Building Wavelet Histograms on Large Data in MapReduce Jeffrey Jestes¹ Ke Yi² Feifei Li¹ ²Department of Computer Science Hong Kong University of Science and Technology November 16, 2011 #### Introduction | Record ID | User ID | Object ID | | |-----------|---------|-----------|---| | 1 | 1 | 12872 | | | 2 | 8 | 19832 | | | 3 | 4 | 231 | | | : | : | : | : | • For large data we often wish to obtain a concise summary. #### Introduction | Record ID | User ID | Object ID | | |-----------|---------|-----------|---| | 1 | 1 | 12872 | | | 2 | 8 | | | | 3 | 4 | 231 | | | : | i | i | : | • For large data we often wish to obtain a concise summary. #### Introduction | Record ID | User ID | Object ID | | |-----------|---------|-----------|---| | 1 | 1 | 12872 | | | 2 | 8 | 19832 | | | 3 | 4 | 231 | | | : | i | i | ÷ | • For large data we often wish to obtain a concise summary. #### Outline - Introduction and Motivation - Histograms - MapReduce and Hadoop - Exact Top-k Wavelet Coefficients - Naive Solution - Hadoop Wavelet Top-k: Our Efficient Exact Solution - 3 Approximate Top-k Wavelet Coefficients - Linearly Combinable Sketch Method - Our First Sampling Based Approach - An Improved Sampling Approach - Two-Level Sampling - 4 Experiments - Conclusions - Hadoop Wavelet Top-k in Hadoop • A widely accepted and utilized summarization tool is the Histogram. - A widely accepted and utilized summarization tool is the Histogram. - Let A be an attribute of dataset R. - A widely accepted and utilized summarization tool is the Histogram. - Let A be an attribute of dataset R. - Values of A are drawn from finite domain $[u] = \{1, \dots, u\}$. - A widely accepted and utilized summarization tool is the Histogram. - Let A be an attribute of dataset R. - Values of A are drawn from finite domain $[u] = \{1, \dots, u\}$. - Define for each $x \in \{1, \dots, u\}$, $\mathbf{v}(x) = \{count(R.A = x)\}$. - A widely accepted and utilized summarization tool is the Histogram. - Let A be an attribute of dataset R. - Values of A are drawn from finite domain $[u] = \{1, \dots, u\}$. - Define for each $x \in \{1, \dots, u\}$, $\mathbf{v}(x) = \{count(R.A = x)\}$. - Define frequency vector \mathbf{v} of R.A as $\mathbf{v} = (\mathbf{v}(1), \dots, \mathbf{v}(u))$. - A widely accepted and utilized summarization tool is the Histogram. - Let A be an attribute of dataset R. - Values of A are drawn from finite domain $[u] = \{1, \dots, u\}$. - Define for each $x \in \{1, \dots, u\}$, $\mathbf{v}(x) = \{count(R.A = x)\}$. - Define frequency vector \mathbf{v} of R.A as $\mathbf{v} = (\mathbf{v}(1), \dots, \mathbf{v}(u))$. - A histogram over R.A is any compact (lossy) representation of \mathbf{v} . - A widely accepted and utilized summarization tool is the Histogram. - Let A be an attribute of dataset R. - Values of A are drawn from finite domain $[u] = \{1, \dots, u\}$. - Define for each $x \in \{1, \dots, u\}$, $\mathbf{v}(x) = \{count(R.A = x)\}$. - Define frequency vector \mathbf{v} of R.A as $\mathbf{v} = (\mathbf{v}(1), \dots, \mathbf{v}(u))$. - A histogram over R.A is any compact (lossy) representation of \mathbf{v} . | Record ID | User ID | Object ID | | |-----------|---------|-----------|---| | 1 | 1 | 12872 | | | 2 | 8 | | | | 3 | 4 | 231 | | | : | : | i. | ÷ | | | X | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |---|-----|---|---|----|---|---|---|----|----| | V | (x) | 3 | 5 | 10 | 8 | 2 | 2 | 10 | 14 | • A common choice for a histogram is the *Haar wavelet histogram*. - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: Original data signal at level $\ell = \log_2 u$. - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: Select top-k w_i in the absolute value to obtain best k-term representation minimizing error in energy, i.e. minimize $\sum_{i=1}^{u} \mathbf{v}(i)^2 - \sum_{i=1}^{u} w_i^2$ - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: Select top-k w_i in the absolute value to obtain best k-term representation minimizing error in energy, i.e. minimize $\sum_{i=1}^{u} \mathbf{v}(i)^2 - \sum_{i=1}^{u} w_i^2$ - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: We maintain the best k-term w_i . Other w_i are treated as 0. - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: To reconstruct the original signal we compute the *average* and *difference coefficients* in reverse, i.e. top to bottom. - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: The reconstructed signal is a reasonably close approximation. - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - 1. We maintain $O(\log u)$ partial w_i s at a time. - 2. Compute affected w_i and contribution from each $\mathbf{v}(x)$ in $O(\log u)$ time. - 2. Process $\mathbf{v}(x)$ s in sorted order. [GKMS01] - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - 1. We maintain $O(\log u)$ partial w_i s at a time. - 2. Compute affected w_i and contribution from each $\mathbf{v}(x)$ in $O(\log u)$ time. - 2. Process $\mathbf{v}(x)$ s in sorted order. [GKMS01] - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - 1. We maintain $O(\log u)$ partial w_i s at a time. - 2. Compute affected w_i and contribution from each $\mathbf{v}(x)$ in $O(\log u)$ time. - 2. Process $\mathbf{v}(x)$ s in sorted order. [GKMS01] - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - 1. We maintain $O(\log u)$ partial w_i s at a time. - 2. Compute affected w_i and contribution from each $\mathbf{v}(x)$ in $O(\log u)$ time. - 2. Process $\mathbf{v}(x)$ s in sorted order. [GKMS01] - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - 1. We maintain $O(\log u)$ partial w_i s at a time. - 2. Compute affected w_i and contribution from each $\mathbf{v}(x)$ in $O(\log u)$ time. - 2. Process $\mathbf{v}(x)$ s in sorted order. [GKMS01] - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - 1. We maintain $O(\log u)$ partial w_i s at a time. - 2. Compute affected w_i and contribution from each $\mathbf{v}(x)$ in $O(\log u)$ time. - 2. Process $\mathbf{v}(x)$ s in sorted order. [GKMS01] - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - 1. We maintain
$O(\log u)$ partial w_i s at a time. - 2. Compute affected w_i and contribution from each $\mathbf{v}(x)$ in $O(\log u)$ time. - 2. Process $\mathbf{v}(x)$ s in sorted order. [GKMS01] - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - 1. We maintain $O(\log u)$ partial w_i s at a time. - 2. Compute affected w_i and contribution from each $\mathbf{v}(x)$ in $O(\log u)$ time. - 2. Process $\mathbf{v}(x)$ s in sorted order. [GKMS01] - A common choice for a histogram is the *Haar wavelet histogram*. - We obtain the Haar wavelet coefficients w_i recursively as follows: - 1. We maintain $O(\log u)$ partial w_i s at a time. - 2. Compute affected w_i and contribution from each $\mathbf{v}(x)$ in $O(\log u)$ time. - 2. Process $\mathbf{v}(x)$ s in sorted order. [GKMS01] ## Introduction: Histograms - We may also compute w_i with the wavelet basis vectors ψ_i . - $w_i = \mathbf{v} \cdot \psi_i$ for $i = 1, \dots, u$ #### Outline - Introduction and Motivation - Histograms - MapReduce and Hadoop - Exact Top-k Wavelet Coefficients - Naive Solution - Hadoop Wavelet Top-k: Our Efficient Exact Solution - Approximate Top-k Wavelet Coefficients - Linearly Combinable Sketch Method - Our First Sampling Based Approach - An Improved Sampling Approach - Two-Level Sampling - 4 Experiments - Conclusions - Hadoop Wavelet Top-k in Hadoop ## Introduction: MapReduce and Hadoop | R | | | | |---------|-----------|-------------------|--| | User ID | Object ID | | | | 1 | 12872 | | | | 8 | 19832 | | | | 4 | 231 | | | | : | : | : | | | | | | | | | User ID | User ID Object ID | | Traditionally data is stored in a centralized setting. ## Introduction: MapReduce and Hadoop - Traditionally data is stored in a centralized setting. - Now stored data has sky rocketed, and is increasingly distributed. ## Introduction: MapReduce and Hadoop - Traditionally data is stored in a centralized setting. - Now stored data has sky rocketed, and is increasingly distributed. - We study computing the top-k coefficients efficiently on distributed data in MapReduce using Hadoop to illustrate our ideas. Hadoop Core consists of one master JobTracker and several TaskTrackers. - Hadoop Core consists of one master JobTracker and several TaskTrackers. - We assume one TaskTracker per physical machine. - Hadoop Core consists of one master JobTracker and several TaskTrackers. - We assume one TaskTracker per physical machine. - Hadoop Core consists of one master JobTracker and several TaskTrackers. - We assume one TaskTracker per physical machine. - Hadoop Core consists of one master JobTracker and several TaskTrackers. - We assume one TaskTracker per physical machine. In a Hadoop cluster one machine typically runs both the NameNode and JobTracker tasks and is called the master. - In a Hadoop cluster one machine typically runs both the NameNode and JobTracker tasks and is called the master. - The other machines run DataNode and TaskTracker tasks and are called slaves. - In a Hadoop cluster one machine typically runs both the NameNode and JobTracker tasks and is called the master. - The other machines run DataNode and TaskTracker tasks and are called slaves. - In a Hadoop cluster one machine typically runs both the NameNode and JobTracker tasks and is called the *master*. - The other machines run DataNode and TaskTracker tasks and are called slaves. Next we look at an overview of a typical MapReduce Job. • Job specific variables are first placed in the *Job Configuration* which is sent to each *Mapper Task* by the *JobTracker*. Large data such as files or libraries are then put in the Distributed Cache which is copied to each TaskTracker by the JobTracker. The JobTracker next assigns each InputSplit to a Mapper task on a TaskTracker, we assume m Mappers and m InputSplits. • Each Mapper maps a (k_1, v_1) pair to an intermediate (k_2, v_2) pair and partitions by k_2 , i.e. $hash(k_2) = p_i$ for $i \in [1, r]$, r = |reducers|. • An optional *Combiner* is executed over $(k_2, list(v_2))$. • The *Combiner* aggregates v_2 for a k_2 and a (k_2, v_2) is written to a partition on disk. • The JobTracker assigns two TaskTrackers to run the Reducers, each Reducer copies and sorts it's inputs from corresponding partitions. • The JobTracker assigns two TaskTrackers to run the Reducers, each Reducer copies and sorts it's inputs from corresponding partitions. • Each Reducer reduces a $(k_2, list(v_2))$ to a single (k_3, v_3) and writes the results to a DFS file, o_i for $i \in [1, r]$. #### Outline - Introduction and Motivation - Histograms - MapReduce and Hadoop - Exact Top-k Wavelet Coefficients - Naive Solution - Hadoop Wavelet Top-k: Our Efficient Exact Solution - 3 Approximate Top-k Wavelet Coefficients - Linearly Combinable Sketch Method - Our First Sampling Based Approach - An Improved Sampling Approach - Two-Level Sampling - 4 Experiments - Conclusions - Hadoop Wavelet Top-k in Hadoop • Each of the *m* Mappers reads the input key *x* from its input split. • Each Mapper emits (x, 1) for combining by the Combiner. • Each Combiner emits $(x, v_j(x))$, where $v_j(x)$ is the local frequency of x. • The Reducer utilizes a Centralized Wavelet Top-k algorithm, supplying the (x, v(x)) in a streaming fashion. • At the end of the Reduce phase, the Reducer's close() method is invoked. The Reducer then requests the top- $k |w_i|$. • The centralized algorithm computes the top- $k |w_i|$ and returns these to the Reducer. • Finally, the Reducer writes the top- $k |w_i|$ to its HDFS output file o_1 . #### Outline - Introduction and Motivation - Histograms - MapReduce and Hadoop - Exact Top-k Wavelet Coefficients - Naive Solution - Hadoop Wavelet Top-k: Our Efficient Exact Solution - 3 Approximate Top-k Wavelet Coefficients - Linearly Combinable Sketch Method - Our First Sampling Based Approach - An Improved Sampling Approach - Two-Level Sampling - 4 Experiments - Conclusions - Hadoop Wavelet Top-k in Hadoop • We can try to model the problem as a distributed top-k: $$w_i = \mathbf{v} \cdot \psi_i = \left(\sum_{j=1}^m \mathbf{v}_j\right) \cdot \psi_i = \sum_{j=1}^m w_{i,j}.$$ • We can try to model the problem as a distributed top-k: $$w_i = \mathbf{v} \cdot \psi_i = \left(\sum_{j=1}^m \mathbf{v}_j\right) \cdot \psi_i = \sum_{j=1}^m w_{i,j}.$$ $w_{i,j}$ is the local value of w_i in split j. | split 1 | | |-------------------|--| | $w_{1,1}$ | | | w _{2,1} | | | w _{3,1} | | | : | | | W _{11.1} | | | split 2 | | |-------------------------|--| | <i>w</i> _{1,2} | | | w _{2,2} | | | W _{3,2} | | | : | | | W o | | | split 3 | |-------------------------| | <i>w</i> _{1,3} | | w _{2,3} | | W _{3,3} | | : | | split 4 | |------------------| | w _{1,4} | | w _{2,4} | | W _{3,4} | | : | | | • We can try to model the problem as a distributed top-k: $$w_i = \mathbf{v} \cdot \psi_i = (\sum_{j=1}^m \mathbf{v}_j) \cdot \psi_i = \sum_{j=1}^m w_{i,j}.$$ • We can try to model the problem as a distributed top-k: $$w_i = \mathbf{v} \cdot \psi_i = (\sum_{j=1}^m \mathbf{v}_j) \cdot \psi_i = \sum_{j=1}^m w_{i,j}.$$ - We can try to model the problem as a distributed top-k: $\mathbf{w}_i = \mathbf{v} \cdot \psi_i = \left(\sum_{i=1}^m \mathbf{v}_i\right) \cdot \psi_i = \sum_{i=1}^m \mathbf{w}_{i,j}.$ - Previous solutions assume local score $s_{i,j} \geq 0$ and want the largest $s_i = \sum_{i=1}^m s_{i,j}$. - We can try to model the problem as a distributed top-k: $\mathbf{w}_i = \mathbf{v} \cdot \psi_i = (\sum_{i=1}^m \mathbf{v}_i) \cdot \psi_i = \sum_{i=1}^m \mathbf{w}_{i,j}.$ - Previous solutions assume local score $s_{i,j} \geq 0$ and want the largest $s_i = \sum_{i=1}^m s_{i,j}$. - We have $w_{i,j} < 0$ and $w_{i,j} \ge 0$ and want the largest $|w_i|$. | node 1 | | | |------------------|---|----------| | id | х | $s_1(x)$ | | $e_{1,1}$ | 5 | 20 | | $e_{1,2}$ | 2 | 7 | | $e_{1,3}$ | 1 | 6 | | e _{1,4} | 4 | -2 | | $e_{1,5}$ | 6 | -15 | | $e_{1,6}$ | 3 | -30 | | node 2 | | | | |------------------|---|----------|--| | id | х | $s_2(x)$ | | | $e_{2,1}$ | 5 | 12 | | | e _{2,2} | 4 | 7 | | | $e_{2,3}$ | 1 | 2 | | | e _{2,4} | 2 | -5 | | | e _{2,5} | 3 | -14 | | | $e_{2.6}$ | 6 | -20 | | | node 3 | | | | |--------|-----------------------|--|--| | х | $s_3(x)$ | | | | 1 | 10 | | | | 3 | 6 | | | | 4 | 5 | | | | 2 | -3 | | | | 5 | -6 | | | | 6 | -10 | | | | | x
