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@ For large data we often wish to obtain a concise summary.
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@ A common choice for a histogram is the Haar wavelet histogram.

@ We obtain the Haar wavelet coefficients w; recursively as follows:
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Original data signal at level ¢ = log, u.
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@ A common choice for a histogram is the Haar wavelet histogram.
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To reconstruct the original signal we compute
the average and difference coefficients in re-
verse, i.e. top to bottom.
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@ A common choice for a histogram is the Haar wavelet histogram.
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The reconstructed signal is a reasonably close
approximation.
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All w; can be calculated in O(ulog u) time:

1. We maintain O(log u) partial w;s at a time.

2. Compute affected w; and contribution from
each v(x) in O(log u) time.

2. Process v(x)s in sorted order. [GKMS01]

[GKMSO01] A.C. Gilbert, et al. Surfing wavelets on streams: One-pass summaries for approximate aggregate queries. In VLDB, 2001.
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2. Process v(x)s in sorted order. [GKMS01]

[GKMSO01] A.C. Gilbert, et al. Surfing wavelets on streams: One-pass summaries for approximate aggregate queries. In VLDB, 2001.
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Introduction: Wavelet Histograms

@ A common choice for a histogram is the Haar wavelet histogram.

@ We obtain the Haar wavelet coefficients w; recursively as follows:

[ [L[2[3]4]s[6] 718 ]
\v(x)\3\5\10\8\2\2\10\14\

Wl . total average

Affected

(=0

w;
(=1
a (=2

(=3
v(1)) v(2) v@E) v(#) v(B) v(6) (7)) v(E)

All w; can be calculated in O(ulog u) time:

1. We maintain O(log u) partial w;s at a time.

2. Compute affected w; and contribution from
each v(x) in O(log u) time.

2. Process v(x)s in sorted order. [GKMS01]

[GKMSO01] A.C. Gilbert, et al. Surfing wavelets on streams: One-pass summaries for approximate aggregate queries. In VLDB, 2001.
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Introduction: Histograms

@ We may also compute w; with the wavelet basis vectors ;.

o w,=v-Yifori=1,...,u
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Outline

@ Introduction and Motivation

@ MapReduce and Hadoop

Jeffrey Jestes, Ke Yi, Feifei Li Building Wavelet Histograms on Large Data in MapReduce



Introduction: MapReduce and Hadoop

R
Record ID | User ID | Object ID ...

1 1 12872
2 8 19832
3 4 231

 m—

=

_o

e Traditionally data is stored in a centralized setting.
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Introduction: MapReduce and Hadoop

R
Record ID | User ID | Object ID ...
1 1 12872
2 8 19832
3 4 231

PP
7 L ﬂ
RRQ:RlLJRzURffJR,;

e Traditionally data is stored in a centralized setting.
@ Now stored data has sky rocketed, and is increasingly distributed.
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Introduction: MapReduce and Hadoop

R
Record ID | User ID | Object ID ...
1 1 12872
2 8 19832
3 4 231

PP
7 L ﬂ
RRQ:RlLJRzURffJR,;

e Traditionally data is stored in a centralized setting.

@ Now stored data has sky rocketed, and is increasingly distributed.

@ We study computing the top-k coefficients efficiently on distributed
data in MapReduce using Hadoop to illustrate our ideas.
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Background: Hadoop Distributed File System (HDFS)

e Hadoop requires a Distributed File System (DFS), we utilize the
Hadoop Distributed File System (HDFS).
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Background: Hadoop Distributed File System (HDFS)

e Hadoop requires a Distributed File System (DFS), we utilize the
Hadoop Distributed File System (HDFS).

NameNode R

’ Record ID | User ID | Object ID | ...
1 1 12872 ...

D— 2 8 19832 |...

3 4 231 ...

DataNodes
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Background: Hadoop Distributed File System (HDFS)

e Hadoop requires a Distributed File System (DFS), we utilize the
Hadoop Distributed File System (HDFS).

R’s DataChunks (Splits)
NameNode

<— | 64MB| 64MB| 64MB| 64MB

DataNodes
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Background: Hadoop Distributed File System (HDFS)

e Hadoop requires a Distributed File System (DFS), we utilize the
Hadoop Distributed File System (HDFS).

R’s DataChunks (Splits)

NameNode

/|
&

DataNodes
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Background: Hadoop Core

@ Hadoop Core consists of one master JobTracker and several
Task Trackers.
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Background: Hadoop Core

@ Hadoop Core consists of one master JobTracker and several
Task Trackers.
@ We assume one TaskTracker per physical machine.
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Background: Hadoop Core

@ Hadoop Core consists of one master JobTracker and several
Task Trackers.

@ We assume one TaskTracker per physical machine.
JobTracker

=

TaskTrackers
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und: Hadoop Core

@ Hadoop Core consists of one master JobTracker and several
Task Trackers.

@ We assume one TaskTracker per physical machine.

JobTracker
’ Job Scheduling
Mapper Task Scheduling
E Reduce Task Scheduling

TaskTrackers
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Background: Hadoop Core

@ Hadoop Core consists of one master JobTracker and several

Task Trackers.
@ We assume one TaskTracker per physical machine.
JobTracker
’ Job Scheduling
Mapper Task Scheduling
E Reduce Task Scheduling
Mappers
Reducers

gl -
=f=

TaskTrackers
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Background: Hadoop Cluster

@ In a Hadoop cluster one machine typically runs both the NameNode
and JobTracker tasks and is called the master.
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Background: Hadoop Cluster

@ In a Hadoop cluster one machine typically runs both the NameNode
and JobTracker tasks and is called the master.

@ The other machines run DataNode and TaskTracker tasks and are
called slaves.
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Background: Hadoop Cluster

@ In a Hadoop cluster one machine typically runs both the NameNode
and JobTracker tasks and is called the master.

@ The other machines run DataNode and TaskTracker tasks and are

called slaves.
NameNode + JobTracker

DataNodes + TaskTrackers
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Background: Hadoop Cluster

@ In a Hadoop cluster one machine typically runs both the NameNode
and JobTracker tasks and is called the master.

@ The other machines run DataNode and TaskTracker tasks and are

called slaves.
NameNode + JobTracker

Master

Slaves

DataNodes + TaskTrackers
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Background: MapReduce Job Overview

JobTracker
Job Configuration

Distributed Cache

Mapper

Mapper

Mapper

Mapper

=
o
h]
o
=
®
2

@ Next we look at an overview of a typical MapReduce Job.
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Background: MapReduce Job Overview

JobTracker

Job Configuration
Distributed Cache

3

Map Phase
@ Job specific variables are first placed in the Job Configuration which

is sent to each Mapper Task by the JobTracker.

Building Wavelet Histograms on Large Data in MapReduce

Jeffrey Jestes, Ke Yi, Feifei Li




Background: MapReduce Job Overview

JobTracker
Job Configuration
Distributed Cache

3

Map Phase
@ Large data such as files or libraries are then put in the Distributed

Cache which is copied to each TaskTracker by the JobTracker.

Building Wavelet Histograms on Large Data in MapReduce
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und: MapReduce Job Overview

JobTracker

Job Configuration
Distributed Cache

Map Phase

@ The JobTracker next assigns each InputSplit to a Mapper task on a
TaskTracker, we assume m Mappers and m InputSplits.
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und: MapReduce Job Overview

JobTracker

Job Configuration
Distributed Cache

(ki, v1) (ko v2)

Mapper @
(ki, vi) @ (Ko, v2) @
(ki, vi) (Ko, v2) —
Mapper
(ki.v1) (ko v2)
Mapper @
Map Phase

e Each Mapper maps a (ki, v1) pair to an intermediate (ky, v2) pair
and partitions by ko, i.e. hash(ky) = p; for i € [1,r], r = |reducers|.
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Background: MapReduce Job Overview

JobTracker

v Job Configuration
Distributed Cache

(ki v1) (k2. v2) (ko list(v2))

Mapper fan] ¢ :

PP B Combiner

(ks v1) (ko v2) (ko list(v2))
(K1, v1) (ka, v2) o e fist()

Mapper d -
(ki v1) (ka, v2) (k. list(v2))

Mapper [2:] Combiner

[pe]
Map Phase

@ An optional Combiner is executed over (ky, list(v2)).
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Background: MapReduce Job Overview

JobTracker

Job Configuration
Distributed Cache

(ki v1) (Ko, v2) (ko list(v2)) (ka: v2)
Mapper @ Combiner @

(ki,v1) (k2, v2) (Ko, list(v2)) (K2, v2)
() Mapper o) Pt (k. list(v2)) @ Vo)
I

(ki,v1) (ko, v2) (ko, list(v)) (K2, v2)
o Mapper @ Combiner @

Map Phase

e The Combiner aggregates v, for a kp and a (ka, v») is written to a

partition on disk.

Jeffrey Jestes, Ke Yi
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Background: MapReduce Job Overview

JobTracker

Job Configuration
Distributed Cache

(k1. v1) (ko v2) ] (Ko, list(v2)) (K2, v2)
Mapper b Combiner
[e]
) — (o Tt (o) Reducer
1, v 0 Ko, list(vs) 0 v
Capper ) @ Combiner
P \Sombiner /)
(ku,v1) (k2, v2) - (ko, list(v)) (K2, v2)
(ki,v1) (k2. v2) (Ko, list(v2))
Mapper [2:] Combiner
[p]
Map Phase Shuffle/Sort Phase

@ The JobTracker assigns two TaskTrackers to run the Reducers, each
Reducer copies and sorts it's inputs from corresponding partitions.
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Background: MapReduce Job Overview

JobTracker

” Job Configuration
Distributed Cache Combiners reduce communication overhead!

(k1. v1) (ko, v2) (Ko, list(v)) (k2. v2)
Mapper [m] ™ Combiner
2]
(ki,v1) (ko v2) (ko list(v2)) (k2. v2)
(ki, v1) (ka, v2) (ko list(v2)) (ko, v2)
Mapper d

2

(ki v1) (ko v2)
Mapper

(ko list(v2))

Combiner

B

Map Phase Shuffle/Sort Phase

@ The JobTracker assigns two TaskTrackers to run the Reducers, each
Reducer copies and sorts it's inputs from corresponding partitions.
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Background: MapReduce Job Overview

JobTracker

Job Configuration
Distributed Cache

(i, v1) (ko v2) ] (Ko, list(v2)) (kos v2)
Mapper L i
PP \ﬂ‘ Combiner
(k1 v1) (k2. v2) (ko list(v2)) (k2. v2)
@ @ Combiner
P \Sombiner /)
(ki v1) (ko v2) o] (ke ist(12) (k2. v2)
Mapper 1
(k1 v1) (ka, v2) (ko list(v2))
Mapper [o:] Combiner
[pe]
Map Phase Shuffle/Sort Phase Reduce Phase

@ Each Reducer reduces a (ko, list(v»)) to a single (ks, v3) and writes
the results to a DFS file, o; for i € [1,r].
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Outline

© Exact Top-k Wavelet Coefficients
@ Naive Solution
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Exact Top-k Wavelet Coefficients: Naive Solution

JobTracker

(x, null)

split 1 (x, nul) Mapper
split 2

sp|it 3 (x, null)

split 4
(x, null)

@ Each of the m Mappers reads the input key x from its input split.
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Exact Top-k Wavelet Coefficients: Naive Solution

JobTracker

(x, null) M (x.1)

split 1 (x, nul) m (x.1)
split 2 PP
sp|it 3 (x, null) (x.1)
(x, null) (x,1)
G

e Each Mapper emits (x,1) for combining by the Combiner.
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Exact Top-k Wavelet Coefficients: Naive Solution

JobTracker

(x, null) (x,1) (% vi(x))

split 1

split 2

(x, null) (x,1) (% vj(x))

split 3

split 4

(x, null) (x,vj(x
Mapper 4..

x, null) (x,1) (x,vj(x)
u

@ Each Combiner emits (x, vj(x)), where vj(x) is the local frequency
of x.
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Exact Top-k Wavelet Coefficients: Naive Solution

JobTracker

(x, null) (x,1) X, Vj(x
' (x, null) (% vj(x))
split 1 J
sEIit 2 @4'

split 3 (x, null)

(1)
\i (x.1) (x,vj(x))

@ The Reducer utilizes a Centralized Wavelet Top-k algorithm,
supplying the (x, v(x)) in a streaming fashion.

Centralized Wavelet Top-k
(.9(4) ‘
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Exact Top-k Wavelet Coefficients: Naive Solution

JobTracker

(x, null) (x,1) X, Vj(x
' (x, null) (% vj(x))
split 1 J
sEIit 2 @4'

split 3 (x, null)

(1)
\i (x.1) (x,vj(x))

@ At the end of the Reduce phase, the Reducer's close() method is
invoked. The Reducer then requests the top-k |w;|.

Centralized Wavelet Top-k
close() ‘
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Exact Top-k Wavelet Coefficients: Naive Solution

JobTracker

split 1

Centralized Wavelet Top-k

top-k |wi \

(x, null) M (x.1)

split 2

split 3

split 4

(x, null) @ (x,1) - (x,vj(x))
(x, null) x. 1 , Vi
\i (x.1) (x,vj(x))

@ The centralized algorithm computes the top-k |w;| and returns these
to the Reducer.
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Exact Top-k Wavelet Coefficients: Naive Solution

JobTracker

split 1

Centralized Wavelet Top-k

(x, null) M (x.1)

split 2

split 3

split 4

(x, null) @ (x,1) .w (x,vj(x))
(x, null) (x,1) 5 Vj
om0
\M w (x,1) - (% vj(x))

o Finally, the Reducer writes the top-k |w;| to its HDFS output file o;.

top-k |wi \
Co S
top-k [wi|
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Exact Top-k Wavelet Coefficients: Naive Solution

JobTracker

n = Total records in input file.
Too Expensive!!!

