) , the Mapper emits (k_2, v_2) and stores in an in-memory buffer.

• When the buffer fills, the optional *Combiner* is executed over $(k_2, list(v_2))$, and a (k_2, v_2) is dumped to a partition on disk.

Background: Hadoop MapReduce, Shuffle and Sort Phase

• The JobTracker assigns Reducers to TaskTrackers for each partition, each reducer first copies on (k_2, v_2) and then sorts on k_2 .

Background: Hadoop MapReduce, Reduce Phase

• The sorting output $(k_2, list(v_2))$ is processed one k_2 at a time and reduced, the reduced output (k_3, v_3) is written to reducer output o_i .

Outline

- Introduction and Motivation
 - Histograms
 - MapReduce and Hadoop
- Exact Top-k Wavelet Coefficients
 - Naive Solution
 - Hadoop Wavelet Top-k: Our Efficient Exact Solution
- 3 Approximate Top-k Wavelet Coefficients
 - Linearly Combinable Sketch Method
 - Our First Sampling Based Approach
 - An Improved Sampling Approach
 - Two-Level Sampling
- 4 Experiments
- Conclusions
 - Hadoop Wavelet Top-k in Hadoop

• RandomizedRecordReader j (RR_j) samples $n_j/\varepsilon^2 n$ records.

- RandomizedRecordReader j (RR_i) samples $n_i/\varepsilon^2 n$ records.
 - **1** RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j.

- RandomizedRecordReader j (RR_i) samples $n_i/\varepsilon^2 n$ records.
 - **1** RR_i randomly selects $n_i/\varepsilon^2 n$ offsets in split j.
 - \bigcirc RR_j sorts the offsets in ascending order then seeks the record at each sampled offset.

- **Proof** RandomizedRecordReader $j(RR_j)$ samples $n_j/\varepsilon^2 n$ records.
 - **1** RR_i randomly selects $n_i/\varepsilon^2 n$ offsets in split j.
 - \bigcirc RR_j sorts the offsets in ascending order then seeks the record at each sampled offset.

- **9** RandomizedRecordReader $j(RR_i)$ samples $n_i/\varepsilon^2 n$ records.
 - RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j.
 - RR_j sorts the offsets in ascending order then seeks the record at each sampled offset.

- **9** RandomizedRecordReader $j(RR_i)$ samples $n_i/\varepsilon^2 n$ records.
 - RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j.
 - \bigcirc RR_j sorts the offsets in ascending order then seeks the record at each sampled offset.

- **9** RandomizedRecordReader $j(RR_i)$ samples $n_i/\varepsilon^2 n$ records.
 - **1** RR_i randomly selects $n_i/\varepsilon^2 n$ offsets in split j.
 - \bigcirc RR_j sorts the offsets in ascending order then seeks the record at each sampled offset.

- **9** RandomizedRecordReader $j(RR_i)$ samples $n_i/\varepsilon^2 n$ records.
 - **1** RR_i randomly selects $n_i/\varepsilon^2 n$ offsets in split j.
 - RR_j sorts the offsets in ascending order then seeks the record at each sampled offset.

- **Q** RandomizedRecordReader $j(RR_j)$ samples $n_j/\varepsilon^2 n$ records.
 - **1** RR_i randomly selects $n_i/\varepsilon^2 n$ offsets in split j.
 - $oldsymbol{\circ}$ RR_{j} sorts the offsets in ascending order then seeks the record at each sampled offset.

- **Q** RandomizedRecordReader $j(RR_j)$ samples $n_j/\varepsilon^2 n$ records.
 - **1** RR_i randomly selects $n_i/\varepsilon^2 n$ offsets in split j.
 - $oldsymbol{\circ}$ RR_{j} sorts the offsets in ascending order then seeks the record at each sampled offset.

- **1** RandomizedRecordReader j (RR_j) samples $n_j/\varepsilon^2 n$ records.
 - RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j.
 - RR_j sorts the offsets in ascending order then seeks the record at each sampled offset.
- **②** Reducer uses $\widehat{\mathbf{v}}(x) = \mathbf{s}(x)/p$, our unbiased estimator for $\mathbf{v}(x)$.