1
3
4
2 | | | • An item x has a local score $s_i(x)$ at node $i \ \forall i \in [1 \dots m]$, where if x does not appear $s_i(x) = 0$ | node 1 | | | |-----------|---|----------| | id | х | $s_1(x)$ | | $e_{1,1}$ | 5 | 20 | | $e_{1,2}$ | 2 | 7 | | $e_{1,3}$ | 1 | 6 | | $e_{1,4}$ | 4 | -2 | | $e_{1,5}$ | 6 | -15 | | $e_{1,6}$ | 3 | -30 | | n | od | e 2 | |------------------|----|----------| | id | х | $s_2(x)$ | | $e_{2,1}$ | 5 | 12 | | $e_{2,2}$ | 4 | 7 | | $e_{2,3}$ | 1 | 2 | | e _{2,4} | 2 | -5 | | e _{2,5} | 3 | -14 | | e _{2.6} | 6 | -20 | | node 3 | | | | |------------------|---|----------|--| | id | х | $s_3(x)$ | | | $e_{3,1}$ | 1 | 10 | | | e _{3,2} | 3 | 6 | | | e _{3,3} | 4 | 5 | | | e _{3,4} | 2 | -3 | | | $e_{3,5}$ | 5 | -6 | | | e _{3,6} | 6 | -10 | | • The coordinator computes useful bounds for each received item. | | node 1 | | | | |---|-----------|---|----------|---| | | id | х | $s_1(x)$ | | | | $e_{1,1}$ | 5 | 20 | | | ĺ | $e_{1,2}$ | 2 | 7 | | | | $e_{1,3}$ | 1 | 6 | | | | $e_{1,4}$ | 4 | -2 | | | | $e_{1,5}$ | 6 | -15 | l | | | $e_{1,6}$ | 3 | -30 | ı | | node 2 | | | | |------------------|---|----------|---| | id | х | $s_2(x)$ | | | $e_{2,1}$ | 5 | 12 | 1 | | $e_{2,2}$ | 4 | 7 | | | e _{2,3} | 1 | 2 | | | e _{2,4} | 2 | -5 | | | e _{2,5} | 3 | -14 | | | $e_{2.6}$ | 6 | -20 | 1 | | node 3 | | | | | | |------------------|---|----------|--|--|--| | id | х | $s_3(x)$ | | | | | $e_{3,1}$ | 1 | 10 | | | | | e _{3,2} | 3 | 6 | | | | | $e_{3,3}$ | 4 | 5 | | | | | $e_{3,4}$ | 2 | -3 | | | | | $e_{3,5}$ | 5 | -6 | | |
 | $e_{3,6}$ | 6 | -10 | | | | • $\hat{s}(x)$ denotes the partial score sum for x | n | od | e 1 | | |-----------|----|----------|---| | id | х | $s_1(x)$ | | | $e_{1,1}$ | 5 | 20 | Ī | | $e_{1,2}$ | 2 | 7 | l | | $e_{1,3}$ | 1 | 6 | | | $e_{1,4}$ | 4 | -2 | | | $e_{1,5}$ | 6 | -15 | l | | $e_{1,6}$ | 3 | -30 | ı | | node 2 | | | | | | |------------------|---|----------|---|--|--| | id | х | $s_2(x)$ | | | | | $e_{2,1}$ | 5 | 12 | | | | | $e_{2,2}$ | 4 | 7 | | | | | $e_{2,3}$ | 1 | 2 | | | | | e _{2,4} | 2 | -5 | | | | | e _{2,5} | 3 | -14 | | | | | $e_{2.6}$ | 6 | -20 | 1 | | | | node 3 | | | | | | |------------------|---|----------|--|--|--| | id | х | $s_3(x)$ | | | | | $e_{3,1}$ | 1 | 10 | | | | | e _{3,2} | 3 | 6 | | | | | $e_{3,3}$ | 4 | 5 | | | | | $e_{3,4}$ | 2 | -3 | | | | | $e_{3,5}$ | 5 | -6 | | | | | $e_{3,6}$ | 6 | -10 | | | | • $\hat{s}(x)$ denotes the partial score sum for x | | node 1 | | | | | | |---|-----------|---|----------|---|--|--| | | id | х | $s_1(x)$ | | | | | | $e_{1,1}$ | 5 | 20 | | | | | ĺ | $e_{1,2}$ | 2 | 7 | | | | | | $e_{1,3}$ | 1 | 6 | | | | | | $e_{1,4}$ | 4 | -2 | | | | | | $e_{1,5}$ | 6 | -15 | l | | | | | $e_{1,6}$ | 3 | -30 | ı | | | | n | od | e 2 | | |------------------|----|----------|---| | id | х | $s_2(x)$ | | | $e_{2,1}$ | 5 | 12 |] | | $e_{2,2}$ | 4 | 7 | | | e _{2,3} | 1 | 2 | | | e _{2,4} | 2 | -5 | | | e _{2,5} | 3 | -14 | | | e _{2.6} | 6 | -20 | 1 | | node 3 | | | | | | | |-------------------------|---|-----|--|--|--|--| | id $x s_3(x)$ | | | | | | | | $e_{3,1}$ | 1 | 10 | | | | | | e _{3,2} | 3 | 6 | | | | | | $e_{3,3}$ | 4 | 5 | | | | | | $e_{3,4}$ | 2 | -3 | | | | | | $e_{3,5}$ | 5 | -6 | | | | | | <i>e</i> _{3,6} | 6 | -10 | | | | | | | | | k = 1 |] | | | | | | |------------------|---|----------|-------|---|--------------|-------|-------------|-------------|-----------| | | R | ? | | | | | R | | | | id | х | $s_j(x)$ | - | х | $\hat{s}(x)$ | F_x | $\tau^+(x)$ | $\tau^-(x)$ | $\tau(x)$ | | $e_{1,1}$ | 5 | 20 | | 1 | 10 | 001 | 42 | -40 | 0 | | $e_{1,6}$ | 3 | -30 | | 3 | -30 | 100 | -8 | -60 | 8 | | $e_{2,1}$ | 5 | 12 | | 5 | 32 | 110 | 42 | 22 | 22 | | e _{2,6} | 6 | -20 | | 6 | -30 | 011 | -10 | -60 | 10 | | $e_{3,1}$ | 1 | 10 | | | | | | | | | e _{3,6} | 6 | -10 | | | | | | | | • F_x is a receipt indication bit vector, if $s_i(x)$ is received $F_x(i) = 1$, else $F_x(i) = 0$. | | node 1 | | | | | | | |---|-----------|---|----------|---|--|--|--| | | id | х | $s_1(x)$ | ĺ | | | | | | $e_{1,1}$ | 5 | 20 | l | | | | | ĺ | $e_{1,2}$ | 2 | 7 | I | | | | | | $e_{1,3}$ | 1 | 6 | l | | | | | | $e_{1,4}$ | 4 | -2 | l | | | | | | $e_{1,5}$ | 6 | -15 | l | | | | | | $e_{1,6}$ | 3 | -30 | ı | | | | | node 2 | | | | | | | |------------------|---|-----|---|--|--|--| | id $x s_2(x)$ | | | | | | | | $e_{2,1}$ | 5 | 12 | | | | | | $e_{2,2}$ | 4 | 7 | I | | | | | $e_{2,3}$ | 1 | 2 | ı | | | | | e _{2,4} | 2 | -5 | l | | | | | $e_{2,5}$ | 3 | -14 | l | | | | | $e_{2.6}$ | 6 | -20 | ľ | | | | | node 3 | | | | | |------------------|----------|-----|--|--| | id | $s_3(x)$ | | | | | $e_{3,1}$ | 1 | 10 | | | | e _{3,2} | 3 | 6 | | | | $e_{3,3}$ | 4 | 5 | | | | $e_{3,4}$ | 2 | -3 | | | | $e_{3,5}$ | 5 | -6 | | | | $e_{3,6}$ | 6 | -10 | | | | | | | k = 1 |] | | | | | | |------------------|---|----------|-------|---|--------------|---------|-------------|-------------|-----------| | | R | ' | | | | | R | | | | id | х | $s_j(x)$ | - | х | $\hat{s}(x)$ | F_{x} | $\tau^+(x)$ | $\tau^-(x)$ | $\tau(x)$ | | $e_{1,1}$ | 5 | 20 | 1 | 1 | 10 | 001 | 42 | -40 | 0 | | $e_{1,6}$ | 3 | -30 | | 3 | -30 | 100 | -8 | -60 | 8 | | $e_{2,1}$ | 5 | 12 | | 5 | 32 | 110 | 42 | 22 | 22 | | e _{2,6} | 6 | -20 | | 6 | -30 | 011 | -10 | -60 | 10 | | $e_{3,1}$ | 1 | 10 | | | | | | | | | e _{3.6} | 6 | -10 | | | | | | | | • F_x is a receipt indication bit vector, if $s_i(x)$ is received $F_x(i) = 1$, else $F_x(i) = 0$. | | node 1 | | | | | | | | |---|-----------|---|----------|---|--|--|--|--| | | id | х | $s_1(x)$ | | | | | | | | $e_{1,1}$ | 5 | 20 | l | | | | | | ĺ | $e_{1,2}$ | 2 | 7 | | | | | | | | $e_{1,3}$ | 1 | 6 | | | | | | | | $e_{1,4}$ | 4 | -2 | | | | | | | | $e_{1,5}$ | 6 | -15 | l | | | | | | | $e_{1,6}$ | 3 | -30 | | | | | | | n | od | e 2 | l | | | | |------------------|----|-----|---|--|--|--| | id $x s_2(x)$ | | | | | | | | $e_{2,1}$ | 5 | 12 | | | | | | $e_{2,2}$ | 4 | 7 | ľ | | | | | $e_{2,3}$ | 1 | 2 | l | | | | | e _{2,4} | 2 | -5 | l | | | | | e _{2,5} | 3 | -14 | | | | | | $e_{2.6}$ | 6 | -20 | ı | | | | | node 3 | | | | | | | | |------------------|---|----------|--|--|--|--|--| | id | х | $s_3(x)$ | | | | | | | $e_{3,1}$ | 1 | 10 | | | | | | | e _{3,2} | 3 | 6 | | | | | | | $e_{3,3}$ | 4 | 5 | | | | | | | $e_{3,4}$ | 2 | -3 | | | | | | | $e_{3,5}$ | 5 | -6 | | | | | | | $e_{3,6}$ | 6 | -10 | | | | | | | | | | k = 1 |] | | | | | | |------------------|---|----------|-------|---|--------------|-------|-------------|-------------|-----------| | | R | ' | | | | | R | | | | id | х | $s_j(x)$ | - | х | $\hat{s}(x)$ | F_x | $\tau^+(x)$ | $\tau^-(x)$ | $\tau(x)$ | | $e_{1,1}$ | 5 | 20 | | 1 | 10 | 001 | 42 | -40 | 0 | | $e_{1,6}$ | 3 | -30 | | 3 | -30 | 100 | -8 | -60 | 8 | | e _{2,1} | 5 | 12 | | 5 | 32 | 110 | 42 | 22 | 22 | | e _{2,6} | 6 | -20 | | 6 | -30 | 011 | -10 | -60 | 10 | | $e_{3,1}$ | 1 | 10 | | | | | | | | | e _{3,6} | 6 | -10 | | | | | | | | • $\tau^+(x)$ is an upper bound on the total score s(x), if $s_i(x)$ received then $\tau^+(x) = \tau^+(x) + s_i(x)$ else $\tau^+(x) = \tau^+(x) + k$ 'th most positive from node i | | node 1 | | | | | | | | |---|-----------|---|----------|---|--|--|--|--| | | id | х | $s_1(x)$ | | | | | | | | $e_{1,1}$ | 5 | 20 | Ī | | | | | | ĺ | $e_{1,2}$ | 2 | 7 | | | | | | | | $e_{1,3}$ | 1 | 6 | | | | | | | | $e_{1,4}$ | 4 | -2 | | | | | | | | $e_{1,5}$ | 6 | -15 | l | | | | | | | $e_{1,6}$ | 3 | -30 | ı | | | | | | n | od | e 2 | l | | | | | |------------------|-----------------|-----|---|--|--|--|--| | id | id $x s_2(x)$ | | | | | | | | $e_{2,1}$ | 5 | 12 | | | | | | | $e_{2,2}$ | 4 | 7 | I | | | | | | $e_{2,3}$ | 1 | 2 | ı | | | | | | e _{2,4} | 2 | -5 | l | | | | | | $e_{2,5}$ | 3 | -14 | l | | | | | | $e_{2.6}$ | 6 | -20 | ľ | | | | | | node 3 | | | | | | | | |-------------------------|---|----------|--|--|--|--|--| | id | х | $s_3(x)$ | | | | | | | $e_{3,1}$ | 1 | 10 | | | | | | | e _{3,2} | 3 | 6 | | | | | | | $e_{3,3}$ | 4 | 5 | | | | | | | e _{3,4} | 2 | -3 | | | | | | | $e_{3,5}$ | 5 | -6 | | | | | | | <i>e</i> _{3,6} | 6 | -10 | | | | | | | | | | k = 1 |] | | | | | | | |------------------|---|----------|-------|---|--------------|--------------|-------------|-------------|-----------|--| | | R | | | R | | | | | | | | id | х | $s_j(x)$ | | х | $\hat{s}(x)$ | F_{\times} | $\tau^+(x)$ | $\tau^-(x)$ | $\tau(x)$ | | | $e_{1,1}$ | 5 | 20 | | 1 | 10 | 001 | 42 | -40 | 0 | | | $e_{1,6}$ | 3 | -30 | • | 3 | -30 | 100 | -8 | -60 | 8 | | | $e_{2,1}$ | 5 | 12 | | 5 | 32 | 110 | 42 | 22 | 22 | | | e _{2,6} | 6 | -20 | | 6 | -30 | 011 | -10 | -60 | 10 | | | $e_{3,1}$ | 1 | 10 | | | | | | | | | | e _{3,6} | 6 | -10 | - | | | | | | | | • $\tau^+(x)$ is an upper bound on the total score s(x), if $s_i(x)$ received then $\tau^+(x) = \tau^+(x) + s_i(x)$ else $\tau^+(x) = \tau^+(x) + k$ 'th most positive from node i | | node 1 | | | | | | | | |---|-----------|---|----------|---|--|--|--|--| | | id | х | $s_1(x)$ | | | | | | | 1 | $e_{1,1}$ | 5 | 20 | l | | | | | | 1 | $e_{1,2}$ | 2 | 7 | | | | | | | | $e_{1,3}$ | 1 | 6 | | | | | | | | $e_{1,4}$ | 4 | -2 | | | | | | | | $e_{1,5}$ | 6 | -15 | l | | | | | | | $e_{1,6}$ | 3 | -30 | | | | | | | node 2 | | | | | | | |------------------|----|----------|---|--|--|--| | n | oa | e 2 | | | | | | id | х | $s_2(x)$ | l | | | | | $e_{2,1}$ | 5 | 12 | | | | | | $e_{2,2}$ | 4 | 7 | | | | | | $e_{2,3}$ | 1 | 2 | | | | | | e _{2,4} | 2 | -5 | | | | | | $e_{2,5}$ | 3 | -14 | | | | | | $e_{2.6}$ | 6 | -20 | ĺ | | | | | $\overline{}$ | 1.2 | | | | | | | | |---------------|--------|---|----------|--|--|--|--|--| | L | node 3 | | | | | | | | | [i | d | х | $s_3(x)$ | | | | | | | е | 3,1 | 1 | 10 | | | | | | | е | 3,2 | 3 | 6 | | | | | | | е | 3,3 | 4 | 5 | | | | | | | е | 3,4 | 2 | -3 | | | | | | | e | 3,5 | 5 | -6 | | | | | | | е | 3,6 | 6 | -10 | | | | | | | | | | k = 1 |] | | | | | | |------------------|---|----------|-------|---|--------------|---------|-------------|-------------|-----------| | | R | ? | | | | | R | | | | id | х | $s_j(x)$ | - | х | $\hat{s}(x)$ | F_{x} | $\tau^+(x)$ | $\tau^-(x)$ | $\tau(x)$ | | $e_{1,1}$ | 5 | 20 | | 1 | 10 | 001 | 42 | -40 | 0 | | $e_{1,6}$ | 3 | -30 | | 3 | -30 | 100 | -8 | -60 | 8 | | $e_{2,1}$ | 5 | 12 | | 5 | 32 | 110 | 42 | 22 | 22 | | e _{2,6} | 6 | -20 | | 6 | -30 | 011 | -10 | -60 | 10 | | $e_{3,1}$ | 1 | 10 | | | | | | | | | e _{3,6} | 6 | -10 | | | | | | | | • $\tau^-(x)$ is a lower bound on the total score sum s(x), if $s_i(x)$ received then $\tau^-(x) = \tau^-(x) + s_i(x)$ else $\tau^-(x) = \tau^-(x) + k$ 'th most negative score from node i | node 1 | | | | | | |-----------|---|----------|---|--|--| | id | х | $s_1(x)$ | | | | | $e_{1,1}$ | 5 | 20 | l | | | | $e_{1,2}$ | 2 | 7 | | | | | $e_{1,3}$ | 1 | 6 | | | | | $e_{1,4}$ | 4 | -2 | | | | | $e_{1,5}$ | 6 | -15 | l | | | | $e_{1,6}$ | 3 | -30 | ĺ | | | | n | od | e 2 | l | | | | |------------------|----|----------|---|--|--|--| | id | х | $s_2(x)$ | l | | | | | $e_{2,1}$ | 5 | 12 | | | | | | $e_{2,2}$ | 4 | 7 | | | | | | $e_{2,3}$ | 1 | 2 | | | | | | e _{2,4} | 2 | -5 | | | | | | $e_{2,5}$ | 3 | -14 | | | | | | $e_{2.6}$ | 6 | -20 | ľ | | | | | n | node 3 | | | | | | | |------------------|--------|----------|--|--|--|--|--| | id | х | $s_3(x)$ | | | | | | | $e_{3,1}$ | 1 | 10 | | | | | | | e _{3,2} | 3 | 6 | | | | | | | $e_{3,3}$ | 4 | 5 | | | | | | | e _{3,4} | 2 | -3 | | | | | | | $e_{3,5}$ | 5 | -6 | | | | | | | e _{3,6} | 6 | -10 | | | | | | | | | | k = 1 |] | | | | | | |------------------|---