O(n) Communication!!!

(x, null) (x,1) (% vi(x))
Centralized Wavelet Top-k
- (x, null) (x.1) top-k |wj| \
split 1 /\ s
split 2 Mapper @
split 3 (x, null)
5 ’ 1 1 %
(x, null) (x,1) (X»VJ(X))

Reducer
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© Exact Top-k Wavelet Coefficients

o Hadoop Wavelet Top-k: Our Efficient Exact Solution
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Exact Top-k Wavelet Coefficients: Our Solution

@ We can try to model the problem as a distributed top-k:

W, =V = (ij:l vj) i = ij:1 Wi -
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Exact Top-k Wavelet Coefficients: Our Solution

@ We can try to model the problem as a distributed top-k:

W, =V = (ij:l vj) i = ij:1 Wi -

Coordinator

w; j is the local value of w; in split j.

split 1 split 2 split 3 split 4
W11 w12 w13 Wia
W21 w22 w23 W24
W31 W32 w33 W34
Wy,1 Wy2 Wu3 Wy 4
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Exact Top-k Wavelet Coefficients: Our Solution

@ We can try to model the problem as a distributed top-k:

W, =V = (ij:l vj) i = ij:1 Wi -

Coordinator

split 1 split 2 split 3 split 4
W11 w12 w13 Wia
W21 w22 w23 W24
W31 W32 w33 W34
Wy,1 Wy2 Wu3 Wy 4
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Exact Top-k Wavelet Coefficients: Our Solution

@ We can try to model the problem as a distributed top-k:

W, =V = (ij:l vj) i = ij:1 Wi -

Coordinator

split 1 split 2 split 3 split 4
W11 w12 w13 Wia
W21 w22 w23 W24
W31 W32 w33 W34
Wy,1 Wy2 Wu3 Wy 4
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Exact Top-k Wavelet Coefficients: Our Solution

@ We can try to model the problem as a distributed top-k:

W, =V = (ij:l vj) i = ij:1 Wi -

@ Previous solutions assume local score s; ; > 0 and want the largest
m
Si =2 _j15ij-

Coordinator

split 1 split 2 split 3 split 4
W11 w12 w13 Wia
W21 w22 w23 W24
W31 W32 w33 W34
Wy,1 Wy2 Wu3 Wy 4
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Exact Top-k Wavelet Coefficients: Our Solution

@ We can try to model the problem as a distributed top-k:

wi =V = (3070 V) i = 30 Wi

@ Previous solutions assume local score s; ; > 0 and want the largest

S;i = ijzl Sij-

e We have w;j < 0 and w;; > 0 and want the largest |w;].

Coordinator

split 1
W11
W21
W31

Wy 1

split 2
w2

w22

W32

Wu,2

Jeffrey Jestes, Ke Yi, Feifei Li

split 3

w13

split 4

w23

Wia

W24

w33

Wu3

W34

Building Wavelet Histograms on Large Data in MapReduce
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Exact Top-k Wavelet Coefficients: Our Solution

node 1
id | x|s(x)
e1]5| 20
e2|2| 7
e3|l] 6
eiq|4| 2
e (6] -15
e|3| -30

k=1
R R
id }x‘sj(x) x‘s(x)} Fy }T*(x)}T’(x)}‘r(x)
node 2 node 3
id | x| s(x) id |x|s3(x)
e1|5] 12 eq|l) 10
e2|4| 7 23] 6
e3|l] 2 e33]4| 5
42| -5 es4|2] -3
es|3| -14 e5|5] -6
e6|6] -20 e36/6] -10

Jeffrey Jestes, Ke Yi, Feifei Li
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Exact Top-k Wavelet Coefficients: Our Solution

k=1

® An item x has a local score si(x) at node i Vi € [1...m], where if
x does not appear si(x) =0

node 1 node 2 node 3
id [x[ls:(x) id | x[[s(x) id | x[ss(x)
er1|5] 20 e1]5] 12 es1|1] 10
e2|2|| 7 en|4| 7 e2/3] 6
ezl 6 es3|l] 2 e3]4] 5
erq|d| -2 &4|2| 5 es4]|2] -3
e15(6| -15 es|3| -14 e5(5| -6
ers]3| -30 €66 -20 e36]6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R

id | x|si(x)

e1|5) 20

e16]3] -30

@15] 12 o Each node sends:

e6|6] -20 - .

e1]1] 10 the top-k most positive scored items

€66/ -10 the top-k most negative scored items.

node 1 node 2 =3

id [x[s1(x) id [x[s2(x) T Tx 500
er1[5] 20 || e1[5] 12 e 11 10 |
e2|2| 7 oo 4] 7 ARG
e3|l] 6 &3]l 2 s
eiq|4| 2 42| -5 2] 3
es|6] -15 5|3 -14 s[5 6
ere 3] 30 || e26[6] 20 || e36]6] 10 |
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Exact Top-k Wavelet Coefficients: Our Solution

R R

id [x[s()| 7 xS0 A T [T ()| (%)
e1|5) 20 1| 10 |001] 42 -40 0
e6]3] -30 3/-30[100] -8 | -60 | 8
e1|5| 12 5| 32 [110| 42 22 | 22
e6|6] -20 6]-30 [011] -10 | -60 | 10
ea|1] 10

e36(6] -10

® The coordinator computes useful bounds for each received item.

node 1 node 2 node 3
id [x[si(x) id | x| s(x) id |x|ss(x)
er1]5] 20 | e1]5] 12 e1]1] 10 |
e2|2| 7 en|4| 7 e2(3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4|2] -3
e15(6| -15 es|3| -14 5[5 -6
es3] 30 || e26[6] 20 || e56]6] 10 ||
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Exact Top-k Wavelet Coefficients: Our Solution

k=1
R R
H x50 X[ F [~ 6] ([0
er1|5] 20 1| 10 |001| 42 -40 0
er6|3| -30 3]-30 |100| -8 -60 8
e1|5| 12 5| 32 |110| 42 22 22
66| -20 6]-30 |011| -10 -60 | 10
e1]1] 10
e6]6] -10

® 5(x) denotes the partial score sum for x

node 1

id | x|s(x)
eil5] 20 |
e2|2| 7
e3|l] 6
eiq|4| 2
e (6] -15
ers]3] 30

node 2
id | x| s(x)
e1]5] 12
en|4 7
e3|l| 2
42| -5
es|3| -14
ee|6] -20 |

Jeffrey Jestes, Ke Yi, Feifei Li

node 3
id |x|ss(x)
e [1] 10 |
e2(3] 6
e3]4] 5
es4)|2| -3
e5/5] -6
e35[6] -10 |

Building Wavelet Histograms on Large Data in MapReduce



Exact Top-k Wavelet Coefficients: Our Solution

k=1
R R
A x50 x50  F [~ 6] (9]0
er1]5] 20 | 1| 10 [001| 42 -40 0
er6|3| -30 31-30 (100 -8 -60 8
e1|5] 12 | 5| 32 |110| 42 22 22
66| -20 6]-30 |011| -10 -60 | 10
e1]1] 10
e6]6] -10

® 5(x) denotes the partial score sum for x

node 1

id | x|s(x)
eil5] 20 |
e2|2| 7
e3|l] 6
eiq|4| 2
e (6] -15
ers]3] 30

node 2
id | x| s(x)
e1]5] 12
en|4 7
e3|l| 2
42| -5
es|3| -14
ee|6] -20 |
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node 3
id |x|ss(x)
e [1] 10 |
e2(3] 6
e3]4] 5
es4)|2| -3
e5/5] -6
e35[6] -10 |
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Exact Top-k Wavelet Coefficients: Our Solution

k=1
R R
id [x[s;(x) x|s(x)| Fe |77 (x) |7 (x) | 7(x)
e1|5] 20 1| 10 |001f 42 -40 0
e16]3] -30 3]-30 100 -8 | -60 | 8
e1|5| 12 5| 32 |110| 42 22 22
e6]6] -20 6]-30 |011] -10 | -60 | 10
e1|1] 10
e36(6] -10
e [, is a receipt indication bit vector,
if si(x) is received F (i) =1,
else F (i) = 0.
node 1 node 2 node 3
id [x[si(x) id | x| s(x) id |x|ss(x)
er1|5] 20 || e1[5] 12 es1]1] 10 |
e2|2| 7 en|4| 7 e2(3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4)|2| -3
e15(6| -15 es|3| -14 5[5 -6
e1s]3] 30 || e[ 6] 20 | e36]6] -10 ||

Jeffrey Jestes, Ke Yi, Feifei Li
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Exact Top-k Wavelet Coefficients: Our Solution

k=1
R R
id [x[s;(x) x|s(x)| Fe |77 (x) |7 (x)|7(x)
e11[5] 20 | 1|10 |001| 42 -40 0
e16]3] -30 3/-30100] -8 | -60 | 8
&[5 12 ]| 5| 32 [110| 42 22 22
€6|6] -20 6]-30 [011] -10 | -60 | 10
e1|1] 10
e36(6] -10
e [, is a receipt indication bit vector,
if si(x) is received F (i) =1,
else F (i) = 0.
node 1 node 2 node 3
id [x[si(x) id | x| s(x) id |x|ss(x)
er1|5] 20 || e1[5] 12 es1]1] 10 |
e2|2| 7 en|4| 7 e2(3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4)|2| -3
e15(6| -15 es|3| -14 5[5 -6
e1s]3] 30 || e[ 6] 20 | e36]6] -10 ||

Jeffrey Jestes, Ke Yi, Feifei Li
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Exact Top-k Wavelet Coefficients: Our Solution

k=1
R R
H x50 x5 [ E [T o] (][00
er1|5] 20 1| 10 [001| 42 -40 0
er6|3| -30 31-30 (100| -8 -60 8
e1|5| 12 5| 32 |110] 42 22 22
66| -20 6]-30 |011} -10 -60 | 10
e1]1] 10
e6]6] -10

o 7'(x) is an upper bound on the total score s(x),
if si(x) received then 77(x) = 77(x) + s;(x)
else 77 (x) = 77(x) 4 k'th most positive from node i

node 1 node 2 node 3
id [x[si(x) id | x| s(x) id |x|ss(x)
er1]5] 20 | e1]5] 12 e1]1] 10 |
e2|2| 7 en|4| 7 e2(3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4|2] -3
e15(6| -15 es|3| -14 5[5 -6
es3] 30 || e26[6] 20 || e56]6] 10 ||
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Exact Top-k Wavelet Coefficients: Our Solution

k=1
R R

id [x[s()] 7 "[x[s()]| A [TT )7 (x) [ (x)
er1|5] 20 | 1] 10 [001] 42 [ 40 | ©
e16]3] -30 3/-30|100| -8 | -60 | 8
e1|5[ 12 ] 5|32 |110| 42 2 | 22
e6|6] -20 6]-30 011 -10 | -60 | 10
esa[1]10 |

66| -10

o 7'(x) is an upper bound on the total score s(x),
if si(x) received then 77(x) = 77(x) + s;(x)
else 77 (x) = 77(x) 4 k'th most positive from node i

node 1 node 2 node 3
id [x[si(x) id | x| s(x) id |x|ss(x)
er1]5] 20 | e1]5] 12 e1]1] 10 |
e2|2| 7 en|4| 7 e2(3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4|2] -3
e15(6| -15 es|3| -14 5[5 -6
es3] 30 || e26[6] 20 || e56]6] 10 ||
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Exact Top-k Wavelet Coefficients: Our Solution

k=1
R R
H x50 x50 F [~ G [r (00
er1|5] 20 1| 10 [001| 42 -40 0
er6|3| -30 31-30 (100 -8 -60 8
e1|5| 12 5| 32 |110| 42 22 22
66| -20 6]-30 |011| -10 -60 | 10
e1]1] 10
e6]6] -10

e 7 (x) is a lower bound on the total score sum s(x),
if si(x) received then 77 (x) = 77 (x) + si(x)
else 77(x) = 77 (x) + k'th most negative score from node i

node 1 node 2 node 3
id [x[si(x) id | x| s(x) id |x|ss(x)
er1]5] 20 | e1]5] 12 e1]1] 10 |
e2|2| 7 en|4| 7 e2(3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4|2] -3
e15(6| -15 es|3| -14 5[5 -6
es3] 30 || e26[6] 20 || e56]6] 10 ||
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Exact Top-k Wavelet Coefficients: Our Solution

k=1
R R

W x50 x50 e [T ([ (7).
er1|5] 20 | 1| 10 |001| 42 -40 0
er6|3| -30 31-30 (100 -8 -60 8
e1|5] 12 | 5| 32 |110| 42 22 | 22
66| -20 6]-30 |011| -10 -60 | 10
e1]1] 10