- RandomizedRecordReader j (RR_i) samples $n_i/\varepsilon^2 n$ records.
 - **1** RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j.
 - RR_j sorts the offsets in ascending order then seeks the record at each sampled offset.
- **②** Reducer uses $\widehat{\mathbf{v}}(x) = \mathbf{s}(x)/p$, our unbiased estimator for $\mathbf{v}(x)$.

- RandomizedRecordReader j (RR_j) samples $n_j/\varepsilon^2 n$ records.
 - RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j.
 - RR_j sorts the offsets in ascending order then seeks the record at each sampled offset.
- **Q** Reducer uses $\widehat{\mathbf{v}}(x) = \mathbf{s}(x)/p$, our unbiased estimator for $\mathbf{v}(x)$.

- **Q** RandomizedRecordReader j (RR_j) samples $n_j/\varepsilon^2 n$ records.
 - **1** RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j.
 - RR_j sorts the offsets in ascending order then seeks the record at each sampled offset.
- **②** Reducer uses $\widehat{\mathbf{v}}(x) = \mathbf{s}(x)/p$, our unbiased estimator for $\mathbf{v}(x)$.

- **1** RandomizedRecordReader j (RR_j) samples $n_j/\varepsilon^2 n$ records.
 - RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j.
 - $oldsymbol{0}$ RR_j sorts the offsets in ascending order then seeks the record at each sampled offset.
- **②** Reducer uses $\widehat{\mathbf{v}}(x) = \mathbf{s}(x)/p$, our unbiased estimator for $\mathbf{v}(x)$.

Theorem

 $\widehat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$.

Theorem

 $\hat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$.

Proof.

1 Our estimator is $\hat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.

Theorem

 $\hat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$.

- ① Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - Assume in the first m' splits $\mathbf{s}_i(x) < 1/(\varepsilon \sqrt{m})$.

Theorem

 $\hat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$.

- ① Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - Assume in the first m' splits $\mathbf{s}_i(x) < 1/(\varepsilon \sqrt{m})$.
 - Let $X_i = 1$ if x is sampled in split j and 0 otherwise.

Theorem

 $\hat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$.

- **1** Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - Assume in the first m' splits $\mathbf{s}_i(x) < 1/(\varepsilon \sqrt{m})$.
 - Let $X_i = 1$ if x is sampled in split j and 0 otherwise.

Theorem

 $\hat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$.

- ① Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - Assume in the first m' splits $\mathbf{s}_i(x) < 1/(\varepsilon \sqrt{m})$.
 - Let $X_j = 1$ if x is sampled in split j and 0 otherwise.
 - Let $M = \sum_{j=1}^{m'} X_j$.

Theorem

 $\hat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$.

- **1** Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - Assume in the first m' splits $\mathbf{s}_i(x) < 1/(\varepsilon \sqrt{m})$.
- Let $X_i = 1$ if x is sampled in split j and 0 otherwise.
- Let $M = \sum_{j=1}^{m'} X_j$.
 - $\bullet \quad \mathbf{E}[M] = \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x)$

Theorem

 $\hat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$.

- ① Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - Assume in the first m' splits $\mathbf{s}_i(x) < 1/(\varepsilon \sqrt{m})$.
 - Let $X_j = 1$ if x is sampled in split j and 0 otherwise.
 - **2E** $[X_j] = \varepsilon \sqrt{m} \cdot \mathbf{s}_{j}(x).$
 - Let $M = \sum_{j=1}^{m'} X_j$.
 - $\bullet \mathbf{E}[M] = \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x) = \varepsilon \sqrt{m} (\mathbf{s}(x) \rho(x)).$

Theorem

 $\hat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$.

- ① Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - Assume in the first m' splits $\mathbf{s}_i(x) < 1/(\varepsilon \sqrt{m})$.
 - Let $X_j = 1$ if x is sampled in split j and 0 otherwise.
 - Let $M = \sum_{j=1}^{m'} X_j$.
 - $\bullet \mathbf{E}[M] = \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x) = \varepsilon \sqrt{m} (\mathbf{s}(x) \rho(x)).$
- $\bullet \ \mathsf{E}[\widehat{\mathsf{s}}(x)] = \mathsf{E}[\rho(x) + M/\varepsilon\sqrt{m}]$

Theorem

 $\hat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$.

- ① Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - Assume in the first m' splits $\mathbf{s}_i(x) < 1/(\varepsilon \sqrt{m})$.
 - Let $X_j = 1$ if x is sampled in split j and 0 otherwise.
 - Let $M = \sum_{j=1}^{m'} X_j$.
 - **3** $\mathbf{E}[M] = \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x) = \varepsilon \sqrt{m} (\mathbf{s}(x) \rho(x)).$
- $\bullet \ \mathsf{E}[\widehat{\mathsf{s}}(\mathsf{x})] = \mathsf{E}[\rho(\mathsf{x}) + M/\varepsilon\sqrt{m}] = \rho(\mathsf{x}) + (\mathsf{s}(\mathsf{x}) \rho(\mathsf{x}))$

Theorem

 $\hat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$.

- **1** Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - Assume in the first m' splits $\mathbf{s}_i(x) < 1/(\varepsilon \sqrt{m})$.
 - Let $X_i = 1$ if x is sampled in split j and 0 otherwise.
 - Let $M = \sum_{j=1}^{m'} X_j$.
 - $\bullet \quad \mathbf{E}[M] = \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x) = \varepsilon \sqrt{m} (\mathbf{s}(x) \rho(x)).$
- $\bullet \mathbf{E}[\widehat{\mathbf{s}}(x)] = \mathbf{E}[\rho(x) + M/\varepsilon\sqrt{m}] = \rho(x) + (\mathbf{s}(x) \rho(x)) = \mathbf{s}(x).$

Theorem

 $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$.

Theorem

 $\widehat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$.

Proof.

• Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.

Theorem

 $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$.

- **1** Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - Assume in the first m' splits $\mathbf{s}_j(x) < 1/(\varepsilon \sqrt{m})$.

Theorem

 $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$.

- **1** Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - Assume in the first m' splits $\mathbf{s}_j(x) < 1/(\varepsilon \sqrt{m})$.
 - Let $X_i = 1$ if x is sampled in split j and 0 otherwise.

Theorem

 $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$.

- **1** Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - Assume in the first m' splits $\mathbf{s}_i(x) < 1/(\varepsilon\sqrt{m})$.
 - Let $X_i = 1$ if x is sampled in split j and 0 otherwise.

Theorem

 $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$.

- **1** Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - Assume in the first m' splits $\mathbf{s}_j(x) < 1/(\varepsilon \sqrt{m})$.
 - Let $X_i = 1$ if x is sampled in split j and 0 otherwise.

Theorem

 $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$.

- **1** Our estimator is $\hat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - Assume in the first m' splits $\mathbf{s}_j(x) < 1/(\varepsilon \sqrt{m})$.
 - Let $X_i = 1$ if x is sampled in split j and 0 otherwise.
 - Let $M = \sum_{j=1}^{m'} X_j$.

Theorem

 $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$.

- Our estimator is $\hat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - Assume in the first m' splits $\mathbf{s}_j(x) < 1/(\varepsilon \sqrt{m})$.
 - Let $X_i = 1$ if x is sampled in split j and 0 otherwise.

- Let $M = \sum_{j=1}^{m'} X_j$.
 - \bullet Var[M] $\leq \sum_{j=1}^{m'} \text{Var}[X_j]$

Theorem

 $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$.

- Our estimator is $\hat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - Assume in the first m' splits $\mathbf{s}_i(x) < 1/(\varepsilon\sqrt{m})$.
 - Let $X_i = 1$ if x is sampled in split j and 0 otherwise.
 - Let $M = \sum_{j=1}^{m'} X_j$.
 - **3** $\operatorname{Var}[M] \leq \sum_{j=1}^{m'} \operatorname{Var}[X_j] \leq \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x)$

Theorem

 $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$.

- **1** Our estimator is $\hat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - Assume in the first m' splits $\mathbf{s}_j(x) < 1/(\varepsilon \sqrt{m})$.
 - Let $X_i = 1$ if x is sampled in split j and 0 otherwise.
 - Let $M = \sum_{j=1}^{m'} X_j$.
 - $\operatorname{Var}[M] \leq \sum_{j=1}^{m'} \operatorname{Var}[X_j] \leq \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x) \leq m' \cdot \varepsilon \sqrt{m} \cdot 1/(\varepsilon \sqrt{m})$

Theorem

 $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$.

- Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - Assume in the first m' splits $\mathbf{s}_j(x) < 1/(\varepsilon \sqrt{m})$.
 - Let $X_i = 1$ if x is sampled in split j and 0 otherwise.
 - Let $M = \sum_{j=1}^{m'} X_j$.
 - **③ Var** $[M] \le \sum_{j=1}^{m'} \mathbf{Var}[X_j] \le \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x) \le m' \cdot \varepsilon \sqrt{m} \cdot 1/(\varepsilon \sqrt{m}) = m'.$

Theorem

 $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$.

- ① Our estimator is $\hat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - Assume in the first m' splits $\mathbf{s}_j(x) < 1/(\varepsilon \sqrt{m})$.
 - Let $X_i = 1$ if x is sampled in split j and 0 otherwise.
 - Let $M = \sum_{j=1}^{m'} X_j$.
 - **3** $\operatorname{Var}[M] \leq \sum_{j=1}^{m'} \operatorname{Var}[X_j] \leq \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x) \leq m' \cdot \varepsilon \sqrt{m} \cdot 1/(\varepsilon \sqrt{m}) = m'.$
- $Var[\widehat{\mathbf{s}}(x)] = \mathbf{Var}[M/\varepsilon\sqrt{m}]$

Theorem

 $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$.

- **1** Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - Assume in the first m' splits $\mathbf{s}_j(x) < 1/(\varepsilon \sqrt{m})$.
 - Let $X_i = 1$ if x is sampled in split j and 0 otherwise.
 - Let $M = \sum_{j=1}^{m'} X_j$.
 - **3** $\operatorname{Var}[M] \leq \sum_{j=1}^{m'} \operatorname{Var}[X_j] \leq \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x) \leq m' \cdot \varepsilon \sqrt{m} \cdot 1/(\varepsilon \sqrt{m}) = m'.$
- $Var[\hat{\mathbf{s}}(x)] = Var[M/\varepsilon\sqrt{m}] = Var[M]/\varepsilon^2 m$

Theorem

 $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$.

- Our estimator is $\hat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - Assume in the first m' splits $\mathbf{s}_j(x) < 1/(\varepsilon \sqrt{m})$.
 - Let $X_j = 1$ if x is sampled in split j and 0 otherwise.
- Let $M = \sum_{j=1}^{m'} X_j$.
 - **3** $\operatorname{Var}[M] \leq \sum_{j=1}^{m'} \operatorname{Var}[X_j] \leq \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x) \leq m' \cdot \varepsilon \sqrt{m} \cdot 1/(\varepsilon \sqrt{m}) = m'.$
- $Var[\widehat{\mathbf{s}}(x)] = \mathbf{Var}[M/\varepsilon\sqrt{m}] = \mathbf{Var}[M]/\varepsilon^2 m \le m'/\varepsilon^2 m$

Theorem

 $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$.

- **1** Our estimator is $\hat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - Assume in the first m' splits $\mathbf{s}_j(x) < 1/(\varepsilon \sqrt{m})$.
 - Let $X_i = 1$ if x is sampled in split j and 0 otherwise.
 - Let $M = \sum_{j=1}^{m'} X_j$.
 - **3** $\operatorname{Var}[M] \leq \sum_{j=1}^{m'} \operatorname{Var}[X_j] \leq \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x) \leq m' \cdot \varepsilon \sqrt{m} \cdot 1/(\varepsilon \sqrt{m}) = m'.$
- $Var[\hat{\mathbf{s}}(x)] = Var[M/\varepsilon\sqrt{m}] = Var[M]/\varepsilon^2 m \le m'/\varepsilon^2 m \le 1/\varepsilon^2$

Theorem

 $\widehat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$.

- **1** Our estimator is $\hat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - Assume in the first m' splits $\mathbf{s}_j(x) < 1/(\varepsilon \sqrt{m})$.
 - Let $X_j = 1$ if x is sampled in split j and 0 otherwise.
 - Let $M = \sum_{j=1}^{m'} X_j$.
 - **3** $\operatorname{Var}[M] \leq \sum_{j=1}^{m'} \operatorname{Var}[X_j] \leq \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x) \leq m' \cdot \varepsilon \sqrt{m} \cdot 1/(\varepsilon \sqrt{m}) = m'.$

Theorem

The expected total communication cost of our two-level sampling algorithm is $O(\sqrt{m}/\varepsilon)$.