----------|-------|---|--------------|--------------|-------------|-------------|-----------| | | R | | | | | | R | | | | id | х | $s_j(x)$ | | х | $\hat{s}(x)$ | F_{\times} | $\tau^+(x)$ | $\tau^-(x)$ | $\tau(x)$ | | $e_{1,1}$ | 5 | 20 |] | 1 | 10 | 001 | 42 | -40 | 0 | | $e_{1,6}$ | 3 | -30 | • | 3 | -30 | 100 | -8 | -60 | 8 | | $e_{2,1}$ | 5 | 12 | | 5 | 32 | 110 | 42 | 22 | 22 | | e _{2,6} | 6 | -20 | | 6 | -30 | 011 | -10 | -60 | 10 | | $e_{3,1}$ | 1 | 10 | | | | | | | | | e _{3,6} | 6 | -10 | | | | | | | | • $\tau^-(x)$ is a lower bound on the total score sum s(x), if $s_i(x)$ received then $\tau^-(x) = \tau^-(x) + s_i(x)$ else $\tau^-(x) = \tau^-(x) + k$ 'th most negative score from node i | | node 1 | | | | | | |---|-----------|---|----------|---|--|--| | | id | х | $s_1(x)$ | | | | | | $e_{1,1}$ | 5 | 20 | Ī | | | | ĺ | $e_{1,2}$ | 2 | 7 | | | | | | $e_{1,3}$ | 1 | 6 | | | | | | $e_{1,4}$ | 4 | -2 | | | | | | $e_{1,5}$ | 6 | -15 | l | | | | | $e_{1,6}$ | 3 | -30 | ı | | | | node 2 | | | | | | | |------------------|---|-------|---|--|--|--| | id | х | s2(x) | l | | | | | $e_{2,1}$ | 5 | 12 | | | | | | $e_{2,2}$ | 4 | 7 | Ī | | | | | $e_{2,3}$ | 1 | 2 | ı | | | | | e _{2,4} | 2 | -5 | l | | | | | $e_{2,5}$ | 3 | -14 | | | | | | $e_{2.6}$ | 6 | -20 | ı | | | | | node 3 | | | | | | | |------------------|---|----------|--|--|--|--| | id | х | $s_3(x)$ | | | | | | $e_{3,1}$ | 1 | 10 | | | | | | e _{3,2} | 3 | 6 | | | | | | e _{3,3} | 4 | 5 | | | | | | e _{3,4} | 2 | -3 | | | | | | $e_{3,5}$ | 5 | -6 | | | | | | $e_{3,6}$ | 6 | -10 | | | | | | | | | k = 1 |] | | | | | | |------------------|---|----------|-------|---|--------------|---------|-------------|-------------|-----------| | | R | ? | | | | | R | | | | id | х | $s_j(x)$ | - | х | $\hat{s}(x)$ | F_{x} | $\tau^+(x)$ | $\tau^-(x)$ | $\tau(x)$ | | $e_{1,1}$ | 5 | 20 | | 1 | 10 | 001 | 42 | -40 | 0 | | $e_{1,6}$ | 3 | -30 | | 3 | -30 | 100 | -8 | -60 | 8 | | $e_{2,1}$ | 5 | 12 | | 5 | 32 | 110 | 42 | 22 | 22 | | e _{2,6} | 6 | -20 | | 6 | -30 | 011 | -10 | -60 | 10 | | $e_{3,1}$ | 1 | 10 | | | | | | | | | e _{3,6} | 6 | -10 | | | | | | | | • $\tau(x)$ is a lower bound on |s(x)| computed as, $\tau(x) = 0$ if $sign(\tau^+(x)) \neq sign(\tau^-(x))$ $au(x) = \min(| au^+(x)|, | au^-(x)|)$ otherwise. | | node 1 | | | | | | |---|-----------|---|----------|---|--|--| | | id | х | $s_1(x)$ | | | | | | $e_{1,1}$ | 5 | 20 | Ī | | | | ĺ | $e_{1,2}$ | 2 | 7 | | | | | | $e_{1,3}$ | 1 | 6 | | | | | | $e_{1,4}$ | 4 | -2 | | | | | | $e_{1,5}$ | 6 | -15 | l | | | | | $e_{1,6}$ | 3 | -30 | ı | | | | n | od | e 2 | l | | | | |------------------|----|-----|---|--|--|--| | id $x s_2(x)$ | | | | | | | | $e_{2,1}$ | 5 | 12 | | | | | | $e_{2,2}$ | 4 | 7 | ľ | | | | | $e_{2,3}$ | 1 | 2 | l | | | | | e _{2,4} | 2 | -5 | l | | | | | e _{2,5} | 3 | -14 | L | | | | | $e_{2.6}$ | 6 | -20 | 1 | | | | | node 3 | | | | | | |------------------|---|----------|--|--|--| | id | х | $s_3(x)$ | | | | | $e_{3,1}$ | 1 | 10 | | | | | e _{3,2} | 3 | 6 | | | | | $e_{3,3}$ | 4 | 5 | | | | | $e_{3,4}$ | 2 | -3 | | | | | $e_{3,5}$ | 5 | -6 | | | | | $e_{3,6}$ | 6 | -10 | | | | | | | | k = 1 | | | | | | | |------------------|---|----------|-------|---|--------------|---------|-------------|-------------|-----------| | | R | ' | | | | | R | | | | id | х | $s_j(x)$ | - | х | $\hat{s}(x)$ | F_{x} | $\tau^+(x)$ | $\tau^-(x)$ | $\tau(x)$ | | $e_{1,1}$ | 5 | 20 | | 1 | 10 | 001 | 42 | -40 | 0 | | $e_{1,6}$ | 3 | -30 | | 3 | -30 | 100 | -8 | -60 | 8 | | $e_{2,1}$ | 5 | 12 | | 5 | 32 | 110 | 42 | 22 | 22 | | e _{2,6} | 6 | -20 | | 6 | -30 | 011 | -10 | -60 | 10 | | $e_{3,1}$ | 1 | 10 | | | | | | | | | e _{3,6} | 6 | -10 | | | | | | | | • $\tau(x)$ is a lower bound on |s(x)| computed as, $\tau(x) = 0$ if $sign(\tau^+(x)) \neq sign(\tau^-(x))$ $au(x) = \min(| au^+(x)|, | au^-(x)|)$ otherwise. | node 1 | | | | | |-----------|---|----------|---|--| | id | х | $s_1(x)$ | | | | $e_{1,1}$ | 5 | 20 | Ī | | | $e_{1,2}$ | 2 | 7 | l | | | $e_{1,3}$ | 1 | 6 | | | | $e_{1,4}$ | 4 | -2 | | | | $e_{1,5}$ | 6 | -15 | l | | | $e_{1,6}$ | 3 | -30 | ı | | | node 2 | | | | | |------------------|---|----------|---|--| | id | х | $s_2(x)$ | l | | | $e_{2,1}$ | 5 | 12 | I | | | $e_{2,2}$ | 4 | 7 | ſ | | | $e_{2,3}$ | 1 | 2 | l | | | e _{2,4} | 2 | -5 | l | | | e _{2,5} | 3 | -14 | | | | $e_{2.6}$ | 6 | -20 | | | | node 3 | | | | |------------------|---|----------|--| | id | х | $s_3(x)$ | | | $e_{3,1}$ | 1 | 10 | | | e _{3,2} | 3 | 6 | | | e _{3,3} | 4 | 5 | | | e _{3,4} | 2 | -3 | | | $e_{3,5}$ | 5 | -6 | | | $e_{3,6}$ | 6 | -10 | | | | | | k = 1 | | | | | | | |------------------|---|----------|-------|----|--------------|--------------------|-------------|-------------|-----------| | | R | 2 | | | | | R | | | | id | х | $s_j(x)$ | | х | $\hat{s}(x)$ | F_{x} | $\tau^+(x)$ | $\tau^-(x)$ | $\tau(x)$ | | $e_{1,1}$ | 5 | 20 | | 1 | 10 | 001 | 42 | -40 | 0 | | $e_{1,6}$ | 3 | -30 | | 3 | -30 | 100 | -8 | -60 | 8 | | $e_{2,1}$ | 5 | 12 | | 5 | 32 | 110 | 42 | 22 | 22 | | e _{2,6} | 6 | -20 | | 6 | -30 | 011 | -10 | -60 | 10 | | $e_{3,1}$ | 1 | 10 | | T. | = 22 | . T ₁ / | m = 22 | 2/3 | | | $e_{3,6}$ | 6 | -10 | | _ | | , 1, | | , - | | • We select the item with the kth largest $\tau(x)$. $\tau(x)$ is a lower bound T_1 on the top-k |s(x)| for unseen item x. | | node 1 | | | | | |---|-----------|---|----------|---|--| | | id | х | $s_1(x)$ | | | | | $e_{1,1}$ | 5 | 20 | Ī | | | ĺ | $e_{1,2}$ | 2 | 7 | | | | | $e_{1,3}$ | 1 | 6 | | | | | $e_{1,4}$ | 4 | -2 | | | | | $e_{1,5}$ | 6 | -15 | l | | | | $e_{1,6}$ | 3 | -30 | ı | | | node 2 | | | | | |------------------|---|----------|---|--| | id | х | $s_2(x)$ | l | | | $e_{2,1}$ | 5 | 12 | | | | $e_{2,2}$ | 4 | 7 | ľ | | | $e_{2,3}$ | 1 | 2 | l | | | e _{2,4} | 2 | -5 | l | | | e _{2,5} | 3 | -14 | | | | e _{2.6} | 6 | -20 | Ī | | | | node 3 | | | | |---|------------------|---|----------|--| | Γ | id | х | $s_3(x)$ | | | E | $e_{3,1}$ | 1 | 10 | | | Ŀ | e _{3,2} | 3 | 6 | | | Г | e _{3,3} | 4 | 5 | | | Г | e _{3,4} | 2 | -3 | | | | $e_{3,5}$ | 5 | -6 | | | E | e _{3,6} | 6 | -10 | | | | R | ' | |------------------|---|----------| | id | х | $s_j(x)$ | | $e_{1,1}$ | 5 | 20 | | $e_{1,6}$ | 3 | -30 | | $e_{2,1}$ | 5 | 12 | | $e_{2,6}$ | 6 | -20 | | $e_{3,1}$ | 1 | 10 | | e _{3.6} | 6 | -10 | | k = 1 | | | | | | | |-------|--------------------------|--------------|---------|-------------|-------------|-----------| | | | | | R | | | | | х | $\hat{s}(x)$ | F_{x} | $\tau^+(x)$ | $\tau^-(x)$ | $\tau(x)$ | | | 1 | 10 | 001 | 42 | -40 | 0 | | | 3 | -30 | 100 | -8 | -60 | 8 | | | 5 | 32 | 110 | 42 | 22 | 22 | | | 6 | -30 | 011 | -10 | -60 | 10 | | | $T_1 = 22, T_1/m = 22/3$ | | | | | | • Any unseen item x must have at least: one $s_i(x) > T_1/m$ or one $s_i(x) < -T_1/m$ To get into the top-k. | node 1 | | | | | |-----------|---|----------|---|--| | id | х | $s_1(x)$ | l | | | $e_{1,1}$ | 5 | 20 | Ī | | | $e_{1,2}$ | 2 | 7 | l | | | $e_{1,3}$ | 1 | 6 | | | | $e_{1,4}$ | 4 | -2 | | | | $e_{1,5}$ | 6 | -15 | l | | | $e_{1.6}$ | 3 | -30 | ı | | | n | od | e 2 | | | |------------------|-----------------|-----|---|--| | id | id $x s_2(x)$ | | | | | $e_{2,1}$ | 5 | 12 | | | | $e_{2,2}$ | 4 | 7 | ľ | | | $e_{2,3}$ | 1 | 2 | | | | e _{2,4} | 2 | -5 | | | | e _{2,5} | 3 | -14 | | | | en c | 6 | -20 | ı | | | node 3 | | | | |------------------|---|----------|--| | id | х | $s_3(x)$ | | | $e_{3,1}$ | 1 | 10 | | | e _{3,2} | 3 | 6 | | | $e_{3,3}$ | 4 | 5 | | | $e_{3,4}$ | 2 | -3 | | | $e_{3,5}$ | 5 | -6 | | | $e_{3.6}$ | 6 | -10 | | | | | | k = 1 |] | | | | | | |------------------|---|----------|-------|--------------------------|--------------|---------|-------------|-------------|-----------| | | R | 2 | | | | | R | | | | id | х | $s_j(x)$ | | х | $\hat{s}(x)$ | F_{x} | $\tau^+(x)$ | $\tau^-(x)$ | $\tau(x)$ | | $e_{1,1}$ | 5 | 20 | | 1 | 10 | 001 | 42 | -40 | 0 | | $e_{1,6}$ | 3 | -30 | | 3 | -30 | 100 | -8 | -60 | 8 | | $e_{2,1}$ | 5 | 12 | | 5 | 32 | 110 | 42 | 22 | 22 | | e _{2,6} | 6 | -20 | | 6 | -30 | 011 | -10 | -60 | 10 | | $e_{3,1}$ | 1 | 10 | | $T_1 = 22, T_1/m = 22/3$ | | | | | | | e _{3,6} | 6 | -10 | ' | | | , 1/ | | , - | | #### Round 1 End | | node 2 | | | | | | |---|------------------|---|----------|--|--|--| | | id | х | $s_2(x)$ | | | | | / | $e_{2,1}$ | 5 | 12 | | | | | | e _{2,2} | 4 | 7 | | | | | | $e_{2,3}$ | 1 | 2 | | | | | | e _{2,4} | 2 | -5 | | | | | | e _{2,5} | 3 | -14 | | | | | / | $e_{2,6}$ | 6 | -20 | | | | | node 3 | | | | | | |----------------------|---|----------|--|--|--| | id | х | $s_3(x)$ | | | | |
$e_{3,1}$ | 1 | 10 | | | | | e _{3,2} | 3 | 6 | | | | | $e_{3,3}$ | 4 | 5 | | | | | $e_{3,4}$ | 2 | -3 | | | | | $e_{3,5}$ | 5 | -6 | | | | |
e _{3,6} | 6 | -10 | | | | | R | 2 | |---|-----------------------| | х | $s_j(x)$ | | 5 | 20 | | 3 | -30 | | 5 | 12 | | 6 | -20 | | 1 | 10 | | 6 | -10 | | | x
5
3
5
6 | | k = 1 | | | | | | | |-------|--------------------------|--------------|----------------|-------------|-------------|-----------| | | | | | R | | | | | х | $\hat{s}(x)$ | F _x | $\tau^+(x)$ | $\tau^-(x)$ | $\tau(x)$ | | | 1 | 10 | 001 | 42 | -40 | 0 | | | 3 | -30 | 100 | -8 | -60 | 8 | | | 5 | 32 | 110 | 42 | 22 | 22 | | | 6 | -30 | 011 | -10 | -60 | 10 | | | $T_1 = 22, T_1/m = 22/3$ | | | | | | • Each site finds items with $$s_i(x) > T_1/m$$ or $$s_i(x) < T_1/m$$. | | node 1 | | | | | |--------------|-----------|---|----------|--|--| | | id | х | $s_1(x)$ | | | | \checkmark | $e_{1,1}$ | 5 | 20 | | | | | $e_{1,2}$ | 2 | 7 | | | | | $e_{1,3}$ | 1 | 6 | | | | | $e_{1,4}$ | 4 | -2 | | | | | $e_{1,5}$ | 6 | -15 | | | | \checkmark | $e_{1,6}$ | 3 | -30 | | | | | node 2 | | | | | |----------|------------------|---|----------|--|--| | | id | x | $s_2(x)$ | | | | √ | $e_{2.1}$ | 5 | 12 | | | | • | $e_{2,2}$ | 4 | 7 | | | | | $e_{2,3}$ | 1 | 2 | | | | | e _{2,4} | 2 | -5 | | | | | $e_{2,5}$ | 3 | -14 | | | | | $e_{2,6}$ | 6 | -20 | | |
| node 3 | | | | | |----------------------|---|----------|--|--| | id | х | $s_3(x)$ | | | |
$e_{3,1}$ | 1 | 10 | | | | e _{3,2} | 3 | 6 | | | | $e_{3,3}$ | 4 | 5 | | | | $e_{3,4}$ | 2 | -3 | | | | $e_{3,5}$ | 5 | -6 | | | |
e _{3.6} | 6 | -10 | | | k = 1 | R | | | | | | |------------------|---|----------|--|--|--| | id | х | $s_j(x)$ | | | | | $e_{1,1}$ | 5 | 20 | | | | | $e_{1,5}$ | 6 | -15 | | | | | $e_{1,6}$ | 3 | -30 | | | | | $e_{2,1}$ | 5 | 12 | | | | | $e_{2,5}$ | 3 | -14 | | | | | $e_{2,6}$ | 6 | -20 | | | | | $e_{3,1}$ | 1 | 10 | | | | | e _{3,6} | 6 | -10 | | | | | _ | | | | | | |---|--------------|---------|-------------|-------------|-----------| | | | | R | | | | х | $\hat{s}(x)$ | F_{x} | $\tau^+(x)$ | $\tau^-(x)$ | $\tau(x)$ | | 1 | 10 | 001 | 42 | -40 | 0 | | 3 | -30 | 100 | -8 | -60 | 8 | | 5 | 32 | 110 | 42 | 22 | 22 | | 6 | -30 | 011 | -10 | -60 | 10 | | = | | | | | | $$T_1 = 22$$, $T_1/m = 22/3$ • Items with $|s_i(x)| > T_1/m$ are sent to coordinator. | | node 1 | | | | | |--------------|-----------|---|----------|--|--| | | id | х | $s_1(x)$ | | | | \checkmark | $e_{1,1}$ | 5 | 20 | | | | | $e_{1,2}$ | 2 | 7 | | | | | $e_{1,3}$ | 1 | 6 | | | | | $e_{1,4}$ | 4 | -2 | | | | | $e_{1,5}$ | 6 | -15 | | | | | $e_{1,6}$ | 3 | -30 | | | | n | node 3 | | | | | |----------------------|--------|----------|--|--|--| | id | х | $s_3(x)$ | | | | |
$e_{3,1}$ | 1 | 10 | | | | | e _{3,2} | 3 | 6 | | | | | $e_{3,3}$ | 4 | 5 | | | | | $e_{3,4}$ | 2 | -3 | | | | | $e_{3,5}$ | 5 | -6 | | | | |
e _{3,6} | 6 | -10 | | | | | | n | node 1 | | | | | |--------------|-----------|--------|----------|--|--|--| | | id | х | $s_1(x)$ | | | | | \checkmark | $e_{1,1}$ | 5 | 20 | | | | | | $e_{1,2}$ | 2 | 7 | | | | | | $e_{1,3}$ | 1 | 6 | | | | | | $e_{1,4}$ | 4 | -2 | | | | | | $e_{1,5}$ | 6 | -15 | | | | | \checkmark | $e_{1.6}$ | 3 | -30 | | | | | n | od | e 2 | | |------------------|----|----------|--| | id | х | $s_2(x)$ | | |
$e_{2,1}$ | 5 | 12 | | | $e_{2,2}$ | 4 | 7 | | | $e_{2,3}$ | 1 | 2 | | | e _{2,4} | 2 | -5 | | | $e_{2,5}$ | 3 | -14 | | |
$e_{2,6}$ | 6 | -20 | | | node 3 | | | | | |----------------------|---|----------|--|--| | id | х | $s_3(x)$ | | | |
$e_{3,1}$ | 1 | 10 | | | | e _{3,2} | 3 | 6 | | | | $e_{3,3}$ | 4 | 5 | | | | $e_{3,4}$ | 2 | -3 | | | | $e_{3,5}$ | 5 | -6 | | | |
e _{3.6} | 6 | -10 | | | | | R | | |------------------|---|----------| | id | х | $s_j(x)$ | | $e_{1,1}$ | 5 | 20 | | $e_{1,5}$ | 6 | -15 | | $e_{1,6}$ | 3 | -30 | | $e_{2,1}$ | 5 | 12 | | $e_{2,5}$ | 3 | -14 | | $e_{2,6}$ | 6 | -20 | | e _{3,1} | 1 | 10 | | e _{3,6} | 6 | -10 | | k = 1 | | | | | | | | |-------|----|--------------|--------------|-------------|-------------|-----------|------------| | | | | | F | ? | | | | | х | $\hat{s}(x)$ | F_{\times} | $\tau^+(x)$ | $\tau^-(x)$ | $\tau(x)$ | $\tau'(x)$ | |] | 1 | 10 | 001 | 24.6 | -4.6 | 0 | 24.6 | | | 3 | -44 | 110 | -36.6 | -51.3 | 36.6 | 51.3 | | | 5 | 32 | 110 | 39.3 | 24.6 | 24.6 | 39.3 | |] | 6 | -45 | 111 | -45 | -45 | 45 | 45 | | | T. | = 22 | T., | m = 2 | 2/3 | | | - The coordinator updates the bounds for each item it has ever received. - Partial score sum s(5) = 20 + 12 | | node 1 | | | | | |--------------|-----------|---|----------|--|--| | | id | х | $s_1(x)$ | | | | \checkmark | $e_{1,1}$ | 5 | 20 | | | | | $e_{1,2}$ | 2 | 7 | | | | | $e_{1,3}$ | 1 | 6 | | | | | $e_{1,4}$ | 4 | -2 | | | | | $e_{1,5}$ | 6 | -15 | | | | \checkmark | $e_{1,6}$ | 3 | -30 | | | | n | od | e 2 | | |------------------|----|----------|---| | id | х | $s_2(x)$ | | |