€616 10 |

e 7 (x) is a lower bound on the total score sum s(x),
if si(x) received then 77 (x) = 77 (x) + si(x)
else 77(x) = 77 (x) + k'th most negative score from node i

node 1 node 2 node 3
id [x[si(x) id | x| s(x) id |x|ss(x)
er1]5] 20 | e1]5] 12 e1]1] 10 |
e2|2| 7 en|4| 7 e2(3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4|2] -3
e15(6| -15 es|3| -14 5[5 -6
es3] 30 || e26[6] 20 || e56]6] 10 ||
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Exact Top-k Wavelet Coefficients: Our Solution

k=1
R R
id [x[s(x)| 7 [x[s() ] A |77 () |7 () [7(x
e1|5) 20 1| 10 |001] 42 -40 0
e6]3] -30 3/-30[100] -8 | -60 | 8
e1|5| 12 5| 32 [110| 42 22 | 22
e6|6] -20 6]-30 [011] -10 | -60 | 10
ea|1] 10
e36(6] -10

o 7(x) is a lower bound on |s(x)| computed as,
7(x) = 0 if sign(7"(x)) # sign(t~(x))
7(x) = min(|77(x)|, |77 (x)]) otherwise.

node 1 node 2 node 3
id [x[si(x) id | x| s(x) id |x|ss(x)
er1]5] 20 | e1]5] 12 e1]1] 10 |
e2|2| 7 en|4| 7 e2(3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4|2] -3
e15(6| -15 es|3| -14 5[5 -6
es3] 30 || e26[6] 20 || e56]6] 10 ||
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Exact Top-k Wavelet Coefficients: Our Solution

k=1
R R
H x50 [x[500 F [~ 6] (9]0
er1|5] 20 1| 10 [001| 42 -40 0
er6|3| -30 31-30 (100 -8 -60 8
e1|5| 12 5| 32 |110]| 42 22 22
66| -20 6]-30 |011| -10 -60 | 10
e1]1] 10
e6]6] -10

o 7(x) is a lower bound on |s(x)| computed as,
7(x) = 0 if sign(7"(x)) # sign(t~(x))
7(x) = min(|77(x)|, |77 (x)]) otherwise.

node 1 node 2 node 3
id [x[si(x) id | x| s(x) id |x|ss(x)
er1]5] 20 | e1]5] 12 e1]1] 10 |
e2|2| 7 en|4| 7 e2(3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4|2] -3
e15(6| -15 es|3| -14 5[5 -6
es3] 30 || e26[6] 20 || e56]6] 10 ||
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Exact Top-k Wavelet Coefficients: Our Solution

k=1
R R

id | x|si(x) x[s(x)| Fe [77(x) |7 (x) | 7(x)
e1|5) 20 1| 10 |001] 42 -40 | 0
eis|3] -30 3]-30 [100| -8 -60 | 8
e1|5| 12 5| 32 [110| 42 22 | 22
es|6] -20 6]-30 [011| -10 | -60 | 10
es1]1] 10 T =22, Ti/m=22/3

e36(6] -10

® We select the item with the kth largest 7(x).
7(x) is a lower bound T; on the top-k |s(x)]| for unseen item x.

node 1 node 2 node 3
id [x[si(x) id | x| s(x) id |x|ss(x)
er1]5] 20 | e1]5] 12 e1]1] 10 |
e2|2| 7 en|4| 7 e2(3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4|2] -3
e15(6| -15 es|3| -14 5[5 -6
es3] 30 || e26[6] 20 || e56]6] 10 ||
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Exact Top-k Wavelet Coefficients: Our Solution

R R

id [x[5(9 x[5()[ B [0 [~ () [7(x)
e;1|5] 20 1|10 |001| 42 | -40 | O
e16]3] -30 3]-30|100| -8 | -60 | 8
e1|5] 12 5| 32 |110| 42 2 | 22
es|6] -20 6]-30 011 -10 | -60 | 10
TR

66| -10

® Any unseen item x must have at least:
one si(x) > Ti/m or
one si(x) < —Ti/m
To get into the top-k.

node 1 node 2 node 3
id [x[si(x) id | x| s(x) id |x|ss(x)
er1]5] 20 | e1]5] 12 e1]1] 10 |
e2|2| 7 en|4| 7 e2(3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4|2] -3
e15(6| -15 es|3| -14 5[5 -6
es3] 30 || e26[6] 20 || e56]6] 10 ||
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Exact Top-k Wavelet Coefficients: Our Solution

k=1
R R

id | x|si(x) x[s(x)| Fe [77(x) |7 (x) | 7(x)
e1|5) 20 1| 10 |001] 42 -40 | 0
eis|3] -30 3]-30 |100| -8 -60 | 8
e1|5| 12 5| 32 [110| 42 22 | 22
es|6] -20 6]-30 [011) -10 | -60 | 10
es1]1] 10 T =22, Ti/m=22/3

e36(6] -10

node 1
id | x|s(x)
Jea[5] 20
e2|2| 7
e3|l] 6
eiq|4| 2
e (6] -15
Vere]3] 30

Round 1 End
node 2
id | x| s(x)
V]e1|5] 12
@24 7
es3|l] 2
©4|2| 5
es|3| -14
Ve |6] -20

Jeffrey Jestes, Ke Yi, Feifei Li

node 3
id x| ss(x)
V|ea|1] 10
e32|3| 6
e33|4] 5
es4)|2| -3
es5/5] -6
V| es6/6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

k=1
R R

id | x|si(x) x[s(x)| Fe [77(x) |7 (x) | 7(x)
e1|5) 20 1|10 |001| 42 -40 0
eis|3] -30 3]-30 |100| -8 -60 | 8
e1|5| 12 5| 32 [110| 42 22 | 22
e6|6] -20 6]-30 [011) -10 | -60 | 10
ea|l) 10 T, =22 T,/m=22/3

e36(6] -10

e T1/m sent to each site.

node 1 node 2 node 3
id [x[si(x) id | x| s(x) id x| ss(x)
V[eu1][5] 20 V]e1|5] 12 V|e1]1] 10
e2|2| 7 en|4| 7 e2/3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4|2] -3
e15(6| -15 es|3| -14 5[5 -6
V/[ews]3] -30 V|es 6] -20 V| es6|6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

k=1
R R

id | x|si(x) x[s(x)| Fe [77(x) |7 (x) | 7(x)
e1|5) 20 1| 10 |001] 42 -40 | 0
eis|3] -30 3]-30 |100| -8 -60 | 8
e1|5| 12 5| 32 [110| 42 22 | 22
es|6] -20 6]-30 [011) -10 | -60 | 10
es1]1] 10 T =22, Ti/m=22/3

e36(6] -10

o Each site finds items with
si(x) > Ty/mor

si(x) < Ty/m.

node 1 node 2 node 3
id [x[si(x) id | x| s(x) id x| ss(x)
V[eu1][5] 20 V]e1|5] 12 V|e1]1] 10
e2|2| 7 en|4| 7 e2/3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4|2] -3
ers]6] -15 | e5[3] 14 e5]5| -6
V/[ews[3] -30 V|es 6] -20 V| es6|6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

k=1
R R
id | x|si(x) x[s() [ Fe [T [ 7 (x)[7(x)
e1]5| 20 1| 10 [001| 42 -40 0
e1g|3] -30 3]-30 [100| -8 | -60 | 8
e1|5| 12 5|32 |110| 42 22 22
eg|6] -20 6]-30 [011] -10 | -60 | 10
i1 10
e36)6] -10
o Items with [s;(x)| > T1/m are sent
to coordinator.
node 1 node 2 node 3
id [x[si(x) id | x| s(x) id |x|s3(x)
V[eu1][5] 20 V]e1|5] 12 V|e1]1] 10
e2|2| 7 en|4| 7 e2/3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4|2] -3
ers]6] -15 | e5[3] 14 e5]5| -6
V|es[3] -30 V|es 6] -20 V| es6|6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

k=1
R R
id | x]si(x) x[s(x)| Fe [77(x) |7 (x) | 7(x)
e1]5| 20 1| 10 [001| 42 -40 0
e5|6] -15 3|-30 [100| -8 -60 8
e6|3| -30 5|32 |110| 42 22 22
e1|5| 12 6(-30 |011| -10 | -60 | 10
s[5 8
e6|6| -20
e31]1| 10
e36/6] -10
o Items with [s;(x)| > T1/m are sent
to coordinator.
node 1 node 2 node 3
id | x|s(x) id | x| s(x) id x| ss(x)
V[eu1][5] 20 V]e1|5] 12 V|e1]1] 10
e2|2| 7 en|4| 7 e2/3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4|2] -3
e1s[6] -15 | es|3] -14 | es|5] -6
Vs3] -30 V| e |6] -20 V|ess]6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|s(x) x[s(x)| B [77(x) |7 (x) [ 7(x) | 7'(x)
e1]5| 20 1| 10 |001| 24.6 | -4.6 0 | 246
e5|6] -15 3] -44 1110 -36.6 | -51.3 [ 36.6 | 51.3
e6|3| -30 5| 32 |110| 39.3 | 24.6 | 246 39.3
e1]5| 12 6| -45|111| -45 -45 | 45 | 45
s3] 14
eg|6] -20
ea|l] 10 e The coordinator updates the bounds for
66| -10 each item it has ever received.
node 1 node 2 node 3
id | x|s(x) id | x| s(x) id x| ss(x)
V[eu1][5] 20 V]e1|5] 12 V|e1]1] 10
en]2| 7 &4 7 e32/3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4|2] -3
e1s[6] -15 | es|3] -14 | es|5] -6
Vs3] -30 V| e |6] -20 V|ess]6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|si(x) x[s(x)| B [77(x) |7 (x) [ 7(x) | 7'(x)
e1|5] 20 | 1| 10 |001| 24.6 | -4.6 0 | 246
e5|6] -15 3| -44 1110 -36.6 | -51.3 | 36.6 | 51.3
e6|3| -30 5[ 32 |110| 39.3 | 24.6 |24.6|39.3
e1|5] 12 | 6| -45|111| -45 -45 | 45 | 45
es|3) 14 T, =22 T,/m=22/3
€6(6] -20
ea|l] 10 e The coordinator updates the bounds for
66| -10 each item it has ever received.

o Partial score sum s(5) = 20 + 12

node 1 node 2 node 3
id | x|s(x) id | x| s(x) id x| ss(x)
V[eu1][5] 20 V]e1|5] 12 V|e1]1] 10
en]2| 7 &4 7 e32/3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4|2] -3
e1s[6] -15 | es|3] -14 | es|5] -6
Vs3] -30 V| e |6] -20 V|ess]6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|si(x) x[s(x)| B [77(x) |7 (x) [ 7(x) | 7'(x)
e1|5] 20 | 1| 10 |001| 24.6 | -4.6 0 | 246
e5|6] -15 3] -44 110 -36.6 | -51.3 | 36.6 | 51.3
e6|3| -30 5| 32 |[110] 39.3 | 24.6 |24.6|39.3
e1|5| 12 | 6| -45|111| -45 -45 | 45 | 45
es|3| 14 T, =22 T,/m=22/3
€6(6] -20
ea|l] 10 e The coordinator updates the bounds for
66| -10 each item it has ever received.

® Receipt vector f5 = [110]

node 1 node 2 node 3
id | x|s(x) id | x| s(x) id x| ss(x)
V[eu1][5] 20 V]e1|5] 12 V|e1]1] 10
en]2| 7 &4 7 e32/3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4|2] -3
e1s[6] -15 | es|3] -14 | es|5] -6
Vs3] -30 V| e |6] -20 V|ess]6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|si(x) x[s(x)| B [77(x) |7 (x) [ 7(x) | 7'(x)
e1|5] 20 | 1| 10 |001| 24.6 | -4.6 0 | 246
e5|6] -15 3] -44 1110 -36.6 | -51.3 | 36.6 | 51.3
e6|3| -30 5| 32 |110] 39.3 | 24.6 |24.6|39.3
e1|5| 12 | 6| -45|111| -45 -45 | 45 | 45
€25|3] -14 T 2/3
€6(6] -20
ea|l] 10 e The coordinator updates the bounds for
66| -10 each item it has ever received.