Theorem

The expected total communication cost of our two-level sampling algorithm is $O(\sqrt{m}/\varepsilon)$.

Proof.

• Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.

Theorem

The expected total communication cost of our two-level sampling algorithm is $O(\sqrt{m}/\varepsilon)$.

- Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
- The first-level sample size is $pn = 1/\varepsilon^2$.

Theorem

The expected total communication cost of our two-level sampling algorithm is $O(\sqrt{m}/\varepsilon)$.

- **1** Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - The first-level sample size is $pn = 1/\varepsilon^2$.
- If $\mathbf{s}_j(x) \geq 1/(\varepsilon \sqrt{m})$ we emit $(x, s_j(x))$.

Theorem

The expected total communication cost of our two-level sampling algorithm is $O(\sqrt{m}/\varepsilon)$.

- ① Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - The first-level sample size is $pn = 1/\varepsilon^2$.
- If $\mathbf{s}_j(x) \geq 1/(\varepsilon \sqrt{m})$ we emit $(x, s_j(x))$.
 - ② There are $\leq (1/\varepsilon^2)/(1/\varepsilon\sqrt{m}) = \sqrt{m}/\varepsilon$ such keys.

Theorem

The expected total communication cost of our two-level sampling algorithm is $O(\sqrt{m}/\varepsilon)$.

- ① Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - The first-level sample size is $pn = 1/\varepsilon^2$.
- If $\mathbf{s}_j(x) \geq 1/(\varepsilon \sqrt{m})$ we emit $(x, s_j(x))$.
 - ② There are $\leq (1/\varepsilon^2)/(1/\varepsilon\sqrt{m}) = \sqrt{m}/\varepsilon$ such keys.
- If $s_j(x) < 1/(\varepsilon \sqrt{m})$, we emit (x, null) with probability $\varepsilon \sqrt{m} \cdot \mathbf{s}_j x$.

Theorem

The expected total communication cost of our two-level sampling algorithm is $O(\sqrt{m}/\varepsilon)$.

- ① Our estimator is $\hat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - The first-level sample size is $pn = 1/\varepsilon^2$.
 - If $\mathbf{s}_j(x) \geq 1/(\varepsilon \sqrt{m})$ we emit $(x, s_j(x))$.
 - ② There are $\leq (1/\varepsilon^2)/(1/\varepsilon\sqrt{m}) = \sqrt{m}/\varepsilon$ such keys.
 - If $s_j(x) < 1/(\varepsilon \sqrt{m})$, we emit (x, null) with probability $\varepsilon \sqrt{m} \cdot \mathbf{s}_j x$.
 - **3** On expectation there are, $\sum_{j} \sum_{x} \varepsilon \sqrt{m} \cdot \mathbf{s}_{j}(x) \leq \varepsilon \sqrt{m} \cdot 1/\varepsilon^{2}$

Theorem

The expected total communication cost of our two-level sampling algorithm is $O(\sqrt{m}/\varepsilon)$.

- ① Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - The first-level sample size is $pn = 1/\varepsilon^2$.
- If $\mathbf{s}_j(x) \geq 1/(\varepsilon \sqrt{m})$ we emit $(x, s_j(x))$.
 - ② There are $\leq (1/\varepsilon^2)/(1/\varepsilon\sqrt{m}) = \sqrt{m}/\varepsilon$ such keys.
- If $s_j(x) < 1/(\varepsilon \sqrt{m})$, we emit (x, null) with probability $\varepsilon \sqrt{m} \cdot \mathbf{s}_j x$.
 - **3** On expectation there are, $\sum_{i} \sum_{x} \varepsilon \sqrt{m} \cdot \mathbf{s}_{j}(x) \leq \varepsilon \sqrt{m} \cdot 1/\varepsilon^{2} = \sqrt{m}/\varepsilon.$

Theorem

The expected total communication cost of our two-level sampling algorithm is $O(\sqrt{m}/\varepsilon)$.