$e_{2,1}$ | 5 | 12 | | | $e_{2,2}$ | 4 | 7 | | | $e_{2,3}$ | 1 | 2 | | | e _{2,4} | 2 | -5 | | | $e_{2,5}$ | 3 | -14 | 1 | |
$e_{2,6}$ | 6 | -20 | ĺ | | | node 3 | | | | | |--------------|------------------|---|----------|--|--| | | id | х | $s_3(x)$ | | | | | $e_{3,1}$ | 1 | 10 | | | | | e _{3,2} | 3 | 6 | | | | | $e_{3,3}$ | 4 | 5 | | | | | $e_{3,4}$ | 2 | -3 | | | | | $e_{3,5}$ | 5 | -6 | | | | \checkmark | e _{3,6} | 6 | -10 | | | | | R | | |------------------|---|----------| | id | х | $s_j(x)$ | | $e_{1,1}$ | 5 | 20 | | $e_{1,5}$ | 6 | -15 | | $e_{1,6}$ | 3 | -30 | | $e_{2,1}$ | 5 | 12 | | $e_{2,5}$ | 3 | -14 | | $e_{2,6}$ | 6 | -20 | | e _{3,1} | 1 | 10 | | e _{3,6} | 6 | -10 | | k = 1 | | | | | | | | |-------|----|--------------|-------------------|-------------|-------------|-----------|------------| | | | | | F | ? | | | | | х | $\hat{s}(x)$ | F_{\times} | $\tau^+(x)$ | $\tau^-(x)$ | $\tau(x)$ | $\tau'(x)$ | | | 1 | 10 | 001 | 24.6 | -4.6 | 0 | 24.6 | | • | 3 | -44 | 110 | -36.6 | -51.3 | 36.6 | 51.3 | | | 5 | 32 | 110 | 39.3 | 24.6 | 24.6 | 39.3 | |] | 6 | -45 | 111 | -45 | -45 | 45 | 45 | | - | T. | 1 = 22 | P. T ₁ | m = 22 | 2/3 | | | - The coordinator updates the bounds for each item it has ever received. - Receipt vector $F_5 = [110]$ | | node 1 | | | | | |--------------|-----------|---|----------|--|--| | | id | х | $s_1(x)$ | | | | \checkmark | $e_{1,1}$ | 5 | 20 | | | | | $e_{1,2}$ | 2 | 7 | | | | | $e_{1,3}$ | 1 | 6 | | | | | $e_{1,4}$ | 4 | -2 | | | | | $e_{1,5}$ | 6 | -15 | | | | \checkmark | $e_{1,6}$ | 3 | -30 | | | | node 3 | | | | | |----------------------|---|----------|--|--| | id | х | $s_3(x)$ | | | |
$e_{3,1}$ | 1 | 10 | | | | e _{3,2} | 3 | 6 | | | | $e_{3,3}$ | 4 | 5 | | | | $e_{3,4}$ | 2 | -3 | | | | $e_{3,5}$ | 5 | -6 | | | |
e _{3,6} | 6 | -10 | | | | | R | | |------------------|---|----------| | id | х | $s_j(x)$ | | $e_{1,1}$ | 5 | 20 | | $e_{1,5}$ | 6 | -15 | | $e_{1,6}$ | 3 | -30 | | $e_{2,1}$ | 5 | 12 | | $e_{2,5}$ | 3 | -14 | | e _{2,6} | 6 | -20 | | e _{3,1} | 1 | 10 | | e _{3,6} | 6 | -10 | | k = 1 | | | | | | | | | | |-------|----|--------------|------------------|-------------|-------------|-----------|------------|--|--| | | | R | | | | | | | | | | х | $\hat{s}(x)$ | F_{\times} | $\tau^+(x)$ | $\tau^-(x)$ | $\tau(x)$ | $\tau'(x)$ | | | | | 1 | 10 | 001 | 24.6 | -4.6 | 0 | 24.6 | | | | | 3 | -44 | 110 | -36.6 | -51.3 | 36.6 | 51.3 | | | | | 5 | 32 | 110 | 39.3 | 24.6 | 24.6 | 39.3 | | | | | 6 | -45 | 111 | -45 | -45 | 45 | 45 | | | | | T. | = 22 | T ₁ / | m = 22 | 2/3 | | | | | - The coordinator updates the bounds for each item it has ever received. - $\tau^+(\mathbf{x})$ is now tighter, if $s_i(\mathbf{x})$ received then $\tau^+(\mathbf{x}) = \tau^+(\mathbf{x}) + s_i(\mathbf{x})$ else $\tau^+(\mathbf{x}) = \tau^+(\mathbf{x}) + T_1/m$ | node 1 | | | | | |---------------|---|----------|--|--| | id | х | $s_1(x)$ | | | |
$e_{1,1}$ | 5 | 20 | | | | $e_{1,2}$ | 2 | 7 | | | | $e_{1,3}$ | 1 | 6 | | | | $e_{1,4}$ | 4 | -2 | | | | $e_{1,5}$ | 6 | -15 | | | |
$e_{1,6}$ | 3 | -30 | | | | - | ., | | | | | | | |---|------------------|---|----------|--|--|--|--| | | node 2 | | | | | | | | | id | х | $s_2(x)$ | | | | | | | $e_{2,1}$ | 5 | 12 | | | | | | | $e_{2,2}$ | 4 | 7 | | | | | | | $e_{2,3}$ | 1 | 2 | | | | | | | e _{2,4} | 2 | -5 | | | | | | | $e_{2,5}$ | 3 | -14 | | | | | | | $e_{2,6}$ | 6 | -20 | | | | | | | node 3 | | | | | | |----|------------------|---|----------|--|--|--| | | id | х | $s_3(x)$ | | | | | | $e_{3,1}$ | 1 | 10 | | | | | | e _{3,2} | 3 | 6 | | | | | | $e_{3,3}$ | 4 | 5 | | | | | | $e_{3,4}$ | 2 | -3 | | | | | | $e_{3,5}$ | 5 | -6 | | | | | 1/ | e _{3.6} | 6 | -10 | | | | | | R | | |------------------|---|----------| | id | х | $s_j(x)$ | | $e_{1,1}$ | 5 | 20 | | $e_{1,5}$ | 6 | -15 | | $e_{1,6}$ | 3 | -30 | | $e_{2,1}$ | 5 | 12 | | $e_{2,5}$ | 3 | -14 | | $e_{2,6}$ | 6 | -20 | | e _{3,1} | 1 | 10 | | e _{3,6} | 6 | -10 | | k = 1 | | | | | | | | |-------|---|--------------|--------------|-------------|-------------|-----------|------------| | | | | | R | ? | | | | | х | $\hat{s}(x)$ | F_{\times} | $\tau^+(x)$ | $\tau^-(x)$ | $\tau(x)$ | $\tau'(x)$ | | | 1 | 10 | 001 | 24.6 | -4.6 | 0 | 24.6 | | | 3 | -44 | 110 | -36.6 | -51.3 | 36.6 | 51.3 | | | 5 | 32 | 110 | 39.3 | 24.6 | 24.6 | 39.3 | | | 6 | -45 | 111 | -45 | -45 | 45 | 45 | | | T | 1 = 22 | T_{1} | m = 22 | 2/3 | | | - The coordinator updates the bounds for each item it has ever received. - $\tau^-(x)$ is also tighter, if $s_i(x)$ received then $\tau^-(x) = \tau^-(x) + s_i(x)$ else $\tau^-(x) = \tau^-(x) - T_1/m$ | | node 1 | | | | | |--------------|-----------|---|----------|--|--| | | id | х | $s_1(x)$ | | | | | $e_{1,1}$ | 5 | 20 | | | | | $e_{1,2}$ | 2 | 7 | | | | | $e_{1,3}$ | 1 | 6 | | | | | $e_{1,4}$ | 4 | -2 | | | | | $e_{1,5}$ | 6 | -15 | | | | \checkmark | $e_{1,6}$ | 3 | -30 | | | | ., | | | | | | |-----------|--|--|--|--|--| | node 2 | | | | | | | id | х | $s_2(x)$ | | | | | $e_{2,1}$ | 5 | 12 | | | | | $e_{2,2}$ | 4 | 7 | | | | | $e_{2,3}$ | 1 | 2 | | | | | $e_{2,4}$ | 2 | -5 | | | | | $e_{2,5}$ | 3 | -14 | | | | | $e_{2,6}$ | 6 | -20 | | | | | | nid e _{2,1} e _{2,2} e _{2,3} e _{2,4} e _{2,5} | node id x e _{2,1} 5 e _{2,2} 4 e _{2,3} 1 e _{2,4} 2 e _{2,5} 3 | | | | | node 3 | | | | | | | |----------------------|---|----------|--|--|--|--| | id | х | $s_3(x)$ | | | | | |
$e_{3,1}$ | 1 | 10 | | | | | | e _{3,2} | 3 | 6 | | | | | | $e_{3,3}$ | 4 | 5 | | | | | | $e_{3,4}$ | 2 | -3 | | | | | | $e_{3,5}$ | 5 | -6 | | | | | |
e _{3.6} | 6 | -10 | | | | | | | R | · | |------------------|---|----------| | id | х | $s_j(x)$ | | $e_{1,1}$ | 5 | 20 | | $e_{1,5}$ | 6 | -15 | | $e_{1,6}$ | 3 | -30 | | $e_{2,1}$ | 5 | 12 | | $e_{2,5}$ | 3 | -14 | | $e_{2,6}$ | 6 | -20 | | $e_{3,1}$ | 1 | 10 | | e _{3,6} | 6 | -10 | | | | | | k = 1 |] | | | | | | | |-------|---|--------------|----------------|-------------|-------------|-----------|------------| | | | | | R | 2 | | | | | х | $\hat{s}(x)$ | F _x | $\tau^+(x)$ | $\tau^-(x)$ | $\tau(x)$ | $\tau'(x)$ | | | 1 | 10 | 001 | 24.6 | -4.6 | 0 | 24.6 | | | 3 | -44 | 110 | -36.6 | -51.3 | 36.6
| 51.3 | | | 5 | 32 | 110 | 39.3 | 24.6 | 24.6 | 39.3 | | | 6 | -45 | 111 | -45 | -45 | 45 | 45 | | | 7 | 200 | · - | / 2/ | 1/2 | | | $$T_1 = 22$$, $T_1/m = 22/3$ - The coordinator updates the bounds for each item it has ever received. - Score absolute value bound $\tau(5) = \min(39.3, 24.6)$. | | node 1 | | | | | | |--------------|-----------|---|----------|--|--|--| | | id | х | $s_1(x)$ | | | | | \checkmark | $e_{1,1}$ | 5 | 20 | | | | | | $e_{1,2}$ | 2 | 7 | | | | | | $e_{1,3}$ | 1 | 6 | | | | | | $e_{1,4}$ | 4 | -2 | | | | | | $e_{1,5}$ | 6 | -15 | | | | | \checkmark | $e_{1,6}$ | 3 | -30 | | | | | node 2 | | | | | | | |-----------|---|---|---|--|--|--| | id | х | $s_2(x)$ | | | | | | $e_{2,1}$ | 5 | 12 | | | | | | $e_{2,2}$ | 4 | 7 | | | | | | $e_{2,3}$ | 1 | 2 | | | | | | $e_{2,4}$ | 2 | -5 | | | | | | $e_{2,5}$ | 3 | -14 | 1 | | | | | $e_{2,6}$ | 6 | -20 | ĺ | | | | | | id e _{2,1} e _{2,2} e _{2,3} e _{2,4} e _{2,5} | id x e _{2,1} 5 e _{2,2} 4 e _{2,3} 1 e _{2,4} 2 e _{2,5} 3 | | | | | | | node 3 | | | | | | |--------------|------------------|---|----------|--|--|--| | | id | х | $s_3(x)$ | | | | | \checkmark | $e_{3,1}$ | 1 | 10 | | | | | | e _{3,2} | 3 | 6 | | | | | | e _{3,3} | 4 | 5 | | | | | | $e_{3,4}$ | 2 | -3 | | | | | | $e_{3,5}$ | 5 | -6 | | | | | | e _{3,6} | 6 | -10 | | | | | | R | · | |------------------|---|----------| | id | х | $s_j(x)$ | | $e_{1,1}$ | 5 | 20 | | $e_{1,5}$ | 6 | -15 | | $e_{1,6}$ | 3 | -30 | | $e_{2,1}$ | 5 | 12 | | $e_{2,5}$ | 3 | -14 | | $e_{2,6}$ | 6 | -20 | | $e_{3,1}$ | 1 | 10 | | e _{3,6} | 6 | -10 | | | | | | k = 1 | | | | | | | | | |-------|---|--------------|--------------|-------------|-------------|-----------|------------|--| | | | R | | | | | | | | | х | $\hat{s}(x)$ | F_{\times} | $\tau^+(x)$ | $\tau^-(x)$ | $\tau(x)$ | $\tau'(x)$ | | | | 1 | 10 | 001 | 24.6 | -4.6 | 0 | 24.6 | | | | 3 | -44 | 110 | -36.6 | -51.3 | 36.6 | 51.3 | | | | 5 | 32 | 110 | 39.3 | 24.6 | 24.6 | 39.3 | | | | 6 | -45 | 111 | -45 | -45 | 45 | 45 | | | | = | | - | | . / 0] | | | | $$T_1 = 22$$, $T_1/m = 22/3$ - The coordinator updates the bounds for each item it has ever received. - $\tau'(x)$ is an upper bound on |s(x)|, $\tau'(x) = \max\{|\tau^+(x)|, |\tau^-(x)|\}$ | | node 1 | | | | | | |--------------|-----------|---|----------|--|--|--| | | id | х | $s_1(x)$ | | | | | \checkmark | $e_{1,1}$ | 5 | 20 | | | | | | $e_{1,2}$ | 2 | 7 | | | | | | $e_{1,3}$ | 1 | 6 | | | | | | $e_{1,4}$ | 4 | -2 | | | | | | $e_{1,5}$ | 6 | -15 | | | | | | $e_{1,6}$ | 3 | -30 | | | | | | node 3 | | | | | | |--------------|------------------|---|----------|--|--|--| | | id | х | $s_3(x)$ | | | | | \checkmark | $e_{3,1}$ | 1 | 10 | | | | | | e _{3,2} | 3 | 6 | | | | | | $e_{3,3}$ | 4 | 5 | | | | | | $e_{3,4}$ | 2 | -3 | | | | | | $e_{3,5}$ | 5 | -6 | | | | | | e _{3.6} | 6 | -10 | | | | | | R | · | |------------------|---|----------| | id | х | $s_j(x)$ | | $e_{1,1}$ | 5 | 20 | | $e_{1,5}$ | 6 | -15 | | $e_{1,6}$ | 3 | -30 | | $e_{2,1}$ | 5 | 12 | | $e_{2,5}$ | 3 | -14 | | $e_{2,6}$ | 6 | -20 | | $e_{3,1}$ | 1 | 10 | | e _{3,6} | 6 | -10 | | | | | | k = 1 | | | | | | | | | | |-------|----|--------------------------|--------------|-------------|-------------|-----------|------------|--|--| | | | R | | | | | | | | | | х | $\hat{s}(x)$ | F_{\times} | $\tau^+(x)$ | $\tau^-(x)$ | $\tau(x)$ | $\tau'(x)$ | | | | | 1 | 10 | 001 | 24.6 | -4.6 | 0 | 24.6 | | | | | 3 | -44 | 110 | -36.6 | -51.3 | 36.6 | 51.3 | | | | | 5 | 32 | 110 | 39.3 | 24.6 | 24.6 | 39.3 | | | | | 6 | -45 | 111 | -45 | -45 | 45 | 45 | | | | ĺ | T: | $T_1 = 22, T_1/m = 22/3$ | | | | | | | | - The coordinator updates the bounds for each item it has ever received. - $\tau'(x)$ is an upper bound on |s(x)|, $\tau'(x) = \max\{|\tau^+(x)|, |\tau^-(x)|\}$ | | node 1 | | | | | | |--------------|-----------|---|----------|--|--|--| | | id | х | $s_1(x)$ | | | | | \checkmark | $e_{1,1}$ | 5 | 20 | | | | | | $e_{1,2}$ | 2 | 7 | | | | | | $e_{1,3}$ | 1 | 6 | | | | | | $e_{1,4}$ | 4 | -2 | | | | | | $e_{1,5}$ | 6 | -15 | | | | | | $e_{1,6}$ | 3 | -30 | | | | | | node 3 | | | | | | | |----------|------------------|---|----------|--|--|--|--| | | id | х | $s_3(x)$ | | | | | | | $e_{3,1}$ | 1 | 10 | | | | | | | e _{3,2} | 3 | 6 | | | | | | | $e_{3,3}$ | 4 | 5 | | | | | | | $e_{3,4}$ | 2 | -3 | | | | | | | $e_{3,5}$ | 5 | -6 | | | | | | √ | e _{3.6} | 6 | -10 | | | | | | | | | k = 1 |] | | | | | | | |------------------|---|----------|-------|----|--------------|--------------------|-------------|-------------|-----------|------------| | | R | 1 | | | | | R | ? | | | | id | х | $s_j(x)$ | | х | $\hat{s}(x)$ | F_x | $\tau^+(x)$ | $\tau^-(x)$ | $\tau(x)$ | $\tau'(x)$ | | $e_{1,1}$ | 5 | 20 | | 1 | 10 | 001 | 24.6 | -4.6 | 0 | 24.6 | | $e_{1,5}$ | 6 | -15 | | 3 | -44 | 110 | -36.6 | -51.3 | 36.6 | 51.3 | | e _{1,6} | 3 | -30 | | 5 | 32 | 110 | 39.3 | 24.6 | 24.6 | 39.3 | | $e_{2,1}$ | 5 | 12 | | 6 | -45 | 111 | -45 | -45 | 45 | 45 | | $e_{2,5}$ | 3 | -14 | | T. | = 22 | 2. T _{1.} | m = 22 | 2/3 | | | | $e_{2,6}$ | 6 | -20 | | | | , 1/ | | , - | | | | e _{3,1} | 1 | 10 | | | | | | | | | | e _{3,6} | 6 | -10 | | | | | | | | | • We select the item x with the kth largest $\tau(x)$, which serves as a new lower bound T_2 on |s(x)| for any item. | | node 1 | | | | | | |--------------|-----------|---|----------|--|--|--| | | id | х | $s_1(x)$ | | | | | \checkmark | $e_{1,1}$ | 5 | 20 | | | | | | $e_{1,2}$ | 2 | 7 | | | | | | $e_{1,3}$ | 1 | 6 | | | | | | $e_{1,4}$ | 4 | -2 | | | | | | $e_{1,5}$ | 6 | -15 | | | | | \checkmark | $e_{1,6}$ | 3 | -30 | | | | | | node 2 | | | | | | | | |---|------------------|---|----------|--|--|--|--|--| | | id | х | $s_2(x)$ | | | | | | | | $e_{2,1}$ | 5 | 12 | | | | | | | • | $e_{2,2}$ | 4 | 7 | | | | | | | | $e_{2,3}$ | 1 | 2 | | | | | | | | e _{2,4} | 2 | -5 | | | | | | | | $e_{2,5}$ | 3 | -14 | | | | | | | | $e_{2,6}$ | 6 | -20 | | | | | | | | node 3 | | | | | | | | |--------------|------------------|---|----------|--|--|--|--|--| | | id | х | $s_3(x)$ | | | | | | | \checkmark | $e_{3,1}$ | 1 | 10 | | | | | | | | e _{3,2} | 3 | 6 | | | | | | | | $e_{3,3}$ | 4 | 5 | | | | | | | | $e_{3,4}$ | 2 | -3 | | | | | | | | $e_{3,5}$ | 5 | -6 | | | | | | | | e _{3,6} | 6 | -10 | | | | | | | | | | k = 1 |] | | | | | | | | | |------------------|---|----------|-------|----|--------------|--------------------|-------------|-------------|-----------|------------|--|--| | | R | ? | | | R | | | | | | | | | id | х | $s_j(x)$ | | х | $\hat{s}(x)$ | F _x | $\tau^+(x)$ | $\tau^-(x)$ | $\tau(x)$ | $\tau'(x)$ | | | | $e_{1,1}$ | 5 | 20 | | 1 | 10 | 001 | 24.6 | -4.6 | 0 | 24.6 | | | | $e_{1,5}$ | 6 | -15 | | 3 | -44 | 110 | -36.6 | -51.3 | 36.6 | 51.3 | | | | $e_{1,6}$ | 3 | -30 | | 5 | 32 | 110 | 39.3 | 24.6 | 24.6 | 39.3 | | | | $e_{2,1}$ | 5 | 12 | | 6 | -45 | 111 | -45 | -45 | 45 | 45 | | | | $e_{2,5}$ | 3 | -14 | | T. | 1 = 22 | 2. T _{1.} | m = 2 | 2/3 | | | | | | $e_{2,6}$ | 6 | -20 | | = | | | | / - | | | | | | e _{3,1} | 1 | 10 | | 1: | $_{2} = 45$ | יו | | | | | | | | e _{3,6} | 6 | -10 | | | | | | | | | | | • We select the item x with the kth largest $\tau(x)$, which serves as a new lower bound T_2 on |s(x)| for any item. | | n | od | e 1 | |--------------|-----------|----|----------| | | id | х | $s_1(x)$ | | \checkmark | $e_{1,1}$ | 5 | 20 | | | $e_{1,2}$ | 2 | 7 | | | $e_{1,3}$ | 1 | 6 | | | $e_{1,4}$ | 4 | -2 | | | $e_{1,5}$ | 6 | -15 | | \checkmark | $e_{1,6}$ | 3 | -30 | | | | | - 2 | | | | | | | |--------------|------------------|--------|----------|--|--|--|--|--|--| | | n | node 2 | | | | | | | | | | id | х | $s_2(x)$ | | | | | | | | \checkmark | $e_{2,1}$ | 5 | 12 | | | | | | | | | $e_{2,2}$ | 4 | 7 | | | | | | | | | $e_{2,3}$ | 1 | 2 | | | | | | | | | e _{2,4} | 2 | -5 | | | | | | | | | $e_{2,5}$ | 3 | -14 | | | | | | | | | $e_{2,6}$ | 6 | -20 | | | | | | | | node 3 | | | | | | | | |----------------------|--------|----------|--|--|--|--|--| | | Houe 3 | | | | | | | | id | x | $s_3(x)$ | | | | | | |