® 77(x) is now tighter,
if si(x) received then 77(x) = 7 (x) + si(x)
else 7H(x) = 77(x) + Ty/m

node 1 node 2 node 3
id [x[si(x) id | x| s(x) id x| ss(x)
V[eu1][5] 20 V]e1|5] 12 V|e1]1] 10
e2|2| 7 en|4| 7 e2/3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4|2] -3
ers]6] -15 | e5[3] 14 e5]5| -6
V/[ews[3] -30 V|es 6] -20 V| es6|6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

e 7 (x) is also tighter,
if si(x) received then 7 (x) = 77 (x) + s;(x)
else 77(x) =77 (x) — T1/m

node 1

id | x|s(x)
Jler1|5] 20

e2|2| 7

e3|l] 6

eiq|4| -2

ers]6] -15 |
V16 |3] 30

node 2

id | x| s(x)
N

en|4 7

e3|l| 2

42| -5

es[3] -14 |
V]ep|6] -20

Jeffrey Jestes, Ke Yi

R R
id | x|si(x) x[s(x)| B [77(x) |7 (x) [ 7(x) | 7'(x)
e1|5] 20 | 1| 10 |001| 24.6 | -4.6 0 | 246
e5|6] -15 3| -44110|-36.6 | -51.3 {36.6| 51.3
e6|3| -30 5| 32 |110| 39.3 [ 24.6 |24.6|39.3
e1|5] 12 | 6| -45|111| -45 -45 | 45 | 45
es5(3] -14
e6|6] -20
ea|l] 10 e The coordinator updates the bounds for
66| -10 each item it has ever received.

node 3
id x| ss(x)
V|ea|1] 10
e2(3| 6
e3]4] 5
es4)|2| -3
es5/5] -6
V| e6]6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|s(x) x[s(x)| B [77(x) |7 (x) [ 7(x) | 7'(x)
e1|5] 20 1| 10 |001| 24.6 | -4.6 0 | 246
e5|6] -15 3] -44 1110 -36.6 | -51.3 [ 36.6 | 51.3
e6|3| -30 5| 32 |110] 39.3 | 24.6 (|24.6]39.3
e1|5| 12 6| -45|111| -45 -45 | 45 | 45
es|3) 14 T, =22 T,/m=22/3
€6(6] -20
ea|l] 10 e The coordinator updates the bounds for
66| -10 each item it has ever received.

o Score absolute value bound 7(5) = min(39.3,24.6).

node 1 node 2 node 3
id | x|s(x) id | x| s(x) id x| ss(x)
V[eu1][5] 20 V]e1|5] 12 V|e1]1] 10
en]2| 7 &4 7 e32/3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4|2] -3
e1s[6] -15 | es|3] -14 | es|5] -6
Vs3] -30 V| e |6] -20 V|ess]6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|s(x) x[s(x)] B [77(x) |7 (x) [7(x) [7(x)
e1|5] 20 1| 10 |001| 24.6 | -4.6 0 |246
e5|6] -15 3] -44 110 -36.6 | -51.3 [ 36.6 | 51.3
e6|3| -30 5| 32 |110| 39.3 | 24.6 |246|39.3
e1|5| 12 6| -45|111| -45 -45 | 45 | 45
es|3) 14 T, =22 T,/m=22/3
€6(6] -20
ea|l] 10 e The coordinator updates the bounds for
66| -10 each item it has ever received.

o 7/(x) is an upper bound on |s(x)|,

7'(x) = max{|rT (x|, [T~ (x)[}

node 1 node 2 node 3
id [x[si(x) id | x| s(x) id x| ss(x)
V[eu1][5] 20 V]e1|5] 12 V|e1]1] 10
e2|2| 7 en|4| 7 e2/3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4|2] -3
ers]6] -15 | e5[3] 14 e5]5| -6
V/[ews[3] -30 V|es 6] -20 V| es6|6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

o 7/(x) is an upper bound on |s(x)

7'(x) = max{|rT (x|, [T~ (x)[}

node 1

id | x|s(x)
Jler1|5] 20

e2|2| 7

e3|l] 6

eiq|4| -2

ers]6] -15 |
V16 |3] 30

node 2

id | x| s(x)
N

en|4 7

e3|l| 2

42| -5

es[3] -14 |
V]ep|6] -20

Jeffrey Jestes, Ke Yi

R R
id | x|s(x) x[s(x)| B [77(x) |7 (x) [ 7(x) | 7'(x)
e1|5] 20 1| 10 |001| 24.6 | -4.6 0 | 246
e5|6] -15 3| -44 1110 -36.6 | -51.3 [ 36.6 | 51.3
e6|3| -30 5| 32 |110] 39.3 | 24.6 |24.6 |39.3
e1|5| 12 6| -45 |111| -45 -45 | 45 | 45
es|3) 14 T, =22 T,/m=22/3
€6(6] -20
ea|l] 10 e The coordinator updates the bounds for
66| -10 each item it has ever received.

node 3
id x| ss(x)
V|ea|1] 10
e2(3| 6
e3]4] 5
es4)|2| -3
es5/5] -6
V| e6]6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R

id | x|s(x) x[s(x)| B [77(x) |7 (x) [ 7(x) | 7'(x)
e1|5] 20 1] 10 |001| 246 | -46 | 0 | 246
e5|6]-15 3| -44110|-36.6 | -51.3 {36.6| 51.3
e6|3] -30 5| 32 |110| 39.3 | 24.6 |24.6|39.3
e1|5| 12 6| -45[111| -45 | -45 | 45 | 45
CREI

e6|6] -20

e31|1] 10

e36|6] -10

© We select the item x with the kth largest 7(x), which serves as a
new lower bound T, on |[s(x)| for any item.

node 1 node 2 node 3
id | x|s(x) id | x| s(x) id x| ss(x)
V[eu1][5] 20 V]e1|5] 12 V|e1]1] 10
en]2| 7 &4 7 e32/3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4|2] -3
e1s[6] -15 | es|3] -14 | es|5] -6
Vs3] -30 V|es 6] -20 V|ess]6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|s(x) x[5(x)| B [7H() [T () [ 7(x) | 7'(x)
e1|5] 20 1 24.6
e 56| -15 3 51.3
e6|3| -30 5 39.3
e1|5| 12 6 45
es|3| -14
e6|6| -20
e31|1| 10
e36]6| -10

© We select the item x with the kth largest 7(x), which serves as a
new lower bound T, on |[s(x)| for any item.

node 1 node 2 node 3
id [x[si(x) id | x| s(x) id x| ss(x)
V[eu1][5] 20 V]e1|5] 12 V|e1]1] 10
e2|2| 7 en|4| 7 e2/3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4|2] -3
ers]6] -15 | e5[3] 14 e5]5| -6
V/[ews[3] -30 V|es 6] -20 V| es6|6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|s(x) x[5(x)| B [7H() [T () [ 7(x) | 7'(x)
e11|5| 20 i 24:6
e5|6| -15 3 51.3
e6|3|-30 5 393
e1]5| 12 6 45
es5|3| -14
€6|0| -20
e1|1] 10
e36/6] -10

o Any item with 7/(x) < T, cannot be in the top-k and is pruned from

R.

node 1 node 2 node 3
id [x[si(x) id | x| s(x) id |x|s3(x)
V[eu1][5] 20 V]e1|5] 12 V|e1]1] 10
e2|2| 7 en|4| 7 e2/3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4|2] -3
ers]6] -15 | e5[3] 14 e5]5| -6
V|es[3] -30 V|es 6] -20 V| es6|6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|s(x) x|[s(x)] B |77 (x) |7 (x) | 7(x) | 7' (%)
911 5 20 1 ’7/|.£
e5|6| -15 3 51.3
e6|3|-30 5 393
e1|5| 12 6 45
es|3| -14
e6|6| -20
e31]1| 10
e36/6] -10
® Any remaining items with a 0 in vector Fy are selected.
node 1 node 2 node 3
id [x[si(x) id | x| s(x) id x| ss(x)
V[eu1][5] 20 V]e1|5] 12 V|e1]1] 10
e2|2| 7 en|4| 7 e2/3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4|2] -3
ers]6] -15 | e5[3] 14 e5]5| -6
V|es[3] -30 V|es 6] -20 V| es6|6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R
id | x]si(x) 7'(x)
e1]5| 20 24-6
e5|6| -15 51.3
e6|3|-30 393
e1]5| 12 45
es|3| -14
e6|6| -20
e31]1| 10
e36(6| -10
Round 2 End
node 1 node 2 node 3
id [x[si(x) id | x| s(x) id |x|s3(x)
V[eu1][5] 20 V]e1|5] 12 V|e1]1] 10
e2|2| 7 en|4| 7 e2/3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4|2] -3
V]eis|6] -15 V|es|3| -14 5[5 -6
V/[ews]3] -30 V|es 6] -20 V| es6|6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|s(x) x|[s(x)] B |77 (x) |7 (x) | 7(x) | 7' (%)
ell 5 20 1 ’7/|.F
e5|6| -15 3 51.3
e6|3|-30 5 393
e1|5| 12 6 45
es|3| -14
e6|6| -20
e31]1| 10
e36(6| -10
@ The coordinator asks for missing scores
for items still in R.
node 1 node 2 node 3
id [x[si(x) id | x| s(x) id x| ss(x)
V[eu1][5] 20 V]e1|5] 12 V|e1]1] 10
e2|2| 7 en|4| 7 e2/3] 6
e3|l] 6 es3|l] 2 e3]4] 5
erq|d| -2 &4]2] 5 es4|2] -3
V]eis|6] -15 V|es|3| -14 5[5 -6
V/[ews]3] -30 V|es 6] -20 V| es6|6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

node 1
id | x|s(x)
Jea[5] 20
e2|2| 7
e3|l] 6
eiq|4| 2
V|ews|6] -15
Vere]3] 30

R R
id | x|s(x) x[s(x)| B [77(x) |7 (x) [ 7(x) | 7'(x)
e1]5] 20 1115 1901l 226 45 g [2a¢
e 56| -15 3| -44 |110|-36.6 | -51.3 | 36.6 | 51.3
e6|3| -30 532 H039324-62461393
e1|5| 12 6| -45|111| -45 -45 | 45 | 45
es|3| -14 T, =22, Ty/m =223
e6|6| -20
e [1] 10 LE
ess]6| 10
node 2 node 3
id | x| s(x) id |x|s3(x)
V]e1|5] 12 V|e1]1] 10
en|4 7 e2[3] 6
e3|l| 2 e33]4| 5
e4|2| -5 es4)|2| -3
V|es|3| -14 e5|5] -6
Ve |6] -20 V|ess]6] -10

Jeffrey Jestes, Ke Yi
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Exact Top-k Wavelet Coefficients: Our Solution

node 1
id | x|s(x)
Jea[5] 20
e2|2| 7
e3|l] 6
eiq|4| 2
V|ews|6] -15
Vere]3] 30

O
’7/|.F
51.3
45
node 2 node 3
id | x| s(x) id |x|s3(x)
V]e1|5] 12 V|e1]1] 10
@24 7 e2[3] 6
e3|l] 2 e33]4| 5
42| -5 es4|2] -3
V|es|3| -14 e5|5] -6
V|es 6] -20 V| es6/6] -10

Jeffrey Jestes, Ke Yi
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Exact Top-k Wavelet Coefficients: Our Solution

node 1
id | x|s(x)
Jea[5] 20
e2|2| 7
e3|l] 6
eiq|4| 2
V|ews|6] -15
Vere]3] 30

O
’7/|.F
51.3
45
node 2 node 3
id | x| s(x) id |x|s3(x)
V]e1|5] 12 V|e1]1] 10
@24 7 e2[3] 6
e3|l] 2 e33]4| 5
42| -5 es4|2] -3
V|es|3| -14 e5|5] -6
V|es 6] -20 V| es6/6] -10

Jeffrey Jestes, Ke Yi
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Exact Top-k Wavelet Coefficients: Our Solution

R
id | x|s(x)
e1|5] 20
es (6] -15
es|3] -30
€1|5] 12
es5(3] -14
€6(6] -20
ea1|1] 10
e32/3] 6
e36(6] -10

o After collecting all scores, the coordinator
can determine top-k |s(x)|.

node 1 node 2 node 3

id [x[si(x) id | x| s(x) id x| ss(x)
V[eu1][5] 20 V]e1|5] 12 V|e1]1] 10

e2|2| 7 en|4| 7 &2/3] 6 |
e3|l] 6 es3|l] 2 e3|4] 5
erq|d| -2 &4]2] 5 es4|2] -3
V]eis|6] -15 V|es|3| -14 5[5 -6
V/[ews]3] -30 V|es 6] -20 V| es6|6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R
id | x|s(x)
e1|5] 20
es (6] -15
es|3] -30
€1|5] 12
es5(3] -14
€6(6] -20
ea1|1] 10
e32/3] 6
e36(6] -10

o After collecting all scores, the coordinator
can determine top-k |s(x)|.

node 1 node 2 node 3

id [x[si(x) id | x| s(x) id x| ss(x)
V[eu1][5] 20 V]e1|5] 12 V|e1]1] 10

e2|2| 7 en|4| 7 &2/3] 6 |
e3|l] 6 es3|l] 2 e3|4] 5
erq|d| -2 &4]2] 5 es4|2] -3
V]eis|6] -15 V|es|3| -14 5[5 -6
V/[ews]3] -30 V|es 6] -20 V| es6|6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|s(x) x|s(x)] Fi
e11]5] 20 +—+-loe+
e15]6] -15 3] -38 [111
e15]3] -30 SHae—te
&1]5] 12 6] 45 111
es g ;g T, =22, Ty/m =223
BT
e2[3] 6 #{s(6) — —45]
€55]6] -10

o After collecting all scores, the coordinator
can determine top-k |s(x)|.

node 1 node 2 node 3

id [x[si(x) id | x| s(x) id x| ss(x)
V[eu1][5] 20 V]e1|5] 12 V|e1]1] 10

e2|2| 7 |4 &2/3] 6 |
e3|l] 6 es3|l] 2 e3|4] 5
erq|d| -2 &4]2] 5 es4|2] -3
V]eis|6] -15 V|es|3| -14 5[5 -6
V/[ews]3] -30 V|es 6] -20 V| es6|6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

Round 3 End

node 1 node 2 node 3
id [x[si(x) id | x| s(x) id x| ss(x)
V[eu1][5] 20 V]e1|5] 12 V|e1]1] 10
e2|2| 7 en|4| 7 e2/3] 6
er3|1] 6 3|l e33]4| 5
erq|d| -2 &4]2] 5 es4|2] -3
V]eis|6] -15 V|es|3| -14 5[5 -6
V/[ews]3] -30 V|es 6] -20 V| es6|6] -10

Jeffrey Jestes, Ke Yi i Building Wavelet Histograms on Large Data in MapReduce



Outline

e Approximate Top-k Wavelet Coefficients
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Approximate Top-k Wavelet Coefficients

e Hadoop Wavelet Top-k is a good solution if the exact top-k |w;|
must be retrieved, but requires multiple phases.
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Approximate Top-k Wavelet Coefficients

e Hadoop Wavelet Top-k is a good solution if the exact top-k |w;|
must be retrieved, but requires multiple phases.