- **①** Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$.
 - The first-level sample size is $pn = 1/\varepsilon^2$.
 - If $\mathbf{s}_j(x) \geq 1/(\varepsilon \sqrt{m})$ we emit $(x, s_j(x))$.
 - ② There are $\leq (1/\varepsilon^2)/(1/\varepsilon\sqrt{m}) = \sqrt{m}/\varepsilon$ such keys.
 - If $s_j(x) < 1/(\varepsilon \sqrt{m})$, we emit (x, null) with probability $\varepsilon \sqrt{m} \cdot \mathbf{s}_i x$.
 - ① On expectation there are, $\sum_{i} \sum_{x} \varepsilon \sqrt{m} \cdot \mathbf{s}_{i}(x) \leq \varepsilon \sqrt{m} \cdot 1/\varepsilon^{2} = \sqrt{m}/\varepsilon.$
- By (2) and (3), the total number of emitted keys is $O(\sqrt{m}/\varepsilon)$.

 n_j = records in split j s_i = split j sample frequency vector

1 RandomizedRecordReader j samples $t_j = n_j/\varepsilon^2 n$ records.

9 RandomizedRecordReader j samples $t_j = n_j/\varepsilon^2 n$ records.

9 RandomizedRecordReader j samples $t_i = n_i/\varepsilon^2 n$ records.

1 RandomizedRecordReader j samples $t_j = n_j/\varepsilon^2 n$ records.

9 RandomizedRecordReader j samples $t_i = n_i/\varepsilon^2 n$ records.

- **1** RandomizedRecordReader j samples $t_i = n_i/\varepsilon^2 n$ records.
- ② If $\mathbf{s}_j(x) > \varepsilon t_j$, the Mapper emits $(x, \mathbf{s}_j(x))$.

- **1** RandomizedRecordReader j samples $t_i = n_i/\varepsilon^2 n$ records.
- ② If $\mathbf{s}_j(x) > \varepsilon t_j$, the Mapper emits $(x, \mathbf{s}_j(x))$.

- RandomizedRecordReader j samples $t_i = n_i/\varepsilon^2 n$ records.
- ② If $\mathbf{s}_j(x) > \varepsilon t_j$, the Mapper emits $(x, \mathbf{s}_j(x))$.

- RandomizedRecordReader j samples $t_i = n_i/\varepsilon^2 n$ records.
- ② If $\mathbf{s}_j(x) > \varepsilon t_j$, the Mapper emits $(x, \mathbf{s}_j(x))$.
- **3** Reducer uses $\hat{\mathbf{v}}(x) = \mathbf{s}(x)/p$, our estimator for $\mathbf{v}(x)$.

- RandomizedRecordReader j samples $t_i = n_i/\varepsilon^2 n$ records.
- ② If $\mathbf{s}_j(x) > \varepsilon t_j$, the Mapper emits $(x, \mathbf{s}_j(x))$.
- **3** Reducer uses $\widehat{\mathbf{v}}(x) = \mathbf{s}(x)/p$, our estimator for $\mathbf{v}(x)$.

- RandomizedRecordReader j samples $t_i = n_i/\varepsilon^2 n$ records.
- ② If $\mathbf{s}_j(x) > \varepsilon t_j$, the Mapper emits $(x, \mathbf{s}_j(x))$.
- **3** Reducer uses $\hat{\mathbf{v}}(x) = \mathbf{s}(x)/p$, our estimator for $\mathbf{v}(x)$.

- RandomizedRecordReader j samples $t_i = n_i/\varepsilon^2 n$ records.
- ② If $\mathbf{s}_j(x) > \varepsilon t_j$, the Mapper emits $(x, \mathbf{s}_j(x))$.
- **3** Reducer uses $\hat{\mathbf{v}}(x) = \mathbf{s}(x)/p$, our estimator for $\mathbf{v}(x)$.

- RandomizedRecordReader j samples $t_i = n_i/\varepsilon^2 n$ records.
- ② If $\mathbf{s}_j(x) > \varepsilon t_j$, the Mapper emits $(x, \mathbf{s}_j(x))$.
- 3 Reducer uses $\hat{\mathbf{v}}(x) = \mathbf{s}(x)/p$, our estimator for $\mathbf{v}(x)$.