$e_{3,1}$ | 1 | 10 | | | | | | | e _{3,2} | 3 | 6 | | | | | | | $e_{3,3}$ | 4 | 5 | | | | | | | $e_{3,4}$ | 2 | -3 | | | | | | | $e_{3,5}$ | 5 | -6 | | | | | | |
e _{3,6} | 6 | -10 | | | | | | | | | | k = 1 |] | | | | | | | | | |------------------|---|----------|-------|----|--------------|------------------|-------------|-------------|-----------|------------|--|--| | | R | 2 | | | R | | | | | | | | | id | х | $s_j(x)$ | | х | $\hat{s}(x)$ | F_{x} | $\tau^+(x)$ | $\tau^-(x)$ | $\tau(x)$ | $\tau'(x)$ | | | | $e_{1,1}$ | 5 | 20 | | 1 | 10 | 001 | 24.6 | 4.6 | 0 | 24.6 | | | | $e_{1,5}$ | 6 | -15 | | 3 | -44 | 110 | -36.6 | -51.3 | 36.6 | 51.3 | | | | e _{1.6} | 3 | -30 | | 5 | 32 | 110 | 39.3 | 24.6 | 24.6 | 39.3 | | | | $e_{2,1}$ | 5 | 12 | | 6 | -45 | 111 | -45 | -45 | 45 | 45 | | | | $e_{2,5}$ | 3 | -14 | | T. | = 22 | . T ₁ | m = 22 | 2/3 | | | | | | $e_{2,6}$ | 6 | -20 | | = | | | | / - | | | | | | e _{3,1} | 1 | 10 | | 1: | $_{2} = 45$ | ו | | | | | | | | e _{3,6} | 6 | -10 | | | | | | | | | | | • Any item with $\tau'(x) < T_2$ cannot be in the top-k and is pruned from R. | | node 1 | | | | | | | |--------------|-----------|---|----------|--|--|--|--| | | id | х | $s_1(x)$ | | | | | | \checkmark | $e_{1,1}$ | 5 | 20 | | | | | | | $e_{1,2}$ | 2 | 7 | | | | | | | $e_{1,3}$ | 1 | 6 | | | | | | | $e_{1,4}$ | 4 | -2 | | | | | | | $e_{1,5}$ | 6 | -15 | | | | | | \checkmark | $e_{1,6}$ | 3 | -30 | | | | | | | n | node 2 | | | | | | | |--------------|------------------|--------|----------|--|--|--|--|--| | | id | х | $s_2(x)$ | | | | | | | | $e_{2,1}$ | 5 | 12 | | | | | | | | $e_{2,2}$ | 4 | 7 | | | | | | | | $e_{2,3}$ | 1 | 2 | | | | | | | | e _{2,4} | 2 | -5 | | | | | | | | $e_{2,5}$ | 3 | -14 | | |
 | | | \checkmark | $e_{2,6}$ | 6 | -20 | | | | | | | node 3 | | | | | | | | |----------------------|---|----------|--|--|--|--|--| | id | х | $s_3(x)$ | | | | | | |
$e_{3,1}$ | 1 | 10 | | | | | | | e _{3,2} | 3 | 6 | | | | | | | $e_{3,3}$ | 4 | 5 | | | | | | | $e_{3,4}$ | 2 | -3 | | | | | | | $e_{3,5}$ | 5 | -6 | | | | | | |
e _{3,6} | 6 | -10 | | | | | | | | | | k = 1 |] | | | | | | | | | |------------------|---|----------|-------|----|--------------|-------------------|-------------|-------------|-----------|------------|--|--| | | R | | | | R | | | | | | | | | id | х | $s_j(x)$ | | х | $\hat{s}(x)$ | F _x | $\tau^+(x)$ | $\tau^-(x)$ | $\tau(x)$ | $\tau'(x)$ | | | | $e_{1,1}$ | 5 | 20 | | 1 | 10 | 001 | 24.6 | 4.6 | 0 | 24.6 | | | | $e_{1.5}$ | 6 | -15 | | 3 | -44 | 110 | -36.6 | -51.3 | 36.6 | 51.3 | | | | $e_{1,6}$ | 3 | -30 | | 5 | 32 | 110 | 39.3 | 24.6 | 24.6 | 39.3 | | | | $e_{2,1}$ | 5 | 12 | | 6 | -45 | 111 | -45 | -45 | 45 | 45 | | | | e _{2,5} | 3 | -14 | | T. | = 22 | 2. T ₁ | m = 2 | 2/3 | | | | | | e _{2,6} | 6 | -20 | | = | | | | | | | | | | e _{3,1} | 1 | 10 | | 1: | $_{2} = 45$ | 2 | | | | | | | | e _{3,6} | 6 | -10 | | | | | | | | | | | ullet Any remaining items with a 0 in vector F_x are selected. | | node 1 | | | | |--------------|-----------|---|----------|--| | | id | х | $s_1(x)$ | | | \checkmark | $e_{1,1}$ | 5 | 20 | | | | $e_{1,2}$ | 2 | 7 | | | | $e_{1,3}$ | 1 | 6 | | | | $e_{1,4}$ | 4 | -2 | | | | $e_{1,5}$ | 6 | -15 | | | \checkmark | $e_{1,6}$ | 3 | -30 | | | | node 2 | | | | | | |--------------|------------------|---|----------|---|--|--| | | id | х | $s_2(x)$ | | | | | \checkmark | $e_{2,1}$ | 5 | 12 | | | | | | $e_{2,2}$ | 4 | 7 | | | | | | $e_{2,3}$ | 1 | 2 | | | | | | e _{2,4} | 2 | -5 | | | | | | $e_{2,5}$ | 3 | -14 | | | | | \checkmark | $e_{2,6}$ | 6 | -20 | ľ | | | | node 3 | | | | |----------------------|---|----------|--| | id | х | $s_3(x)$ | | |
$e_{3,1}$ | 1 | 10 | | | e _{3,2} | 3 | 6 | | | $e_{3,3}$ | 4 | 5 | | | $e_{3,4}$ | 2 | -3 | | | $e_{3,5}$ | 5 | -6 | | |
e _{3,6} | 6 | -10 | | | | R | | |------------------|---|----------| | id | х | $s_j(x)$ | | $e_{1,1}$ | 5 | 20 | | $e_{1,5}$ | 6 | -15 | | $e_{1,6}$ | 3 | -30 | | $e_{2,1}$ | 5 | 12 | | $e_{2,5}$ | 3 | -14 | | $e_{2,6}$ | 6 | -20 | | e _{3,1} | 1 | 10 | | e _{3,6} | 6 | -10 | | k = 1 | | | | | | | | |-------|---|--------------|----------------|-------------|-------------|-----------|------------| |] | | R | | | | | | | 1 | х | $\hat{s}(x)$ | F _x | $\tau^+(x)$ | $\tau^-(x)$ | $\tau(x)$ | $\tau'(x)$ | | 1 | 1 | 10 | 001 | 24.6 | 4.6 | 0 | 24.6 | | 1 | 3 | -44 | 110 | -36.6 | -51.3 | 36.6 | 51.3 | | 1 | 5 | 32 | 110 | 39.3 | 24.6 | 24.6 | 39.3 | | 1 | 6 | -45 | 111 | -45 | -45 | 45 | 45 | | 1 . | = | | - | / 0/ | 2 (2) | | | $$T_1 = 22, T_1/m = 22/3$$ $T_2 = 45$ #### Round 2 End | node 3 | | | | |----------------------|---|----------|--| | id | х | $s_3(x)$ | | |
$e_{3,1}$ | 1 | 10 | | | e _{3,2} | 3 | 6 | | | $e_{3,3}$ | 4 | 5 | | | $e_{3,4}$ | 2 | -3 | | | $e_{3,5}$ | 5 | -6 | | |
e _{3.6} | 6 | -10 | | node 1 $e_{1,2}$ $e_{1.3}$ e_{1.4} 4 #### Round 3 End | node 3 | | | | |----------------------|---|----------|--| | id | х | $s_3(x)$ | | |
$e_{3,1}$ | 1 | 10 | | | e _{3,2} | 3 | 6 | | | $e_{3,3}$ | 4 | 5 | | | $e_{3,4}$ | 2 | -3 | | | $e_{3,5}$ | 5 | -6 | | |
e _{3,6} | 6 | -10 | | #### Outline - Introduction and Motivation - Histograms - MapReduce and Hadoop - Exact Top-k Wavelet Coefficients - Naive Solution - Hadoop Wavelet Top-k: Our Efficient Exact Solution - 3 Approximate Top-k Wavelet Coefficients - Linearly Combinable Sketch Method - Our First Sampling Based Approach - An Improved Sampling Approach - Two-Level Sampling - 4 Experiments - Conclusions - Hadoop Wavelet Top-k in Hadoop • Hadoop Wavelet Top-k is a good solution if the exact top-k $|w_i|$ must be retrieved, but requires multiple phases. - Hadoop Wavelet Top-k is a good solution if the exact top-k $|w_i|$ must be retrieved, but requires multiple phases. - If we are allowed an approximation, we could further improve: - Hadoop Wavelet Top-k is a good solution if the exact top-k $|w_i|$ must be retrieved, but requires multiple phases. - If we are allowed an approximation, we could further improve: - communication cost - Hadoop Wavelet Top-k is a good solution if the exact top-k $|w_i|$ must be retrieved, but requires multiple phases. - If we are allowed an approximation, we could further improve: - communication cost - number of MapReduce rounds - Hadoop Wavelet Top-k is a good solution if the exact top-k $|w_i|$ must be retrieved, but requires multiple phases. - If we are allowed an approximation, we could further improve: - communication cost - on number of MapReduce rounds - amount of I/O incurred Some natural improvement attempts: - Some natural improvement attempts: - **①** Approximate distributed top-k. - Some natural improvement attempts: - Approximate distributed top-k. - Approximating local coefficients with a linearly combinable sketch. - Some natural improvement attempts: - \bigcirc Approximate distributed top-k. - Approximating local coefficients with a linearly combinable sketch. - For set $A = A_1 \cup A_2$, Sketch $(A) = \text{Sketch}(A_1)$ op Sketch (A_2) for operator op. - Some natural improvement attempts: - \bullet Approximate distributed top-k. - Approximating local coefficients with a linearly combinable sketch. - For set $A = A_1 \cup A_2$, - $Sketch(A) = Sketch(A_1)$ op $Sketch(A_2)$ for operator op. - The state of the art wavelet sketch is the GCS Sketch [CGS06]. - Some natural improvement attempts: - \bullet Approximate distributed top-k. - Approximating local coefficients with a linearly combinable sketch. - For set $A = A_1 \cup A_2$, Sketch $(A) = \text{Sketch}(A_1)$ op Sketch (A_2) for operator op. - The state of the art wavelet sketch is the GCS Sketch [CGS06]. - The GCS gives us, for $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$ $GCS(\mathbf{v}) = GCS(\mathbf{v}_1) + GCS(\mathbf{v}_2)$ - Some natural improvement attempts: - **4** Approximate distributed top-k. - Approximating local coefficients with a linearly combinable sketch. - For set $A = A_1 \cup A_2$, Sketch $(A) = \text{Sketch}(A_1)$ op Sketch (A_2) for operator op. - The state of the art wavelet sketch is the GCS Sketch [CGS06]. - The GCS gives us, for $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$ $GCS(\mathbf{v}) = GCS(\mathbf{v}_1) + GCS(\mathbf{v}_2)$ - Random sampling techniques. #### Outline - Introduction and Motivation - Histograms - MapReduce and Hadoop - Exact Top-k Wavelet Coefficients - Naive Solution - Hadoop Wavelet Top-k: Our Efficient Exact Solution - 3 Approximate Top-k Wavelet Coefficients - Linearly Combinable Sketch Method - Our First Sampling Based Approach - An Improved Sampling Approach - Two-Level Sampling - 4 Experiments - Conclusions - Hadoop Wavelet Top-k in Hadoop #### Outline - Introduction and Motivation - Histograms - MapReduce and Hadoop - Exact Top-k Wavelet Coefficients - Naive Solution - Hadoop Wavelet Top-k: Our Efficient Exact Solution - 3 Approximate Top-k Wavelet Coefficients - Linearly Combinable Sketch Method - Our First Sampling Based Approach - An Improved Sampling Approach - Two-Level Sampling - 4 Experiments - Conclusions - Hadoop Wavelet Top-k in Hadoop n_j Records in split j Well known fact: to approximate each $\mathbf{v}(x)$ with standard deviation $\sigma = O(\varepsilon n)$ a sample of size $\Theta(1/\varepsilon^2)$ is required. n_j Records in split j Well known fact: to approximate each $\mathbf{v}(x)$ with standard deviation $\sigma = O(\varepsilon n)$ a sample of size $\Theta(1/\varepsilon^2)$ is required. Node j samples $t_i = n_i \cdot p$ records where $p = 1/\varepsilon^2 n$. n_j Records in split j Well known fact: to approximate each $\mathbf{v}(x)$ with standard deviation $\sigma = O(\varepsilon n)$ a sample of size $\Theta(1/\varepsilon^2)$ is required. Node j samples $t_i = n_i \cdot p$ records where $p = 1/\varepsilon^2 n$. n_i Records in split j Well known fact: to approximate each $\mathbf{v}(x)$ with standard deviation $\sigma = O(\varepsilon n)$ a sample of size $\Theta(1/\varepsilon^2)$ is required. Node j samples $t_i = n_i \cdot p$ records where $p = 1/\varepsilon^2 n$. n_j Records in split j $\mathbf{s}_{j}(x)$: Sampled Frequency Counts • Note: ε must be small for $\widehat{\mathbf{v}}$ to approximate \mathbf{v} well. - Note: ε must be small for $\widehat{\mathbf{v}}$ to approximate \mathbf{v} well. - Typical values for ε are 10^{-4} to 10^{-6} . - Note: ε must be small for $\widehat{\mathbf{v}}$ to approximate \mathbf{v} well. - Typical values for ε are 10^{-4} to 10^{-6} . - The communication for basic sampling is $O(1/\varepsilon^2)$. - Note: ε must be small for $\widehat{\mathbf{v}}$ to approximate \mathbf{v} well. - Typical values for ε are 10^{-4} to 10^{-6} . - The communication for basic sampling is $O(1/\varepsilon^2)$. - With 1 byte keys, 100MB to 1TB of data must be communicated! - Note: ε must be small for $\widehat{\mathbf{v}}$ to approximate \mathbf{v} well. - Typical values for ε are 10^{-4} to 10^{-6} . - The communication for basic sampling is $O(1/\varepsilon^2)$. - With 1 byte keys, 100MB to 1TB of data must be communicated! - We improve basic random sampling with Improved Sampling. - Note: ε must be small for $\widehat{\mathbf{v}}$ to approximate \mathbf{v} well. - Typical values for ε are 10^{-4} to 10^{-6} . - The communication for basic sampling is $O(1/\varepsilon^2)$. - With 1 byte keys, 100MB to 1TB of data must be communicated! - We improve basic random sampling with Improved Sampling. - Key idea: ignore sampled keys with small frequencies in a split. #### Outline - Introduction and Motivation - Histograms - MapReduce