@ If we are allowed an approximation, we could further improve:
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Approximate Top-k Wavelet Coefficients

e Hadoop Wavelet Top-k is a good solution if the exact top-k |w;|
must be retrieved, but requires multiple phases.

@ If we are allowed an approximation, we could further improve:

© communication cost
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Approximate Top-k Wavelet Coefficients

e Hadoop Wavelet Top-k is a good solution if the exact top-k |w;|
must be retrieved, but requires multiple phases.
@ If we are allowed an approximation, we could further improve:

© communication cost
@ number of MapReduce rounds
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Approximate Top-k Wavelet Coefficients

e Hadoop Wavelet Top-k is a good solution if the exact top-k |w;|
must be retrieved, but requires multiple phases.
@ If we are allowed an approximation, we could further improve:

© communication cost
@ number of MapReduce rounds
© amount of 1/0 incurred

Jeffrey Jestes, Ke Yi, Feifei Li Building Wavelet Histograms on Large Data in MapReduce



Approximate Top-k Wavelet Coefficients

@ Some natural improvement attempts:
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Approximate Top-k Wavelet Coefficients

@ Some natural improvement attempts:
@ Approximate distributed top-k.
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Approximate Top-k Wavelet Coefficients

@ Some natural improvement attempts:

@ Approximate distributed top-k.
@ Approximating local coefficients with a linearly combinable sketch.
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Approximate Top-k Wavelet Coefficients

@ Some natural improvement attempts:
@ Approximate distributed top-k.
@ Approximating local coefficients with a linearly combinable sketch.

@ Forset A= A;UA,,
Sketch(A) = Sketch(A1) op Sketch(Az) for operator op.
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Approximate Top-k Wavelet Coefficie

@ Some natural improvement attempts:
@ Approximate distributed top-k.
@ Approximating local coefficients with a linearly combinable sketch.
@ Forset A= A;UA,,
Sketch(A) = Sketch(A1) op Sketch(Az) for operator op.
o The state of the art wavelet sketch is the GCS Sketch [CGS06].

[GCS06] G. Cormode, et al. Fast approximate wavelet tracking on streams. In EDBT, 2006.
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Approximate Top-k Wavelet Coefficie

@ Some natural improvement attempts:

@ Approximate distributed top-k.
@ Approximating local coefficients with a linearly combinable sketch.
o Forset A= A; UA),
Sketch(A) = Sketch(A1) op Sketch(Az) for operator op.
o The state of the art wavelet sketch is the GCS Sketch [CGS06].
@ The GCS gives us, for v =v; + vy
GCS(v) = GCS(v1) + GCS(v2)

[GCS06] G. Cormode, et al. Fast approximate wavelet tracking on streams. In EDBT, 2006.
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Approximate Top-k Wavelet Coefficie

@ Some natural improvement attempts:
@ Approximate distributed top-k.
@ Approximating local coefficients with a linearly combinable sketch.

@ Forset A= A;UA,,
Sketch(A) = Sketch(A1) op Sketch(Az) for operator op.
o The state of the art wavelet sketch is the GCS Sketch [CGS06].

@ The GCS gives us, for v =v; + vy
GCS(v) = GCS(v1) + GCS(v2)

© Random sampling techniques.

[GCS06] G. Cormode, et al. Fast approximate wavelet tracking on streams. In EDBT, 2006.
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e Approximate Top-k Wavelet Coefficients
@ Linearly Combinable Sketch Method
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Approximate Top-k Wavelet Coefficients: Sketch

JobTracker

Sp“t 1 (x, nu//)
split 2 |—>
split 3

split 4
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Approximate Top-k Wavelet Coefficients: Sketch

JobTracker

E In-Memory

split 1
split 2
split 3
split 4
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Approximate Top-k Wavelet Coefficients: Sketch

JobTracker

E In-Memory

split 1
split 2
split 3
split 4
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Approximate Top-k Wavelet Coefficients: Sketch

JobTracker

In-Memory

split 1
split 2
split 3
split 4
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Approximate Top-k Wavelet Coefficients: Sketch

JobTracker

In-Memory

split 1
split 2
split 3
split 4
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Approximate Top-k Wavelet Coefficients: Sketch

JobTracker

E In-Memory

wavelet sketch

split 1 D)

split 2 —— | Sketch|————p |
split 3

split 4
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Approximate Top-k Wavelet Coefficients: Sketch

JobTracker

E In-Memory

it vi(x)) wavelet sketch  wavelet sketch

split 2 |4]’ Sketch = @
split 3 close()

split 4
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Approximate Top-k Wavelet Coefficients: Sketch

JobTracker

E In-Memory

Combine Sketches

wavelet sketch

it vi(x)) wavelet sketch  wavelet sketch

split 2 L Sketch [p1 | Reducer
split 3 close() Ij =

split 4
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Approximate Top-k Wavelet Coefficients: Sketch

JobTracker

E In-Memory

Combine Sketches

wavelet sketch

it vi(x)) wavelet sketch  wavelet sketch

Spiit 2 = [ Sketch Y Redu@
split 3 close() Ij =

split 4 close()

Wavelet Sketch top-k
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Approximate Top-k Wavelet Coefficients: Sketch

JobTracker

E In-Memory

Combine Sketches

wavelet sketch

it vi(x)) wavelet sketch  wavelet sketch

Spiit 2 = [ Sketch Y Redu@
split 3 close() Ij =

split 4 top-k |w;|

Wavelet Sketch top-k
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Approximate Top-k Wavelet Coefficients: Sketch

JobTracker

E In-Memory

Combine Sketches

wavelet sketch

it vi(x)) wavelet sketch  wavelet sketch

Spiit 2 = [ Sketch Y Redu94> o
split 3 close() LA top-k |w;|
split 4 top-k |w;|

Wavelet Sketch top-k

Jeffrey Jestes, Ke Yi, Feifei Li Building Wavelet Histograms on Large Data in MapReduce



Outline

e Approximate Top-k Wavelet Coefficients

@ Our First Sampling Based Approach
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Approximate Top-k Wavelet Coefficien

Sampling

OoOOONO0ONCODO0N0E0CNEROONODOOO0OOO

ONOEO0ECOEED
ERCORORO0OEERD

n; Records in split j
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Approximate Top-k Wavelet Coefficien

Sampling

Well known fact: to approximate each v(x) with standard
deviation o = O(en) a sample of size ©(1/<?) is required.

OoOOONO0ONCODO0N0E0CNEROONODOOO0OOO

ONOEO0ECOEED
ERCORORO0OEERD

n; Records in split j
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Approximate Top-k Wavelet Coefficien

Sampling

Well known fact: to approximate each v(x) with standard
deviation o = O(en) a sample of size ©(1/<?) is required.

Node j samples t; = n; - p records where p = l/szn.

OoOOONO0ONCODO0N0E0CNEROONODOOO0OOO

ONOEO0ECOEED
ERCORORO0OEERD

n; Records in split j

Jeffrey Jestes, Ke Yi, Feifei Li

Building Wavelet Histograms on Large Data in MapReduce



Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

Well known fact: to approximate each v(x) with standard
deviation o = O(en) a sample of size ©(1/<?) is required.

Node j samples t; = n; - p records where p = l/szn.

nfnlslnln(C) | p0o@ooonmE
u DD-DE@- D@IDDDIII&DIIDD@HD@I
oEECOERD0DDN0NCE0ONEEEDO00ONOCOO0m

DOEQONEQENCOEOONOQONED
OmEED ooooE
OEEENONONOOOCONON
S ENCOEO000CCONOD

B e e

n; Records in split j
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

Well known fact: to approximate each v(x) with standard
deviation o = O(en) a sample of size ©(1/<?) is required.

Node j samples t; = n; - p records where p = l/szn.

ooooom EROROO0OO0O00OmO0
OEOgOOom DDID D OO

e AR e e

]
n; Records in split j sj(x): Sampled Frequency Counts

DooEEEE0EoEEQE0R00 omoo@ooong
gomoo IDBDD ] 15|
SEsoommoOono IDHDDII [ {S[E|=[S[]s(s{]s{]
ECECONOENOE DIDHQ mOmOEo@omd  Sample
g moEEEE00HE CmmEs oooom 7,
sEuENEEE OoSCaNESENENESONEN
O
g

D
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Approximate Top-k Wavelet Coefficients: Basic Random
Sampling

sj(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

Emit
_

sj(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

Emit
o —E

Coordinator

sj(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

Coordinator

Emitted sp(x)
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

’ Construct

s(x)

Coordinator

Emitted sp(x)
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

T 2345/p
W 1897/p
’ Construct W 1673/p
hbtiaad 089/, W20/p
s(x) v m12/p
N [1356/p
Coordinator :

v(x) = s(x)/pis v(x)'s

unbiased estimator

Emitted sp(x)
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

o Note: € must be small for v to approximate v well.
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

o Note: € must be small for v to approximate v well.
o Typical values for € are 10™* to 107°.
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

o Note: € must be small for v to approximate v well.
o Typical values for € are 10™* to 107°.
e The communication for basic sampling is O(1/22).
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

o Note: € must be small for v to approximate v well.
o Typical values for € are 10™* to 107°.
e The communication for basic sampling is O(1/22).
o With 1 byte keys, 100MB to 1TB of data must be communicated!
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

o Note: € must be small for v to approximate v well.

o Typical values for € are 10™* to 107°.
e The communication for basic sampling is O(1/22).

o With 1 byte keys, 100MB to 1TB of data must be communicated!
@ We improve basic random sampling with Improved Sampling.
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

o Note: € must be small for v to approximate v well.

o Typical values for € are 10™* to 107°.
e The communication for basic sampling is O(1/22).

o With 1 byte keys, 100MB to 1TB of data must be communicated!
@ We improve basic random sampling with Improved Sampling.

o Key idea: ignore sampled keys with small frequencies in a split.
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Outline

e Approximate Top-k Wavelet Coefficients

@ An Improved Sampling Approach
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Approximate Top-k Wavelet Coefficients: Improved
Sampling

SO OEO0NE OO 0OCONEEEOOENOOOCeEEE

n; Records in split
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

Node j samples t; = n; - p records using
Basic Sampling, where p = 1/£2n.
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n; Records in split
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Node j samples t; = n; - p records using

Basic Sampling, where p = 1/£2n.
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

Node j samples t; = n; - p records using
Basic Sampling, where p = 1/£2n.

Sample

n; Records in split sj(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

Node j sends (x,s;(x)) only if s;(x) > et;.

o The error in s(x) is < =fL; et; = epn = 1/e.

sj(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

Node j sends (x,s;(x)) only if s;(x) > et;.

o The error in s(x) is < =fL; et; = epn = 1/e.
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

Node j sends (x,s;(x)) only if s;(x) > et;.

o The error in s(x) is < =fL; et; = epn = 1/e.

Emit
_

Emitted s;(x)

sj(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

Node j sends (x,s;(x)) only if s;(x) > et;.

o The error in s(x) is < =fL; et; = epn = 1/e.

v
— g

Coordinator

Emit
_

Emitted s;(x)

sj(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

Coordinator

Emitted sm(x)
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

’ Construct

s(x)

Coordinator

Emitted sm(x)
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

W 1897/p
’ Construct W 1673/p
- . [ 189/p

s(x) m -

Coordinator

Emitted sm(x)
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

W 1897/p
’ Construct W 1673/p
- . [ 189/p

s(x) m -

0o -
.
.
.

Coordinator

Emitted sm(x)
e Each node sends at most t;/(ct;) = 1/¢ keys.

Building Wavelet Histograms on Large Data in MapReduce

Jeffrey Jestes, Ke Yi, Feifei Li



Approximate Top-k Wavelet Coefficients: Improved

Sampling

W 1897/p
’ Construct W 1673/p
- . [ 189/p

s(x) m -

0o -
.
.
.

Coordinator

Emitted sm(x)
e Each node sends at most t;/(ct;) = 1/¢ keys.

e The total communication is O(m/¢).

Building Wavelet Histograms on Large Data in MapReduce
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

W 1897/p
01543
] Construct m3ss1| Construct | B 1673/p
- —_—
s(x) v(x)

Coordinator

Emitted sm(x)
e Each node sends at most t;/(ct;) = 1/¢ keys.

e The total communication is O(m/¢).

o E[v(x)] may be en away from v(x) as sj(x) < et; are ignored.
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Outline

e Approximate Top-k Wavelet Coefficients

@ Two-Level Sampling
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Approximate Top-k Wavelet Coefficien

Sampling

Node j samples t; = n; - p records using
Basic Sampling, where p = l/azn.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

Node j samples t; = n; - p records using
Basic Sampling, where p = 1/£2n.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

Node j samples t; = n; - p records using
Basic Sampling, where p = l/azn.
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n; Records in split s;j(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

s;j(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

Sample record x with probability min{e\/m - s;(x), 1}.
e lf si(x) > 1/(ey/m), emit (x,s;(x)).
o Else emit (x, null) with probability ev/m - sj(x).

s;j(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

Sample record x with probability min{e\/m - s;(x), 1}.

o lf sj(x) > 1/(ey/m), emit (x,s;(x)).
o Else emit (x, null) with probability ev/m - sj(x).

s;j(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

Sample record x with probability min{e\/m - s;(x), 1}.
e lf si(x) > 1/(ey/m), emit (x,s;(x)).
o Else emit (x, null) with probability cv/m - sj(x).

s;j(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

Sample record x with probability min{e\/m - s;(x), 1}.
e lf si(x) > 1/(ey/m), emit (x,s;(x)).
o Else emit (x, null) with probability cv/m - sj(x).