and Hadoop - 2 Exact Top-k Wavelet Coefficients - Naive Solution - Hadoop Wavelet Top-k: Our Efficient Exact Solution - 3 Approximate Top-k Wavelet Coefficients - Linearly Combinable Sketch Method - Our First Sampling Based Approach - An Improved Sampling Approach - Two-Level Sampling - 4 Experiments - Conclusions - Hadoop Wavelet Top-k in Hadoop # Approximate Top-k Wavelet Coefficients: Improved Sampling nj Records in split # Approximate Top-k Wavelet Coefficients: Improved Sampling Node *j* samples $t_j = n_j \cdot p$ records using Basic Sampling, where $p = 1/\epsilon^2 n$. n_i Records in split Node j samples $t_j = n_j \cdot p$ records using Basic Sampling, where $p = 1/\epsilon^2 n$. nj Records in split Node j samples $t_j = n_j \cdot p$ records using Basic Sampling, where $p = 1/\varepsilon^2 n$. n_j Records in split $\mathbf{s}_{j}(x)$: Sampled Frequency Counts Node j sends $(x, \mathbf{s}_j(x))$ only if $\mathbf{s}_j(x) > \varepsilon t_j$. • The error in $\mathbf{s}(x)$ is $\leq \sum_{j=1}^{m} \varepsilon t_j = \varepsilon p n = 1/\varepsilon$. $\mathbf{s}_{i}(x)$: Sampled Frequency Counts Node j sends $(x, \mathbf{s}_{j}(x))$ only if $\mathbf{s}_{j}(x) > \varepsilon t_{j}$. • The error in s(x) is $\leq \sum_{j=1}^{m} \varepsilon t_j = \varepsilon pn = 1/\varepsilon$. $\mathbf{s}_{i}(x)$: Sampled Frequency Counts Node j sends $(x, \mathbf{s}_i(x))$ only if $\mathbf{s}_i(x) > \varepsilon t_i$. • The error in $\mathbf{s}(x)$ is $\leq \sum_{j=1}^{m} \varepsilon t_j = \varepsilon pn = 1/\varepsilon$. $\mathbf{s}_i(x)$: Sampled Frequency Counts Node j sends $(x, \mathbf{s}_i(x))$ only if $\mathbf{s}_i(x) > \varepsilon t_i$. • The error in $\mathbf{s}(x)$ is $\leq \sum_{j=1}^{m} \varepsilon t_j = \varepsilon pn = 1/\varepsilon$. $\mathbf{s}_{j}(x)$: Sampled Frequency Counts • Each node sends at most $t_j/(\varepsilon t_j) = 1/\varepsilon$ keys. - Each node sends at most $t_j/(\varepsilon t_j) = 1/\varepsilon$ keys. - The total communication is $O(m/\varepsilon)$. - Each node sends at most $t_i/(\varepsilon t_i) = 1/\varepsilon$ keys. - The total communication is $O(m/\varepsilon)$. - $\mathbf{E}[\widehat{\mathbf{v}}(x)]$ may be εn away from $\mathbf{v}(x)$ as $s_j(x) < \varepsilon t_j$ are ignored. #### Outline - Introduction and Motivation - Histograms - MapReduce and Hadoop - Exact Top-k Wavelet Coefficients - Naive Solution - Hadoop Wavelet Top-k: Our Efficient Exact Solution - 3 Approximate Top-k Wavelet Coefficients - Linearly Combinable Sketch Method - Our First Sampling Based Approach - An Improved Sampling Approach - Two-Level Sampling - 4 Experiments - Conclusions - Hadoop Wavelet Top-k in Hadoop n_j Records in split Node j samples $t_j = n_j \cdot p$ records using Basic Sampling, where $p = 1/\varepsilon^2 n$. n; Records in split Node j samples $t_j = n_j \cdot p$ records using Basic Sampling, where $p = 1/\varepsilon^2 n$. n_i Records in split Node j samples $t_j = n_j \cdot p$ records using Basic Sampling, where $p = 1/\epsilon^2 n$. n; Records in split $\mathbf{s}_{j}(x)$: Sampled Frequency Counts Sample record x with probability min $\{\varepsilon\sqrt{m}\cdot\mathbf{s}_i(x),1\}$. - If $\mathbf{s}_i(x) \geq 1/(\varepsilon \sqrt{m})$, emit $(x, \mathbf{s}_i(x))$. - Else emit (x, null) with probability $\varepsilon \sqrt{m} \cdot \mathbf{s}_{j}(x)$. $\mathbf{s}_i(x)$: Sampled Frequency Counts Sample record x with probability min $\{\varepsilon\sqrt{m}\cdot\mathbf{s}_i(x),1\}$. - If $\mathbf{s}_i(x) \geq 1/(\varepsilon \sqrt{m})$, emit $(x, \mathbf{s}_i(x))$. - Else emit (x, null) with probability $\varepsilon \sqrt{m} \cdot \mathbf{s}_i(x)$. $\mathbf{s}_i(x)$: Sampled Frequency Counts Sample record x with probability $\min\{\varepsilon\sqrt{m}\cdot\mathbf{s}_{j}(x),1\}$. - If $\mathbf{s}_j(x) \geq 1/(\varepsilon \sqrt{m})$, emit $(x, \mathbf{s}_j(x))$. - Else emit (x, null) with probability $\varepsilon \sqrt{m} \cdot \mathbf{s}_j(x)$. Sample record x with probability min $\{\varepsilon\sqrt{m}\cdot\mathbf{s}_i(x),1\}$. - If $s_j(x) \ge 1/(\varepsilon \sqrt{m})$, emit $(x, s_j(x))$. - Else emit (x, null) with probability $\varepsilon \sqrt{m} \cdot \mathbf{s}_{j}(x)$. $\mathbf{s}_{i}(x)$: Sampled Frequency Counts Sample record x with probability min $\{\varepsilon\sqrt{m}\cdot\mathbf{s}_i(x),1\}$. - If $\mathbf{s}_i(x) \geq 1/(\varepsilon \sqrt{m})$, emit $(x, \mathbf{s}_i(x))$. - Else emit (x, null) with probability $\varepsilon \sqrt{m} \cdot \mathbf{s}_i(x)$. $\mathbf{s}_{j}(x)$: Sampled Frequency Counts - To construct $\hat{\mathbf{s}}(x)$. - To construct $\hat{\mathbf{s}}(x)$. - If $(x, \mathbf{s}_j(x))$ received, $\rho(x) = \rho(x) + \mathbf{s}_j(x)$. - To construct $\widehat{\mathbf{s}}(x)$. - If $(x, \mathbf{s}_j(x))$ received, $\rho(x) = \rho(x) + \mathbf{s}_j(x)$. - Else if (x, null) received, M(x) = M(x) + 1. - To construct $\widehat{\mathbf{s}}(x)$. - If $(x, \mathbf{s}_j(x))$ received, $\rho(x) = \rho(x) + \mathbf{s}_j(x)$. - Else if (x, null) received, M(x) = M(x) + 1. - Finally, $\widehat{\mathbf{s}}(x) = \rho(x) + M(x)/\varepsilon\sqrt{m}$. - To construct $\widehat{\mathbf{s}}(x)$. - If $(x, \mathbf{s}_i(x))$ received, $\rho(x) = \rho(x) + \mathbf{s}_i(x)$. - Else if (x, null) received, M(x) = M(x) + 1. - Finally, $\widehat{\mathbf{s}}(x) = \rho(x) + M(x)/\varepsilon\sqrt{m}$. - Then, $\widehat{\mathbf{v}}(x) = \widehat{\mathbf{s}}(x)/p$ is an unbiased estimator for $\mathbf{v}(x)$. #### Theorem $\hat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$. #### Theorem $\widehat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$. #### Corollary $\widehat{\mathbf{v}}(x)$ is an unbiased estimator of $\mathbf{v}(x)$ with standard deviation at most εn . #### **Theorem** $\widehat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$. #### Corollary $\widehat{\mathbf{v}}(x)$ is an unbiased estimator of $\mathbf{v}(x)$ with standard deviation at most εn . #### Theorem - \widehat{w}_i is an unbiased estimator for any w_i . - Recall $w_i = \langle \mathbf{v}, \psi_i \rangle$, for $\psi_i = (-\phi_{j+1,2k} + \phi_{j+1,2k+1})/\sqrt{u/2^j}$ where ϕ is a [0,1] vector defined for $j=1,\ldots,\log u$ and $k=0,\ldots,2^j-1$. The variance of \widehat{w}_i is bounded by $\frac{\varepsilon 2^j n}{u\sqrt{m}} \sum_{x=2ku/2^{j+1}+1}^{(2k+2)u/2^{j+1}} \mathbf{s}(x)$. #### **Theorem** $\widehat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$. #### Corollary $\widehat{\mathbf{v}}(x)$ is an unbiased estimator of $\mathbf{v}(x)$ with standard deviation at most εn . #### Theorem - \widehat{w}_i is an unbiased estimator for any w_i . - Recall $w_i = \langle \mathbf{v}, \psi_i \rangle$, for $\psi_i = (-\phi_{j+1,2k} + \phi_{j+1,2k+1})/\sqrt{u/2^j}$ where ϕ is a [0,1] vector defined for $j=1,\ldots,\log u$ and $k=0,\ldots,2^j-1$. The variance of \widehat{w}_i is bounded by $\frac{\varepsilon 2^j n}{u\sqrt{m}} \sum_{x=2ku/2^{j+1}+1}^{(2k+2)u/2^{j+1}} \mathbf{s}(x)$. #### Theorem The expected total communication cost of our two-level sampling algorithm is $O(\sqrt{m}/\varepsilon)$. **1** RandomizedRecordReader j (RR_j) samples $n_j/\varepsilon^2 n$ records. - **1** RandomizedRecordReader j (RR_j) samples $n_j/\varepsilon^2 n$ records. - **1** RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j. - **1** RandomizedRecordReader j (RR_j) samples $n_j/\varepsilon^2 n$ records. - RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j. - $oldsymbol{\circ}$ RR_{j} sorts the offsets in ascending order then seeks the record at each sampled offset. - **1** RandomizedRecordReader j (RR_j) samples $n_j/\varepsilon^2 n$ records. - RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j. - $oldsymbol{\circ}$ RR_{j} sorts the offsets in ascending order then seeks the record at each sampled offset. - RandomizedRecordReader j (RR_i) samples $n_i/\varepsilon^2 n$ records. - **1** RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j. - $oldsymbol{0}$ RR_{j} sorts the offsets in ascending order then seeks the record at each sampled offset. - RandomizedRecordReader j (RR_i) samples $n_i/\varepsilon^2 n$ records. - RR_i randomly selects $n_i/\varepsilon^2 n$ offsets in split j. - $oldsymbol{\circ}$ RR_{j} sorts the offsets in ascending order then seeks the record at each sampled offset. - RandomizedRecordReader j (RR_i) samples $n_i/\varepsilon^2 n$ records. - RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j. - $oldsymbol{\circ}$ RR_{j} sorts the offsets in ascending order then seeks the record at each sampled offset. **②** Mapper j samples key x from \mathbf{s} with probability $\min\{\varepsilon\sqrt{m}\cdot\mathbf{s}_{j}(x),1\}$. ② Mapper j samples key x from \mathbf{s} with probability $\min\{\varepsilon\sqrt{m}\cdot\mathbf{s}_j(x),1\}$. • If $\mathbf{s}_j(x) \geq 1/(\varepsilon\sqrt{m})$, emit $(x,\mathbf{s}_j(x))$. - **②** Mapper j samples key x from \mathbf{s} with probability $\min\{\varepsilon\sqrt{m}\cdot\mathbf{s}_j(x),1\}$. - If $\mathbf{s}_j(x) \geq 1/(\varepsilon \sqrt{m})$, emit $(x, \mathbf{s}_j(x))$. - Else emit (x,0) with probability $\varepsilon \sqrt{m} \cdot \mathbf{s}_j(x)$. - **②** Mapper j samples key x from \mathbf{s} with probability $\min\{\varepsilon\sqrt{m}\cdot\mathbf{s}_j(x),1\}$. - If $\mathbf{s}_j(x) \geq 1/(\varepsilon \sqrt{m})$, emit $(x, \mathbf{s}_j(x))$. - Else emit (x,0) with probability $\varepsilon \sqrt{m} \cdot \mathbf{s}_i(x)$. - **3** Construct $\widehat{\mathbf{s}}(x)$. - If $(x, \mathbf{s}_j(x))$ received, $\rho(x) = \rho(x) + \mathbf{s}_j(x)$. - **3** Construct $\widehat{\mathbf{s}}(x)$. - If $(x,
\mathbf{s}_i(x))$ received, $\rho(x) = \rho(x) + \mathbf{s}_i(x)$. - Else if (x,0) received, M(x) = M(x) + 1. - **3** Construct $\widehat{\mathbf{s}}(x)$. - If $(x, \mathbf{s}_j(x))$ received, $\rho(x) = \rho(x) + \mathbf{s}_j(x)$. - Else if (x, 0) received, M(x) = M(x) + 1. - Finally, $\widehat{\mathbf{s}}(x) = \rho(x) + M(x)/\varepsilon\sqrt{m}$. - **3** Construct $\widehat{\mathbf{s}}(x)$. - If $(x, \mathbf{s}_i(x))$ received, $\rho(x) = \rho(x) + \mathbf{s}_i(x)$. - Else if (x,0) received, M(x) = M(x) + 1. - Finally, $\hat{\mathbf{s}}(x) = \rho(x) + M(x)/\varepsilon\sqrt{m}$. - **Solution** Reducer uses $\hat{\mathbf{v}}(x) = \hat{\mathbf{s}}(x)/p$, our unbiased estimator for $\mathbf{v}(x)$. - **3** Construct $\widehat{\mathbf{s}}(x)$. - If $(x, \mathbf{s}_i(x))$ received, $\rho(x) = \rho(x) + \mathbf{s}_i(x)$. - Else if (x, 0) received, M(x) = M(x) + 1. - Finally, $\widehat{\mathbf{s}}(x) = \rho(x) + M(x)/\varepsilon\sqrt{m}$. - **Solution** Reducer uses $\hat{\mathbf{v}}(x) = \hat{\mathbf{s}}(x)/p$, our unbiased estimator for $\mathbf{v}(x)$. - **3** Construct $\widehat{\mathbf{s}}(x)$. - If $(x, \mathbf{s}_i(x))$ received, $\rho(x) = \rho(x) + \mathbf{s}_i(x)$. - Else if (x,0) received, M(x) = M(x) + 1. - Finally, $\widehat{\mathbf{s}}(x) = \rho(x) + M(x)/\varepsilon\sqrt{m}$. - **Solution** Reducer uses $\hat{\mathbf{v}}(x) = \hat{\mathbf{s}}(x)/p$, our unbiased estimator for $\mathbf{v}(x)$. - **3** Construct $\hat{\mathbf{s}}(x)$. - If $(x, \mathbf{s}_j(x))$ received, $\rho(x) = \rho(x) + \mathbf{s}_j(x)$. - Else if (x,0) received, M(x) = M(x) + 1. - Finally, $\widehat{\mathbf{s}}(x) = \rho(x) + M(x)/\varepsilon\sqrt{m}$. - **Solution** Reducer uses $\hat{\mathbf{v}}(x) = \hat{\mathbf{s}}(x)/p$, our unbiased estimator for $\mathbf{v}(x)$. - **3** Construct $\widehat{\mathbf{s}}(x)$. - If $(x, \mathbf{s}_j(x))$ received, $\rho(x) = \rho(x) + \mathbf{s}_j(x)$. - Else if (x,0) received, M(x) = M(x) + 1. - Finally, $\hat{\mathbf{s}}(x) = \rho(x) + M(x)/\varepsilon\sqrt{m}$. - **9** Reducer uses $\hat{\mathbf{v}}(x) = \hat{\mathbf{s}}(x)/p$, our unbiased estimator for $\mathbf{v}(x)$. ullet Consider: $arepsilon=10^{-4}$, $m=10^3$, and 4-byte keys . - ullet Consider: $arepsilon=10^{-4}$, $m=10^3$, and 4-byte keys . - The communication for basic sampling is $O(1/\varepsilon^2)$. - ullet Consider: $arepsilon=10^{-4}$, $m=10^3$, and 4-byte keys . - The communication for basic sampling is $O(1/\varepsilon^2)$. - Approximately 400MB of data must be communicated! - ullet Consider: $arepsilon=10^{-4}$, $m=10^3$, and 4-byte keys . - The communication for basic sampling is $O(1/\varepsilon^2)$. - Approximately 400MB of data must be communicated! - The communication for improved sampling is $O(m/\varepsilon)$. - ullet Consider: $arepsilon=10^{-4}$, $m=10^3$, and 4-byte keys . - The communication for basic sampling is $O(1/\varepsilon^2)$. - Approximately 400MB of data must be communicated! - The communication for improved sampling is $O(m/\varepsilon)$. - Approximately 40MB of data must be communicated. - ullet Consider: $arepsilon=10^{-4}$, $m=10^3$, and 4-byte keys . - The communication for basic sampling is $O(1/\varepsilon^2)$. - Approximately 400MB of data must be communicated! - The communication for improved sampling is $O(m/\varepsilon)$. - Approximately 40MB of data must be communicated. - The communication for two-level sampling is $O(\sqrt{m}/\varepsilon)$. - ullet Consider: $arepsilon=10^{-4}$, $m=10^3$, and 4-byte keys . - The communication for basic sampling is $O(1/\varepsilon^2)$. - Approximately 400MB of data must be communicated! - The communication for improved sampling is $O(m/\varepsilon)$. - Approximately 40MB of data must be communicated. - The communication for two-level sampling is $O(\sqrt{m}/\varepsilon)$. - Only 1.2MB of data needs to be communicated! - ullet Consider: $arepsilon=10^{-4}$, $m=10^3$, and 4-byte keys . - The communication for basic sampling is $O(1/\varepsilon^2)$. - Approximately 400MB of data must be communicated! - The communication for improved sampling is $O(m/\varepsilon)$. - Approximately 40MB of data must be communicated. - The communication for two-level sampling is $O(\sqrt{m}/\varepsilon)$. - Only 1.2MB of data needs to be communicated! - 330-fold reduction over basic sampling and 33-fold reduction over improved sampling! #### Outline - Introduction and Motivation - Histograms - MapReduce and Hadoop - Exact Top-k Wavelet Coefficients - Naive Solution - Hadoop Wavelet Top-k: Our Efficient Exact Solution - 3 Approximate Top-k Wavelet Coefficients - Linearly Combinable Sketch Method - Our First Sampling Based Approach - An Improved Sampling Approach - Two-Level Sampling - 4 Experiments - Conclusions - Hadoop Wavelet Top-k in Hadoop • We implement the following methods in Hadoop 0.20.2: - We implement the following methods in Hadoop 0.20.2: - Exact Methods: - The baseline solution is denoted Send-V, - We implement the following methods in Hadoop 0.20.2: - Exact Methods: - The baseline solution is denoted Send-V, - Our three round exact solution is denoted H-WTopk, (meaning "Hadoop Wavelet Top-k"). - We implement the following methods in Hadoop 0.20.2: - Exact Methods: - The baseline solution is denoted Send-V, - Our three round exact solution is denoted H-WTopk, (meaning "Hadoop Wavelet Top-k"). - Approximate Methods: - We implement the following methods in Hadoop 0.20.2: - Exact Methods: - The baseline solution is denoted Send-V, - Our three round exact solution is denoted H-WTopk, (meaning "Hadoop Wavelet Top-k"). - Approximate Methods: - Improved Sampling is denoted Improved-S. - We implement the following methods in Hadoop 0.20.2: - Exact Methods: - The baseline solution is denoted Send-V, - Our three round exact solution is denoted H-WTopk, (meaning "Hadoop Wavelet Top-k"). - Approximate Methods: - Improved Sampling is denoted Improved-S. - Two-Level Sampling is denoted TwoLevel-S. - We implement the following methods in Hadoop 0.20.2: - Exact Methods: - The baseline solution is denoted Send-V, - Our three round exact solution is denoted H-WTopk, (meaning "Hadoop Wavelet Top-k"). - Approximate Methods: - Improved Sampling is denoted Improved-S. - Two-Level Sampling is denoted TwoLevel-S. - The Sketch-Based Approximation using the GCS-Sketch is denoted Send-Sketch. #### **Experiments: Setup** Experiments are performed in a heterogeneous Hadoop cluster with 16 machines: #### **Experiments: Setup** - Experiments are performed in a heterogeneous Hadoop cluster with 16 machines: - 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU - Experiments are performed in a heterogeneous Hadoop cluster with 16 machines: - 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU - 4 machines with 4GB of RAM and an Intel Xeon 2GHz CPU - Experiments are performed in a heterogeneous Hadoop cluster with 16 machines: - 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU - 4 machines with 4GB of RAM and an Intel Xeon 2GHz CPU - One is reserved for the master (running JobTracker and NameNode). - Experiments are performed in a heterogeneous Hadoop cluster with 16 machines: - 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU - 4 machines with 4GB of RAM and an Intel Xeon 2GHz CPU - One is reserved for the master (running JobTracker and NameNode). - 3 2 machines with 6GB of RAM and an Intel Xeon 2.13GHz CPU - Experiments are performed in a heterogeneous Hadoop cluster with 16 machines: - 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU - 4 machines with 4GB of RAM and an Intel Xeon 2GHz CPU - One is reserved for the master (running JobTracker and NameNode). - 3 2 machines with 6GB of RAM and an Intel Xeon 2.13GHz CPU - One is reserved for the (only) Reducer. - Experiments are performed in a heterogeneous Hadoop cluster with 16 machines: - 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU - ② 4 machines with 4GB of RAM and an Intel Xeon 2GHz CPU - One is reserved for the master (running JobTracker and NameNode). - 2 machines with 6GB of RAM and an Intel Xeon 2.13GHz CPU - One is reserved for the (only) Reducer. - 1 machine with 2GB of RAM and an Intel Core 2 1.86GHz CPU - Experiments are performed in a heterogeneous Hadoop cluster with 16 machines: - 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU - 4 machines with 4GB of RAM and an Intel Xeon 2GHz CPU - One is reserved for the master (running JobTracker and NameNode). - 2 machines with 6GB of RAM and an Intel Xeon 2.13GHz CPU One is reserved for the (only) Reducer. - 1 machine with 2GB of RAM and an Intel Core 2 1.86GHz CPU - All machines are directly connected to a 1000Mbps switch. • We utilize the WorldCup dataset to test all algorithms on real data. - We utilize the WorldCup dataset to test all algorithms on real data. - There are a total of 1.35 billion records. - We utilize the WorldCup dataset to test all algorithms on real data. - There are a total of 1.35 billion records. - Each record has 10 4 byte integer attributes including a client id and object id. - We utilize the WorldCup dataset to test all algorithms on real data. - There are a total of 1.35 billion records. - Each record has 10 4 byte integer attributes including a client id and object id. - We assign each record a *clientobject* 4 byte integer id in $u = 2^{29}$ which is distinct for unique parings of a client id and object id. - We utilize the WorldCup dataset to test all algorithms on real data. - There are a total of 1.35 billion records. - Each record has 10 4 byte integer attributes including a client id and object id. - We assign each record a *clientobject* 4 byte integer id in $u = 2^{29}$ which is distinct for unique parings of a client id and object id. - WorldCup is stored in binary format, in total it is 50GB. - We utilize the WorldCup dataset to test all algorithms on real data. - There are a total of 1.35 billion records. - Each record has 10 4 byte
integer attributes including a client id and object id. - We assign each record a *clientobject* 4 byte integer id in $u = 2^{29}$ which is distinct for unique parings of a client id and object id. - WorldCup is stored in binary format, in total it is 50GB. - We utilize large synthetic Zipfian datasets to evaluate all methods. - We utilize the WorldCup dataset to test all algorithms on real data. - There are a total of 1.35 billion records. - Each record has 10 4 byte integer attributes including a client id and object id. - We assign each record a *clientobject* 4 byte integer id in $u = 2^{29}$ which is distinct for unique parings of a client id and object id. - WorldCup is stored in binary format, in total it is 50GB. - We utilize large synthetic Zipfian datasets to evaluate all methods. - Keys are randomly permuted and discontiguous in a dataset. - We utilize the WorldCup dataset to test all algorithms on real data. - There are a total of 1.35 billion records. - Each record has 10 4 byte integer attributes including a client id and object id. - We assign each record a *clientobject* 4 byte integer id in $u = 2^{29}$ which is distinct for unique parings of a client id and object id. - WorldCup is stored in binary format, in total it is 50GB. - We utilize large synthetic Zipfian datasets to evaluate all methods. - Keys are randomly permuted and discontiguous in a dataset. - Each key is a 4-byte integer and stored in binary format. # Experiments: Defaults #### Default values: | Symbol | Definition | Default | |----------|-------------------|-----------------| | α | Zipfian skewness | 1.1 | | и | max key in domain | $\log_2 u = 29$ | | n | total records | 13.4 billion | | | dataset size | 50GB | | β | split size | 256MB | | m | number of splits | 200 | | В | network bandwidth | 500Mbps | ## Experiments: Vary k ## Experiments: Vary k ## Experiments: Vary k ## Experiments: Vary ε ## Experiments: Vary ε ## Experiments: Vary ε ### Experiments: Vary n ## Experiments: Vary n ### Experiments: Vary u ### Experiments: Vary u ## Experiments: Vary β ## Experiments: Vary β ## Experiments: Vary α # Experiments: Vary α ## Experiments: Vary B ## Experiments: WorldCup Dataset ## Experiments: WorldCup Dataset We study the problem of efficiently computing wavelet histograms in MapReduce clusters. - We study the problem of efficiently computing wavelet histograms in MapReduce clusters. - We present both exact and approximate algorithms. - We study the problem of efficiently computing wavelet histograms in MapReduce clusters. - We present both exact and approximate algorithms. - TwoLevel-S is especially easy to implement and ideal in practice. - We study the problem of efficiently computing wavelet histograms in MapReduce clusters. - We present both exact and approximate algorithms. - TwoLevel-S is especially easy to implement and ideal in practice. - For 200GB of data with $\log_2 u = 29$ it takes 10 minutes with only 2MB of communication! #### Conclusions - We study the problem of efficiently computing wavelet histograms in MapReduce clusters. - We present both exact and approximate algorithms. - TwoLevel-S is especially easy to implement and ideal in practice. - For 200GB of data with log₂ u = 29 it takes 10 minutes with only 2MB of communication! - Our work is just the tip of the iceberg for data summarization techniques in MapReduce. #### Conclusions - We study the problem of efficiently computing wavelet histograms in MapReduce clusters. - We present both exact and approximate algorithms. - TwoLevel-S is especially easy to implement and ideal in practice. - For 200GB of data with $log_2 u = 29$ it takes 10 minutes with only 2MB of communication! - Our work is just the tip of the iceberg for data summarization techniques in MapReduce. - Many others remain including: #### Conclusions¹ - We study the problem of efficiently computing wavelet histograms in MapReduce clusters. - We present both exact and approximate algorithms. - TwoLevel-S is especially easy to implement and ideal in practice. - For 200GB of data with log₂ u = 29 it takes 10 minutes with only 2MB of communication! - Our work is just the tip of the iceberg for data summarization techniques in MapReduce. - Many others remain including: - other histograms including the V-optimal histogram, - sketches and synopsis, - geometric summaries (ε -approximations and coresets), - graph summaries (distance oracles). #### The End # Thank You Q and A • The JobTracker assigns an InputSplit to a TaskTracker, a MapRunner task runs on the TaskTracker to process the split. • The MapRunner acquires a RecordReader from the InputFormat for the file to view the InputSplit as a stream of records, (k_1, v_1) . • The MapRunner invokes the user specified *Mapper* for each (k_1, v_1) , the Mapper emits (k_2, v_2) and stores in an in-memory buffer. • When the buffer fills, the optional *Combiner* is executed over $(k_2, list(v_2))$, and a (k_2, v_2) is dumped to a partition on disk. # Background: Hadoop MapReduce, Shuffle and Sort Phase • The JobTracker assigns Reducers to TaskTrackers for each partition, each reducer first copies on (k_2, v_2) and then sorts on k_2 . # Background: Hadoop MapReduce, Reduce Phase • The sorting output $(k_2, list(v_2))$ is processed one k_2 at a time and reduced, the reduced output (k_3, v_3) is written to reducer output o_i . ### Outline - Introduction and Motivation - Histograms - MapReduce and Hadoop - Exact Top-k Wavelet Coefficients - Naive Solution - Hadoop Wavelet Top-k: Our Efficient Exact Solution - 3 Approximate Top-k Wavelet Coefficients - Linearly Combinable Sketch Method - Our First Sampling Based Approach - An Improved Sampling Approach - Two-Level Sampling - 4 Experiments - Conclusions - Hadoop Wavelet Top-k in Hadoop • RandomizedRecordReader j (RR_j) samples $n_j/\varepsilon^2 n$ records. - RandomizedRecordReader j (RR_i) samples $n_i/\varepsilon^2 n$ records. - **1** RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j. - RandomizedRecordReader j (RR_i) samples $n_i/\varepsilon^2 n$ records. - **1** RR_i randomly selects $n_i/\varepsilon^2 n$ offsets in split j. - \bigcirc RR_j sorts the offsets in ascending order then seeks the record at each sampled offset. - **Proof** RandomizedRecordReader $j(RR_j)$ samples $n_j/\varepsilon^2 n$ records. - **1** RR_i randomly selects $n_i/\varepsilon^2 n$ offsets in split j. - \bigcirc RR_j sorts the offsets in ascending order then seeks the record at