Emit

sj(x): sampled s;(x)

s;j(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

Sample record x with probability min{e\/m - s;(x), 1}.
e lf si(x) > 1/(ey/m), emit (x,s;(x)).
o Else emit (x, null) with probability cv/m - sj(x).

Emit

sj(x): sampled s;(x)

s;j(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients
Sampling

A

Coordinator

Sm(x): sampled spm(x)
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Approximate Top-k Wavelet Coefficien
Sampling

’ Construct

Coordinator
s(x): estimator of s(x)

Sm(x): sampled spm(x)

e To construct §(x).
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Approximate Top-k Wavelet Coefficients
Sampling

’ Construct

—_—

s(x)

Coordinator
s(x): estimator of s(x)

Sm(x): sampled spm(x)
e To construct §(x).
o If (x,sj(x)) received, p(x) = p(x) + sj(x).
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Approximate Top-k Wavelet Coefficients
Sampling

’ Construct
=

Coordinator

s(x): estimator of s(x)

Sm(x): sampled spm(x)
e To construct §(x).
o If (x,sj(x)) received, p(x) = p(x) + sj(x).
o Else if (x, null) received, M(x) = M(x) + 1.
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Approximate Top-k Wavelet Coefficients
Sampling

’ Construct
=

Coordinator

s(x): estimator of s(x)

Sm(x): sampled spm(x)
e To construct §(x).
o If (x,sj(x)) received, p(x) = p(x) + sj(x).
o Else if (x, null) received, M(x) = M(x) + 1.

e Finally, s(x) = p(x) + M(x)/e/m.
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

[
1543 W 1897/p
’ Construct m3451| Construct W 1673/p
_— T o
s(x) v(x) EE
D -_

Coordinator
s(x): estimator of s(x)

Sm(x): sampled spm(x)
e To construct §(x).
o If (x,sj(x)) received, p(x) = p(x) + sj(x).
o Else if (x, null) received, M(x) = M(x) + 1.
e Finally, s(x) = p(x) + M(x)/e/m.
@ Then, V(x) =s(x)/p is an unbiased estimator for v(x).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an unbiased estimator of s(x) with standard deviation at most 1/¢.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an unbiased estimator of s(x) with standard deviation at most 1/¢.

Corollary

V(x) is an unbiased estimator of v(x) with standard deviation at most en.
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

Theorem

S(x) is an unbiased estimator of s(x) with standard deviation at most 1/¢.

Corollary

V(x) is an unbiased estimator of v(x) with standard deviation at most en.

Theorem

e w; is an unbiased estimator for any w;.
o Recall w; = <V,’lﬁ,‘>, for w,' = (_¢j+1,2k + ¢j+1,2k+1)/\/ U/2j where ¢ is
a [0,1] vector defined for j=1,...,logu and k =0,...,2 —1. The

] ~ ] 2k-+2)u /2t
variance of w; is bounded by 5\2/!% Zi:;(u)/l;éﬂ L15(x).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

Theorem

S(x) is an unbiased estimator of s(x) with standard deviation at most 1/¢.

Corollary

V(x) is an unbiased estimator of v(x) with standard deviation at most en.

Theorem

e w; is an unbiased estimator for any w;.
o Recall w; = <V,’lb,'>, for w,' = (_¢j+1’2k + ¢j+1,2k+1)/\/ U/2j where ¢ is
a [0,1] vector defined for j=1,...,logu and k =0,...,2 —1. The

] ~ j 2k-+2)u /2t
variance of w; is bounded by 5\2/% Zi:;(u)/zﬂ L15(x).

Theorem

The expected total communication cost of our two-level sampling
algorithm is O(y/m/e).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

” s;= split j sample frequency vector

split 1
split 2 MapRunner
split 3
split 4
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

’ s;= split j sample frequency vector

‘ RandomizedRecordReader ‘

(x, null)
split 1
split 2 MapRunner
split 3
split 4

© RandomizedRecordReader j (RR;) samples n;/e%n records.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

’ s;= split j sample frequency vector

‘ RandomizedRecordReader ‘

(x, null)
split 1
split 2 MapRunner
split 3
split 4

© RandomizedRecordReader j (RR;) samples n;/e%n records.
© RR; randomly selects n;/e*n offsets in split j.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

’ s;= split j sample frequency vector

‘ RandomizedRecordReader ‘

(x, null)
split 1
split 2 MapRunner
split 3
split 4

© RandomizedRecordReader j (RR;) samples n;/e%n records.
© RR; randomly selects n;/e*n offsets in split j.

@ RR; sorts the offsets in ascending order then seeks the record at each
sampled offset.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

’ s;= split j sample frequency vector

‘ RandomizedRecordReader ‘

(x, null)
split 1 (x, null)
split 2 MapRunner
split 3
split 4

© RandomizedRecordReader j (RR;) samples n;/e%n records.
© RR; randomly selects n;/e*n offsets in split j.

@ RR; sorts the offsets in ascending order then seeks the record at each
sampled offset.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

’ s;= split j sample frequency vector

E In-Memory

Map
‘ RandomizedRecordReader ‘
(x, null)

(x1)
split 1 (x, null)
split 2 MapRunner
split 3
split 4

© RandomizedRecordReader j (RR;) samples n;/e%n records.
© RR; randomly selects n;/e*n offsets in split j.

@ RR; sorts the offsets in ascending order then seeks the record at each
sampled offset.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

’ s;= split j sample frequency vector

In-Memory
Map

‘ RandomizedRecordReader ‘

(x, null)
close()
split 1 (x, null)
split 2 MapRunner
split 3
split 4

© RandomizedRecordReader j (RR;) samples n;/e%n records.
© RR; randomly selects n;/e*n offsets in split j.

@ RR; sorts the offsets in ascending order then seeks the record at each
sampled offset.

Jeffrey Jestes, Ke Yi, Feifei Li Building Wavelet Histograms on Large Data in MapReduce



Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

’ s;= split j sample frequency vector

In-Memory
Map

‘ RandomizedRecordReader ‘

(x, null)
(x,8;(x))
split 1 (x, null)
split 2 MapRunner
split 3
split 4

© RandomizedRecordReader j (RR;) samples n;/e%n records.
© RR; randomly selects n;/e*n offsets in split j.

@ RR; sorts the offsets in ascending order then seeks the record at each
sampled offset.

Jeffrey Jestes, Ke Yi, Feifei Li Building Wavelet Histograms on Large Data in MapReduce



Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

” s;= split j sample frequency vector

In-Memory
Map

‘ RandomizedRecordReader ‘

(x, null)
split 1 (x, null)
split 2 MapRunner
split 3
split 4

@ Mapper j samples key x from s with probability min{ey/m-sj(x),1}.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

” s;= split j sample frequency vector

‘ RandomizedRecordReader ‘

(x, null)
split 1 (x, null)
split 2 MapRunner
split 3
split 4

@ Mapper j samples key x from s with probability min{ey/m-sj(x),1}.
o If sj(x) > 1/(ey/m), emit (x,s;j(x)).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

” s;= split j sample frequency vector

‘ RandomizedRecordReader ‘

(x, null)
split 1 (x, null)
split 2 MapRunner
split 3
split 4

@ Mapper j samples key x from s with probability min{ey/m-sj(x),1}.
o If sj(x) > 1/(ey/m), emit (x,s;j(x)).
o Else emit (x,0) with probability e/m - sj(x).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

” s;= split j sample frequency vector

In-Memory
Map
‘ RandomizedRecordReader ‘ E
(x, null)
: (x.5(x)
split 1 (x, null) (x8;(x)[0) (x,5,(x)[0)
split 2 MapRunner Mapper [p1] @
split 3 close()
split 4

@ Mapper j samples key x from s with probability min{ey/m-sj(x),1}.
o If sj(x) > 1/(ey/m), emit (x,s;j(x)).
o Else emit (x,0) with probability e/m - sj(x).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

’ s;= split j sample frequency vector

In-Memory
Map

‘ RandomizedRecordReader ‘

(x, null)
_ (x5(x) e
split 1 (x, null) (x,s(x)[0) (x,8;(x)[0)
split 2 MapRunner Mapper @ Reducer
St 3 close()
split 4

@ Construct s(x).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

” s;= split j sample frequency vector

In-Memory
Map
‘ RandomizedRecordReader ‘ E
(x, null) )
; (x,5() (x.60)

split 1 (x, null) (x8;(x)[0) (x,5,(x)[0)
split 2 MapRunner Mapper @ Reducer
split 3 close()
split 4

@ Construct s(x).
o If (x,sj(x)) received, p(x) = p(x) + s;(x).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

” s;= split j sample frequency vector

In-Memory
Map
‘ RandomizedRecordReader ‘ E
(x, null) )
; (x,5() (x.60)

split 1 (x, null) (x8;(x)[0) (x,5,(x)[0)
split 2 MapRunner Mapper @ Reducer
split 3 close()
split 4

@ Construct s(x).

o If (x,sj(x)) received, p(x) = p(x) + s;(x).
o Else if (x,0) received, M(x) = M(x) + 1.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

” s;= split j sample frequency vector

In-Memory
Map
‘ RandomizedRecordReader ‘ E
(x, null) )
; (x,5() (x.60)

split 1 (x, null) (x8;(x)[0) (x,5,(x)[0)
split 2 MapRunner Mapper @ Reducer
split 3 close()
split 4

@ Construct s(x).
o If (x,sj(x)) received, p(x) = p(x) + s;(x).
o Else if (x,0) received, M(x) = M(x) + 1.
Q Finally, s(x) = p(x) + M(x)/ev/m.
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Q Finally, s(x) = p(x) + M(x)/ev/m.

@ Reducer uses V(x) =§(x)/p, our unbiased estimator for v(x).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

” s;= split j sample frequency vector

In-Memory
Map
[ Centralized Wavelet Top-k |
‘ RandomizedRecordReader ‘ T
(xv(x)
(x, null) T top-k |wj
(x5(x) b5
split 1 (x; null) (x;s(x)|0) (x,5(x)|0) /P\
split 2 MapRunner Mapper @ Reducer )——+ o
sphit 3 close() top-k |wj|
split 4

@ Construct s(x).
o If (x,sj(x)) received, p(x) = p(x) + s;(x).
o Else if (x,0) received, M(x) = M(x) + 1.
Q Finally, s(x) = p(x) + M(x)/ev/m.

@ Reducer uses V(x) =§(x)/p, our unbiased estimator for v(x).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

o Consider: e = 107*, m = 103, and 4-byte keys .
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

o Consider: e = 107*, m = 103, and 4-byte keys .

@ The communication for basic sampling is O(1/¢?).
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o Approximately 400MB of data must be communicated!
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

o Consider: e = 107*, m = 103, and 4-byte keys .

@ The communication for basic sampling is O(1/¢?).
o Approximately 400MB of data must be communicated!

@ The communication for improved sampling is O(m/z).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

o Consider: e = 107*, m = 103, and 4-byte keys .

@ The communication for basic sampling is O(1/¢?).
o Approximately 400MB of data must be communicated!

@ The communication for improved sampling is O(m/z).
o Approximately 40MB of data must be communicated.

The communication for two-level sampling is O(y/m/e).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

o Consider: e = 107*, m = 103, and 4-byte keys .

@ The communication for basic sampling is O(1/¢?).
o Approximately 400MB of data must be communicated!

@ The communication for improved sampling is O(m/z).
o Approximately 40MB of data must be communicated.

The communication for two-level sampling is O(y/m/e).
o Only 1.2MB of data needs to be communicated!
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

o Consider: e = 107*, m = 103, and 4-byte keys .

@ The communication for basic sampling is O(1/¢?).
o Approximately 400MB of data must be communicated!

@ The communication for improved sampling is O(m/z).
o Approximately 40MB of data must be communicated.

The communication for two-level sampling is O(y/m/e).
o Only 1.2MB of data needs to be communicated!
o 330-fold reduction over basic sampling and 33-fold reduction over
improved sampling!
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Experiments: Algorithms

o We implement the following methods in Hadoop 0.20.2:
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o Exact Methods:
@ The baseline solution is denoted Send-V,

Jeffrey Jestes, Ke Yi, Feifei Li Building Wavelet Histograms on Large Data in MapReduce



Experiments: Algorithms

o We implement the following methods in Hadoop 0.20.2:
o Exact Methods:
@ The baseline solution is denoted Send-V,

o Our three round exact solution is denoted H-WTopk, (meaning
"Hadoop Wavelet Top-k").
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o Our three round exact solution is denoted H-WTopk, (meaning
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o Approximate Methods:
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Experiments: Algorithms

o We implement the following methods in Hadoop 0.20.2:
o Exact Methods:

@ The baseline solution is denoted Send-V,
o Our three round exact solution is denoted H-WTopk, (meaning
"Hadoop Wavelet Top-k").

o Approximate Methods:
o Improved Sampling is denoted Improved-S.
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Experiments: Algorithms

o We implement the following methods in Hadoop 0.20.2:

o Exact Methods:
@ The baseline solution is denoted Send-V,
o Our three round exact solution is denoted H-WTopk, (meaning

"Hadoop Wavelet Top-k").

o Approximate Methods:
o Improved Sampling is denoted Improved-S.
o Two-Level Sampling is denoted Twolevel-S.
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Experiments: Algorithms

o We implement the following methods in Hadoop 0.20.2:

o Exact Methods:
@ The baseline solution is denoted Send-V,
o Our three round exact solution is denoted H-WTopk, (meaning
"Hadoop Wavelet Top-k").
o Approximate Methods:
o Improved Sampling is denoted Improved-S.
o Two-Level Sampling is denoted Twolevel-S.
o The Sketch-Based Approximation using the GCS-Sketch is denoted
Send-Sketch.
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Experiments: Setup

@ Experiments are performed in a heterogeneous Hadoop cluster with
16 machines:
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@ 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU
@ 4 machines with 4GB of RAM and an Intel Xeon 2GHz CPU
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Experiments: Setup

@ Experiments are performed in a heterogeneous Hadoop cluster with
16 machines:
@ 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU
@ 4 machines with 4GB of RAM and an Intel Xeon 2GHz CPU

@ One is reserved for the master (running JobTracker and NameNode).
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@ Experiments are performed in a heterogeneous Hadoop cluster with
16 machines:
@ 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU
@ 4 machines with 4GB of RAM and an Intel Xeon 2GHz CPU
@ One is reserved for the master (running JobTracker and NameNode).

© 2 machines with 6GB of RAM and an Intel Xeon 2.13GHz CPU
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@ Experiments are performed in a heterogeneous Hadoop cluster with
16 machines:
@ 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU
@ 4 machines with 4GB of RAM and an Intel Xeon 2GHz CPU
@ One is reserved for the master (running JobTracker and NameNode).
© 2 machines with 6GB of RAM and an Intel Xeon 2.13GHz CPU

@ One is reserved for the (only) Reducer.
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Experiments: Setup

@ Experiments are performed in a heterogeneous Hadoop cluster with
16 machines:
@ 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU
@ 4 machines with 4GB of RAM and an Intel Xeon 2GHz CPU
@ One is reserved for the master (running JobTracker and NameNode).
© 2 machines with 6GB of RAM and an Intel Xeon 2.13GHz CPU

@ One is reserved for the (only) Reducer.

@ 1 machine with 2GB of RAM and an Intel Core 2 1.86GHz CPU
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Experiments: Setup

@ Experiments are performed in a heterogeneous Hadoop cluster with
16 machines:
@ 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU
@ 4 machines with 4GB of RAM and an Intel Xeon 2GHz CPU
@ One is reserved for the master (running JobTracker and NameNode).
© 2 machines with 6GB of RAM and an Intel Xeon 2.13GHz CPU

@ One is reserved for the (only) Reducer.

@ 1 machine with 2GB of RAM and an Intel Core 2 1.86GHz CPU
@ All machines are directly connected to a 1000Mbps switch.
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Experiments: Datasets

o We utilize the WorldCup dataset to test all algorithms on real data.
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e There are a total of 1.35 billion records.
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o We utilize the WorldCup dataset to test all algorithms on real data.
o There are a total of 1.35 billion records.
o Each record has 10 4 byte integer attributes including a client id and
object id.
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Experiments: Datasets

o We utilize the WorldCup dataset to test all algorithms on real data.
e There are a total of 1.35 billion records.
o Each record has 10 4 byte integer attributes including a client id and
object id.
o We assign each record a clientobject 4 byte integer id in u = 2%
which is distinct for unique parings of a client id and object id.
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Experiments: Datasets

o We utilize the WorldCup dataset to test all algorithms on real data.

There are a total of 1.35 billion records.

Each record has 10 4 byte integer attributes including a client id and
object id.

We assign each record a clientobject 4 byte integer id in u = 2%
which is distinct for unique parings of a client id and object id.
WorldCup is stored in binary format, in total it is 50GB.
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o We utilize the WorldCup dataset to test all algorithms on real data.
e There are a total of 1.35 billion records.
o Each record has 10 4 byte integer attributes including a client id and
object id.
o We assign each record a clientobject 4 byte integer id in u = 2%
which is distinct for unique parings of a client id and object id.
o WorldCup is stored in binary format, in total it is 50GB.

o We utilize large synthetic Zipfian datasets to evaluate all methods.
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Experiments: Datasets

o We utilize the WorldCup dataset to test all algorithms on real data.
e There are a total of 1.35 billion records.
o Each record has 10 4 byte integer attributes including a client id and
object id.
o We assign each record a clientobject 4 byte integer id in u = 2%
which is distinct for unique parings of a client id and object id.
o WorldCup is stored in binary format, in total it is 50GB.

o We utilize large synthetic Zipfian datasets to evaluate all methods.
o Keys are randomly permuted and discontiguous in a dataset.
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Experiments: Datasets

o We utilize the WorldCup dataset to test all algorithms on real data.

e There are a total of 1.35 billion records.

o Each record has 10 4 byte integer attributes including a client id and
object id.

o We assign each record a clientobject 4 byte integer id in u = 2%
which is distinct for unique parings of a client id and object id.

o WorldCup is stored in binary format, in total it is 50GB.

o We utilize large synthetic Zipfian datasets to evaluate all methods.

o Keys are randomly permuted and discontiguous in a dataset.
o Each key is a 4-byte integer and stored in binary format.
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Experiments: Defaults

@ Default values:

Symbol Definition Default
« Zipfian skewness 1.1
u max key in domain | log, u =29
n total records 13.4 billion

dataset size 50GB

153 split size 256MB
m number of splits 200
B network bandwidth | 500Mbps

Jeffrey Jestes, Ke Yi, Feifei Li Building Wavelet Histograms on Large Data in MapReduce



Experiments: Vary k
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Experiments: WorldCup Dataset
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Conclusions

@ We study the problem of efficiently computing wavelet histograms in
MapReduce clusters.
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Conclusions

@ We study the problem of efficiently computing wavelet histograms in
MapReduce clusters.
o We present both exact and approximate algorithms.
o Twolevel-S is especially easy to implement and ideal in practice.

o For 200GB of data with log, u = 29 it takes 10 minutes with only
2MB of communication!
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@ We study the problem of efficiently computing wavelet histograms in
MapReduce clusters.
o We present both exact and approximate algorithms.
o Twolevel-S is especially easy to implement and ideal in practice.
o For 200GB of data with log, u = 29 it takes 10 minutes with only
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@ Our work is just the tip of the iceberg for data summarization
techniques in MapReduce.

Jeffrey Jestes, Ke Yi, Feifei Li Building Wavelet Histograms on Large Data in MapReduce



Conclusions

@ We study the problem of efficiently computing wavelet histograms in
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o Twolevel-S is especially easy to implement and ideal in practice.
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techniques in MapReduce.
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Conclusions

@ We study the problem of efficiently computing wavelet histograms in
MapReduce clusters.
o We present both exact and approximate algorithms.
o Twolevel-S is especially easy to implement and ideal in practice.
o For 200GB of data with log, u = 29 it takes 10 minutes with only
2MB of communication!
@ Our work is just the tip of the iceberg for data summarization
techniques in MapReduce.
@ Many others remain including:
o other histograms including the V-optimal histogram,
o sketches and synopsis,
e geometric summaries (e-approximations and coresets),
o graph summaries (distance oracles).
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Introduction: Histograms

@ We may also compute w; with the wavelet basis vectors ;.
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Introduction: Histograms

@ We may also compute w; with the wavelet basis vectors ;.

[1[2[3[4[5[6[7]8]
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wi total average
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Background: Hadoop MapReduce, Map Phase

JobTracker

split 1
split 3

split 4

@ The JobTracker assigns an InputSplit to a TaskTracker, a
MapRunner task runs on the TaskTracker to process the split.
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Background: Hadoop MapReduce, Map Phase

JobTracker

RecordReader

(ki v1)

split 1
split 2
split 3
split 4

@ The MapRunner acquires a RecordReader from the InputFormat for
the file to view the InputSplit as a stream of records, (ki, v1).
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Background: Hadoop MapReduce, Map Phase

JobTracker
RecordReader
(K1, v1)
Buffer
split 1 (ki,v1) (ke, v2)
split 3
split 4

@ The MapRunner invokes the user specified Mapper for each (kq,v1),
the Mapper emits (ky, v») and stores in an in-memory buffer.
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Background: Hadoop MapReduce, Map Phase

JobTracker

RecordReader

(ki v1)

Buffer

split 1 /\ (k2, v) (ko, list(v2)) (ka, v2)

split 2 Mapper E' Combiner Pi
split 3 E' v
split 4

@ When the buffer fills, the optional Combiner is executed over
(ka, list(v2)), and a (ka, v2) is dumped to a partition on disk.
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Background: Hadoop MapReduce, Shuffle and Sort Phase

JobTracker

ko, vy
] (2, v2)

. (e, v) Reducer:
R Copy Sort

PL (k2. v2)
P2

I

:

@ The JobTracker assigns Reducers to TaskTrackers for each partition,
each reducer first copies on (ky, v2) and then sorts on k.

Jeffrey Jestes, Ke Yi, Feifei Li
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Background: Hadoop MapReduce, Reduce Phase

JobTracker

(k2. v2)

« BI] -— [Il0

Copy Sort Reduce

(K2, v2)

@ The sorting output (ko, list(v2)) is processed one k; at a time and
reduced, the reduced output (ks, v3) is written to reducer output o;.
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker

(x, null)
(x, null)

split (x, null)

S

Mapper

oo
T T
= Ee——
w| | =

Building Wavelet Histograms on Large Data in MapReduce

Jeffrey Jestes, Ke Yi, Feifei Li




Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker

In-Memory
Map

In-Memory
Map

In-Memory
Map
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JobTracker
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker

S

(x, null) close() (x, vi(x))[ Streaming
Mapper Compute w;
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/—’ PP Compute w;
it

x, null
: : Mapper close() | (6, v3(x))["Streaming
Compute w;
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

Priority Queue:
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

split 1

JobTracker

S

(x, null) close() (x, vi(x))[ Streaming

Mapper Compute w;

(x. null) Vanner close() (x, va(x))[ Streaming

/—’ PP Compute w;
X, null

( ) Mapper close() (x, v3(x)) Streaming

Compute w;
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

split 1

JobTracker

S\
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(x, null) close() (x, vi(x))[ Streaming

Mapper Compute w;
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker

s
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JobTracker
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker
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Hadoop Phase 1

Exact Top-k Wavelet Coefficients:

JobTracker

s
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker

Ti/m=22/3
Job Configuration
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

JobTracker nj= records in split j
’ sj= split j sample frequency vector
In-Memory
Map
‘ Centralized Wavelet Top-k ‘
[RandomizedRecordReader | E (x \I(x))
(x, null) T
X, 5(x
: l (x.5,()) (o 5(x)
split 1 (x, null) /\ (x,si(x)) (x,s5(x))
split 2 MapRunner Mapper [p1] Reducer
split 3 close()
split 4

@ RandomizedRecordReader j (RR;) samples n;/e%n records.
@ RR; randomly selects n;/e%n offsets in split j.

@ RR; sorts the offsets in ascending order then seeks the record at each
sampled offset.

@ Reducer uses V(x) = s(x)/p, our unbiased estimator for v(x).
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

JobTracker nj= records in split j
’ sj= split j sample frequency vector
In-Memory
Map
‘ Centralized Wavelet Top-k ‘
[RandomizedRecordReader | E
(x, null)
_ | )
split 1 (x, null) /\ (x,si(x))
split 2 MapRunner Mapper [p1] Reducer
split 3 close()
split 4

@ RandomizedRecordReader j (RR;) samples n;/e%n records.
@ RR; randomly selects n;/e%n offsets in split j.

@ RR; sorts the offsets in ascending order then seeks the record at each
sampled offset.

@ Reducer uses V(x) = s(x)/p, our unbiased estimator for v(x).

Jeffrey Jestes, Ke Yi, Feifei Li Building Wavelet Histograms on Large Data in MapReduce



Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

JobTracker nj= records in split j
’ sj= split j sample frequency vector
In-Memory
Map
‘ Centralized Wavelet Top-k ‘
[RandomizedRecordReader | E (x \I(x))
(x, null) T top-k |w;|
X, 5(x
: (x.5,()) (o 5(x)
split 1 (x, null) /\ (x,si(x)) (x,s5(x))
split 2 MapRunner Mapper [p1] Reducer
split 3 close()
split 4

@ RandomizedRecordReader j (RR;) samples n;/e%n records.
@ RR; randomly selects n;/e%n offsets in split j.

@ RR; sorts the offsets in ascending order then seeks the record at each
sampled offset.

@ Reducer uses V(x) = s(x)/p, our unbiased estimator for v(x).
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

JobTracker nj= records in split j
’ sj= split j sample frequency vector
In-Memory
Map
‘ Centralized Wavelet Top-k ‘
[RandomizedRecordReader | E (x \I(x))
(x, null) T top-k |w;|
X, 5(x
: l (x.5,()) (o 5(x)
split 1 (x, null) /\ (x,si(x)) (x,s5(x)) A/\
split 2 MapRunner Mapper [p1] Reducer )———+ o
split 3 close() = top-k |w;|
split 4

@ RandomizedRecordReader j (RR;) samples n;/e%n records.
@ RR; randomly selects n;/e%n offsets in split j.

@ RR; sorts the offsets in ascending order then seeks the record at each
sampled offset.

@ Reducer uses V(x) = s(x)/p, our unbiased estimator for v(x).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

s(x) is an unbiased estimator of s(x).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an unbiased estimator of s(x).

@ Our estimator is §(x) = p(x) + M/ey/m.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an unbiased estimator of s(x).

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;j(x) < 1/(e/m).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an unbiased estimator of s(x).

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;j(x) < 1/(e/m).
@ Let X; =1 if x is sampled in split j and 0 otherwise.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an unbiased estimator of s(x).

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;j(x) < 1/(e/m).
@ Let X; =1 if x is sampled in split j and 0 otherwise.
@ E[X] = cv/m-5;(x).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an unbiased estimator of s(x).

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;j(x) < 1/(e/m).

@ Let X; =1 if x is sampled in split j and 0 otherwise.
@ E[X] = cv/m-5;(x).

o Let M=Y7, X;.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an unbiased estimator of s(x).

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;j(x) < 1/(e/m).

@ Let X; =1 if x is sampled in split j and 0 otherwise.
@ E[X] = cv/m-5;(x).

o Let M=Y7, X;.

Q E[M] =" eym-si(x)
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an unbiased estimator of s(x).

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;j(x) < 1/(e/m).

@ Let X; =1 if x is sampled in split j and 0 otherwise.
@ E[X] = cv/m-5;(x).

o Let M=Y7, X;.

Q E[M] =X ey/m-si(x) = ey/m(s(x) — p(x)).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an unbiased estimator of s(x).

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;j(x) < 1/(e/m).

@ Let X; =1 if x is sampled in split j and 0 otherwise.
@ E[X] = cv/m-5;(x).

o Let M=Y7, X;.

@ E[M] = X7, cv/m-5(x) = ev/m(s(x) - p(x)).
Q E[(x)] = Elp(x) + M/ey/m]
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an unbiased estimator of s(x).

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;j(x) < 1/(e/m).

@ Let X; =1 if x is sampled in split j and 0 otherwise.
@ E[X] = cv/m-5;(x).

o Let M=Y7, X;.

@ E[M] = X7, cv/m-5(x) = ev/m(s(x) - p(x)).
@ E[(x)] = Elp(x) + M/ev/m] = p(x) + (s(x) — p(x))
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an unbiased estimator of s(x).

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;j(x) < 1/(e/m).

@ Let X; =1 if x is sampled in split j and 0 otherwise.
@ E[X] = cv/m-5;(x).

o Let M=Y7, X;.

@ E[M] = X7, cv/m-5(x) = ev/m(s(x) - p(x)).
Q E[(x)] = Elp(x) + M/ev/m] = p(x) + (s(x) — p(x)) = s(x).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.

@ Our estimator is §(x) = p(x) + M/ey/m.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.

@ Our estimator is §(x) = p(x) + M/ey/m.

o Assume in the first m’ splits s;j(x) < 1/(e/m).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.
@ Our estimator is §(x) = p(x) + M/ey/m.

o Assume in the first m’ splits s;j(x) < 1/(e/m).
@ Let X; =1 if x is sampled in split j and O otherwise.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.

@ Our estimator is §(x) = p(x) + M/ey/m.

o Assume in the first m’ splits s;j(x) < 1/(e/m).
@ Let X; =1 if x is sampled in split j and O otherwise.

@ VarlX] = cy/m- 5(x)(1 — ey/m - 5;(x))
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.

@ Our estimator is §(x) = p(x) + M/ey/m.

o Assume in the first m’ splits s;j(x) < 1/(e/m).
@ Let X; =1 if x is sampled in split j and O otherwise.

Q Var[Xj] = ev/m-5;(x)(1 - ev/m - 5j(x)) < ev/m - 5;(x).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.

@ Our estimator is §(x) = p(x) + M/ey/m.

o Assume in the first m’ splits s;j(x) < 1/(e/m).
@ Let X; =1 if x is sampled in split j and O otherwise.

Q Var[Xj]] = e/m-sj(x)(1 — ev/m - sj(x)) < ev/m - sj(x).
o Let M=Y7, X;.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.

@ Our estimator is §(x) = p(x) + M/ey/m.

o Assume in the first m’ splits s;j(x) < 1/(e/m).
@ Let X; =1 if x is sampled in split j and O otherwise.

Q Var[Xj] = ev/m-5;(x)(1 - ev/m - 5j(x)) < ev/m - 5;(x).
o Let M=Y7, X;.

@ Var[M] < 37, Var[X)]
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.

@ Our estimator is §(x) = p(x) + M/ey/m.

o Assume in the first m’ splits s;j(x) < 1/(e/m).
@ Let X; =1 if x is sampled in split j and O otherwise.

Q Var[Xj]] = e/m-sj(x)(1 — ev/m - sj(x)) < ev/m - sj(x).
o Let M=Y7, X;.

@ Var[M] < 337, Var[X)] < 37, ev/m - 55(x)
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.

@ Our estimator is §(x) = p(x) + M/ey/m.

o Assume in the first m’ splits s;j(x) < 1/(e/m).
@ Let X; =1 if x is sampled in split j and O otherwise.
Q Var[Xj] = ev/m-5;(x)(1 - ev/m - 5j(x)) < ev/m - 5;(x).
o Let M=Y7, X;.
Q Var[M] < X7, Var[X] < 57, e/ -5i(x) < m e/ - 1/(e/m)
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.

@ Our estimator is §(x) = p(x) + M/ey/m.

o Assume in the first m’ splits s;j(x) < 1/(e/m).
@ Let X; =1 if x is sampled in split j and O otherwise.
Q Var[Xj] = ev/m - 5;(x)(1 — ev/m - 5j(x)) < ey/m - sj(x).
o Let M=Y7, X;.
Q@ Var[M] < X7, Var[X] < 57, e/ -si(x) < m e/ 1/(e/m)
=m'.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.
@ Our estimator is §(x) = p(x) + M/ey/m.

o Assume in the first m’ splits s;j(x) < 1/(e/m).
@ Let X; =1 if x is sampled in split j and O otherwise.

Q Var[Xj]] = e/m-sj(x)(1 — ev/m - sj(x)) < ev/m - sj(x).
o Let M=Y7, X;.

© Var[M] < 37, VarlX] < S, e/ - 5i(x) < ' - e/ - 1/(c/m)
=m.

Q Var[s(x)] = Var[M/e\/m]
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.
@ Our estimator is §(x) = p(x) + M/ey/m.

o Assume in the first m’ splits s;j(x) < 1/(e/m).
@ Let X; =1 if x is sampled in split j and O otherwise.

Q Var[Xj]] = e/m-sj(x)(1 — ev/m - sj(x)) < ev/m - sj(x).
o Let M=Y7, X;.

© Var[M] < 37, VarlX] < S, e/ - 5i(x) < ' - e/ - 1/(c/m)
=m.

Q Var[s(x)] = Var[M/e\/m] = Var[M]/e*m

Jeffrey Jestes, Ke Yi, Feifei Li Building Wavelet Histograms on Large Data in MapReduce



Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.
@ Our estimator is §(x) = p(x) + M/ey/m.

o Assume in the first m’ splits s;j(x) < 1/(e/m).
@ Let X; =1 if x is sampled in split j and O otherwise.

Q Var[Xj]] = e/m-sj(x)(1 — ev/m - sj(x)) < ev/m - sj(x).
o Let M=Y7, X;.

© Var[M] < 37, VarlX] < S, e/ - 5i(x) < ' - e/ - 1/(c/m)
=m.

Q Var[s(x)] = Var[M/e\/m] = Var[M]/e*m < m' /e*m
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.
@ Our estimator is §(x) = p(x) + M/ey/m.

o Assume in the first m’ splits s;j(x) < 1/(e/m).
@ Let X; =1 if x is sampled in split j and O otherwise.

Q Var[Xj]] = e/m-sj(x)(1 — ev/m - sj(x)) < ev/m - sj(x).
o Let M=Y7, X;.

© Var[M] < 37, VarlX] < S, e/ - 5i(x) < ' - e/ - 1/(c/m)
=m.

Q Var[s(x)] = Var[M/s\/m] = Var[M]/e2m < m' [e2m < 1/¢>
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.

@ Our estimator is §(x) = p(x) + M/ey/m.

o Assume in the first m’ splits s;j(x) < 1/(e/m).
@ Let X; =1 if x is sampled in split j and O otherwise.

Q Var[Xj]] = e/m-sj(x)(1 — ev/m - sj(x)) < ev/m - sj(x).
o Let M=Y7, X;.

© Var[M] < 37, VarlX] < S, e/ - 5i(x) < ' - e/ - 1/(c/m)
=m.

Q Var[s(x)] = Var[M/e/m] = Var[M]/e*m < m’/e?m < 1/e% < 1/e.
O
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

The expected total communication cost of our two-level sampling
algorithm is O(y/m/e).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

The expected total communication cost of our two-level sampling
algorithm is O(y/m/e).

@ Our estimator is 5(x) = p(x) + M/e/m.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

The expected total communication cost of our two-level sampling
algorithm is O(y/m/e).

@ Our estimator is 5(x) = p(x) + M/e/m.

@ The first-level sample size is pn = 1/
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

The expected total communication cost of our two-level sampling
algorithm is O(y/m/e).

@ Our estimator is 5(x) = p(x) + M/e/m.

@ The first-level sample size is pn = 1/
o If sj(x) > 1/(ey/m) we emit (x, s;(x)).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

The expected total communication cost of our two-level sampling
algorithm is O(y/m/e).

@ Our estimator is 5(x) = p(x) + M/e/m.

@ The first-level sample size is pn = 1/

o If sj(x) > 1/(ey/m) we emit (x, s;(x)).
@ There are < (1/€%)/(1/ey/m) = v/m/e such keys.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

The expected total communication cost of our two-level sampling
algorithm is O(y/m/e).

@ Our estimator is 5(x) = p(x) + M/e/m.

@ The first-level sample size is pn = 1/
o If sj(x) > 1/(ey/m) we emit (x, s;(x)).

@ There are < (1/€%)/(1/ey/m) = v/m/e such keys.
o If si(x) < 1/(ey/m),

we emit (x, null) with probability ey/m - sjx.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

The expected total communication cost of our two-level sampling
algorithm is O(y/m/e).

@ Our estimator is 5(x) = p(x) + M/e/m.

@ The first-level sample size is pn = 1/
o If sj(x) > 1/(ey/m) we emit (x, s;(x)).
@ There are < (1/€%)/(1/ey/m) = v/m/e such keys.
o If si(x) < 1/(ey/m),
we emit (x, null) with probability ey/m - sjx.
© On expectation there are,

S Y ev/m-si(x) < ey/m- 1/e?
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

The expected total communication cost of our two-level sampling
algorithm is O(y/m/e).

@ Our estimator is 5(x) = p(x) + M/e/m.

@ The first-level sample size is pn = 1/
o If sj(x) > 1/(ey/m) we emit (x, s;(x)).
@ There are < (1/€%)/(1/ey/m) = v/m/e such keys.
o If si(x) < 1/(ey/m),
we emit (x, null) with probability ey/m - sjx.
© On expectation there are,

¥, Y, ev/m-si(x) < e/ 1/ = /e.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

The expected total communication cost of our two-level sampling
algorithm is O(y/m/e).

@ Our estimator is 5(x) = p(x) + M/e/m.

@ The first-level sample size is pn = 1/
o If sj(x) > 1/(ey/m) we emit (x, s;(x)).
@ There are < (1/€%)/(1/ey/m) = v/m/e such keys.
o If si(x) < 1/(ey/m),
we emit (x, null) with probability ey/m - sjx.
© On expectation there are,
Yi2cevm si(x) <eym- 1/e? = /m/e.
@ By (2) and (3), the total number of emitted keys is O(v/m/g).
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

JobTracker nj= records in split j

’ sj= split j sample frequency vector

split 1
split 2 MapRunner
split 3
split 4
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

JobTracker nj= records in split j

’ sj= split j sample frequency vector

‘ RandomizedRecordReader ‘

(x, null)
split 1
split 2 MapRunner
split 3
split 4

© RandomizedRecordReader j samples t; = n;/c?n records.
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

JobTracker nj= records in split j

’ sj= split j sample frequency vector

‘ RandomizedRecordReader ‘

(x, null)
split 1 (x, null)
split 2 MapRunner
split 3
split 4

© RandomizedRecordReader j samples t; = n;/c?n records.
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

JobTracker nj= records in split j

’ sj= split j sample frequency vector

In-Memory
Map

‘ RandomizedRecordReader ‘

(x, null)
(1)
split 1 (x, null)
split 2 MapRunner
split 3
split 4

© RandomizedRecordReader j samples t; = n;/c?n records.
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

JobTracker nj= records in split j

’ sj= split j sample frequency vector

In-Memory
Map

‘ RandomizedRecordReader ‘

(x, null)
close()
split 1 (x, null)
split 2 MapRunner
split 3
split 4

© RandomizedRecordReader j samples t; = n;/c?n records.

Jeffrey Jestes, Ke Yi, Feifei Li Building Wavelet Histograms on Large Data in MapReduce



Approximate Top-k Wavelet Coefficients: Improved

Sampling

JobTracker nj= records in split j

’ sj= split j sample frequency vector

In-Memory
Map

‘ RandomizedRecordReader ‘

(x, null)
(x:55(x))
split 1 (x, null)
split 2 MapRunner
split 3
split 4

© RandomizedRecordReader j samples t; = n;/c?n records.
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Approximate Top-k Wavelet Coefficients: Improved

Sampling
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