each sampled offset. - **9** RandomizedRecordReader $j(RR_i)$ samples $n_i/\varepsilon^2 n$ records. - RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j. - RR_j sorts the offsets in ascending order then seeks the record at each sampled offset. - **9** RandomizedRecordReader $j(RR_i)$ samples $n_i/\varepsilon^2 n$ records. - RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j. - \bigcirc RR_j sorts the offsets in ascending order then seeks the record at each sampled offset. - **9** RandomizedRecordReader $j(RR_i)$ samples $n_i/\varepsilon^2 n$ records. - **1** RR_i randomly selects $n_i/\varepsilon^2 n$ offsets in split j. - \bigcirc RR_j sorts the offsets in ascending order then seeks the record at each sampled offset. - **9** RandomizedRecordReader $j(RR_i)$ samples $n_i/\varepsilon^2 n$ records. - **1** RR_i randomly selects $n_i/\varepsilon^2 n$ offsets in split j. - RR_j sorts the offsets in ascending order then seeks the record at each sampled offset. - **Q** RandomizedRecordReader $j(RR_j)$ samples $n_j/\varepsilon^2 n$ records. - **1** RR_i randomly selects $n_i/\varepsilon^2 n$ offsets in split j. - $oldsymbol{\circ}$ RR_{j} sorts the offsets in ascending order then seeks the record at each sampled offset. - **Q** RandomizedRecordReader $j(RR_j)$ samples $n_j/\varepsilon^2 n$ records. - **1** RR_i randomly selects $n_i/\varepsilon^2 n$ offsets in split j. - $oldsymbol{\circ}$ RR_{j} sorts the offsets in ascending order then seeks the record at each sampled offset. - **1** RandomizedRecordReader j (RR_j) samples $n_j/\varepsilon^2 n$ records. - RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j. - RR_j sorts the offsets in ascending order then seeks the record at each sampled offset. - **②** Reducer uses $\widehat{\mathbf{v}}(x) = \mathbf{s}(x)/p$, our unbiased estimator for $\mathbf{v}(x)$. - RandomizedRecordReader j (RR_i) samples $n_i/\varepsilon^2 n$ records. - **1** RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j. - RR_j sorts the offsets in ascending order then seeks the record at each sampled offset. - **②** Reducer uses $\widehat{\mathbf{v}}(x) = \mathbf{s}(x)/p$, our unbiased estimator for $\mathbf{v}(x)$. - RandomizedRecordReader j (RR_j) samples $n_j/\varepsilon^2 n$ records. - RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j. - RR_j sorts the offsets in ascending order then seeks the record at each sampled offset. - **Q** Reducer uses $\widehat{\mathbf{v}}(x) = \mathbf{s}(x)/p$, our unbiased estimator for $\mathbf{v}(x)$. - **Q** RandomizedRecordReader j (RR_j) samples $n_j/\varepsilon^2 n$ records. - **1** RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j. - RR_j sorts the offsets in ascending order then seeks the record at each sampled offset. - **②** Reducer uses $\widehat{\mathbf{v}}(x) = \mathbf{s}(x)/p$, our unbiased estimator for $\mathbf{v}(x)$. - **1** RandomizedRecordReader j (RR_j) samples $n_j/\varepsilon^2 n$ records. - RR_j randomly selects $n_j/\varepsilon^2 n$ offsets in split j. - $oldsymbol{0}$ RR_j sorts the offsets in ascending order then seeks the record at each sampled offset. - **②** Reducer uses $\widehat{\mathbf{v}}(x) = \mathbf{s}(x)/p$, our unbiased estimator for $\mathbf{v}(x)$. #### Theorem $\widehat{\mathbf{s}}(x)$ is an unbiased
estimator of $\mathbf{s}(x)$. #### Theorem $\hat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$. ### Proof. **1** Our estimator is $\hat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. #### Theorem $\hat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$. - ① Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - Assume in the first m' splits $\mathbf{s}_i(x) < 1/(\varepsilon \sqrt{m})$. #### Theorem $\hat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$. - ① Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - Assume in the first m' splits $\mathbf{s}_i(x) < 1/(\varepsilon \sqrt{m})$. - Let $X_i = 1$ if x is sampled in split j and 0 otherwise. #### **Theorem** $\hat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$. - **1** Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - Assume in the first m' splits $\mathbf{s}_i(x) < 1/(\varepsilon \sqrt{m})$. - Let $X_i = 1$ if x is sampled in split j and 0 otherwise. #### Theorem $\hat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$. - ① Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - Assume in the first m' splits $\mathbf{s}_i(x) < 1/(\varepsilon \sqrt{m})$. - Let $X_j = 1$ if x is sampled in split j and 0 otherwise. - Let $M = \sum_{j=1}^{m'} X_j$. #### **Theorem** $\hat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$. - **1** Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - Assume in the first m' splits $\mathbf{s}_i(x) < 1/(\varepsilon \sqrt{m})$. - Let $X_i = 1$ if x is sampled in split j and 0 otherwise. - Let $M = \sum_{j=1}^{m'} X_j$. - $\bullet \quad \mathbf{E}[M] = \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x)$ #### **Theorem** $\hat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$. - ① Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - Assume in the first m' splits $\mathbf{s}_i(x) < 1/(\varepsilon \sqrt{m})$. - Let $X_j = 1$ if x is sampled in split j and 0 otherwise. - **2E** $[X_j] = \varepsilon \sqrt{m} \cdot \mathbf{s}_{j}(x).$ - Let $M = \sum_{j=1}^{m'} X_j$. - $\bullet \mathbf{E}[M] = \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x) = \varepsilon \sqrt{m} (\mathbf{s}(x) \rho(x)).$ #### **Theorem** $\hat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$. - ① Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - Assume in the first m' splits $\mathbf{s}_i(x) < 1/(\varepsilon \sqrt{m})$. - Let $X_j = 1$ if x is sampled in split j and 0 otherwise. - Let $M = \sum_{j=1}^{m'} X_j$. - $\bullet \mathbf{E}[M] = \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x) = \varepsilon \sqrt{m} (\mathbf{s}(x) \rho(x)).$ - $\bullet \ \mathsf{E}[\widehat{\mathsf{s}}(x)] = \mathsf{E}[\rho(x) + M/\varepsilon\sqrt{m}]$ #### **Theorem** $\hat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$. - ① Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - Assume in the first m' splits $\mathbf{s}_i(x) < 1/(\varepsilon \sqrt{m})$. - Let $X_j = 1$ if x is sampled in split j and 0 otherwise. - Let $M = \sum_{j=1}^{m'} X_j$. - **3** $\mathbf{E}[M] = \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x) = \varepsilon \sqrt{m} (\mathbf{s}(x) \rho(x)).$ - $\bullet \ \mathsf{E}[\widehat{\mathsf{s}}(\mathsf{x})] = \mathsf{E}[\rho(\mathsf{x}) + M/\varepsilon\sqrt{m}] = \rho(\mathsf{x}) + (\mathsf{s}(\mathsf{x}) \rho(\mathsf{x}))$ #### **Theorem** $\hat{\mathbf{s}}(x)$ is an unbiased estimator of $\mathbf{s}(x)$. - **1** Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - Assume in the first m' splits $\mathbf{s}_i(x) < 1/(\varepsilon \sqrt{m})$. - Let $X_i = 1$ if x is sampled in split j and 0 otherwise. - Let $M = \sum_{j=1}^{m'} X_j$. - $\bullet \quad \mathbf{E}[M] = \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x) = \varepsilon \sqrt{m} (\mathbf{s}(x) \rho(x)).$ - $\bullet \mathbf{E}[\widehat{\mathbf{s}}(x)] = \mathbf{E}[\rho(x) + M/\varepsilon\sqrt{m}] = \rho(x) + (\mathbf{s}(x) \rho(x)) = \mathbf{s}(x).$ ### **Theorem** $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$. ### **Theorem** $\widehat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$. ### Proof. • Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. ### **Theorem** $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$. - **1** Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - Assume in the first m' splits $\mathbf{s}_j(x) < 1/(\varepsilon \sqrt{m})$. #### **Theorem** $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$. - **1** Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - Assume in the first m' splits $\mathbf{s}_j(x) < 1/(\varepsilon \sqrt{m})$. - Let $X_i = 1$ if x is sampled in split j and 0 otherwise. #### **Theorem** $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$. - **1** Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - Assume in the first m' splits $\mathbf{s}_i(x) < 1/(\varepsilon\sqrt{m})$. - Let $X_i = 1$ if x is sampled in split j and 0 otherwise. #### **Theorem** $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$. - **1** Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - Assume in the first m' splits $\mathbf{s}_j(x) < 1/(\varepsilon \sqrt{m})$. - Let $X_i = 1$ if x is sampled in split j and 0 otherwise. #### Theorem $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$. - **1** Our estimator is $\hat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - Assume in the first m' splits $\mathbf{s}_j(x) < 1/(\varepsilon \sqrt{m})$. - Let $X_i = 1$ if x is sampled in split j and 0 otherwise. - Let $M = \sum_{j=1}^{m'} X_j$. ### **Theorem** $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$. - Our estimator is $\hat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - Assume in the first m' splits $\mathbf{s}_j(x) < 1/(\varepsilon \sqrt{m})$. - Let $X_i = 1$ if x is sampled in split j and 0 otherwise. - Let $M = \sum_{j=1}^{m'} X_j$. - \bullet Var[M] $\leq \sum_{j=1}^{m'} \text{Var}[X_j]$ ### **Theorem** $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$. - Our estimator is $\hat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - Assume in the first m' splits $\mathbf{s}_i(x) < 1/(\varepsilon\sqrt{m})$. - Let $X_i = 1$ if x is sampled in split j and 0 otherwise. - Let $M = \sum_{j=1}^{m'} X_j$. - **3** $\operatorname{Var}[M] \leq \sum_{j=1}^{m'} \operatorname{Var}[X_j] \leq \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x)$ ### **Theorem** $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$. - **1** Our estimator is $\hat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - Assume in the first m' splits $\mathbf{s}_j(x) < 1/(\varepsilon \sqrt{m})$. - Let $X_i = 1$ if x is sampled in split j and 0 otherwise. - Let $M = \sum_{j=1}^{m'} X_j$. - $\operatorname{Var}[M] \leq \sum_{j=1}^{m'} \operatorname{Var}[X_j] \leq \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x) \leq m' \cdot \varepsilon \sqrt{m} \cdot 1/(\varepsilon \sqrt{m})$ ### **Theorem** $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$. - Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - Assume in the first m' splits $\mathbf{s}_j(x) < 1/(\varepsilon \sqrt{m})$. - Let $X_i = 1$ if x is sampled in split j and 0 otherwise. - Let $M = \sum_{j=1}^{m'} X_j$. - **③ Var** $[M] \le \sum_{j=1}^{m'} \mathbf{Var}[X_j] \le \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x) \le m' \cdot \varepsilon \sqrt{m} \cdot 1/(\varepsilon \sqrt{m}) = m'.$ ### **Theorem** $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$. - ① Our estimator is $\hat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - Assume in the first m' splits $\mathbf{s}_j(x) < 1/(\varepsilon \sqrt{m})$. - Let $X_i = 1$ if x is sampled in split j and 0 otherwise. - Let $M = \sum_{j=1}^{m'} X_j$. - **3** $\operatorname{Var}[M] \leq \sum_{j=1}^{m'} \operatorname{Var}[X_j] \leq \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x) \leq m' \cdot \varepsilon \sqrt{m} \cdot 1/(\varepsilon \sqrt{m}) = m'.$ - $Var[\widehat{\mathbf{s}}(x)] = \mathbf{Var}[M/\varepsilon\sqrt{m}]$ ### **Theorem** $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$. - **1** Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - Assume in the first m' splits $\mathbf{s}_j(x) < 1/(\varepsilon \sqrt{m})$. - Let $X_i = 1$ if x is sampled in split j and 0 otherwise. - Let $M = \sum_{j=1}^{m'} X_j$. - **3** $\operatorname{Var}[M] \leq \sum_{j=1}^{m'} \operatorname{Var}[X_j] \leq \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x) \leq m' \cdot \varepsilon \sqrt{m} \cdot 1/(\varepsilon \sqrt{m}) = m'.$ - $Var[\hat{\mathbf{s}}(x)] = Var[M/\varepsilon\sqrt{m}] = Var[M]/\varepsilon^2 m$ ### **Theorem** $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$. - Our estimator is $\hat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - Assume in the first m' splits $\mathbf{s}_j(x) < 1/(\varepsilon \sqrt{m})$. -
Let $X_j = 1$ if x is sampled in split j and 0 otherwise. - Let $M = \sum_{j=1}^{m'} X_j$. - **3** $\operatorname{Var}[M] \leq \sum_{j=1}^{m'} \operatorname{Var}[X_j] \leq \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x) \leq m' \cdot \varepsilon \sqrt{m} \cdot 1/(\varepsilon \sqrt{m}) = m'.$ - $Var[\widehat{\mathbf{s}}(x)] = \mathbf{Var}[M/\varepsilon\sqrt{m}] = \mathbf{Var}[M]/\varepsilon^2 m \le m'/\varepsilon^2 m$ ### **Theorem** $\hat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$. - **1** Our estimator is $\hat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - Assume in the first m' splits $\mathbf{s}_j(x) < 1/(\varepsilon \sqrt{m})$. - Let $X_i = 1$ if x is sampled in split j and 0 otherwise. - Let $M = \sum_{j=1}^{m'} X_j$. - **3** $\operatorname{Var}[M] \leq \sum_{j=1}^{m'} \operatorname{Var}[X_j] \leq \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x) \leq m' \cdot \varepsilon \sqrt{m} \cdot 1/(\varepsilon \sqrt{m}) = m'.$ - $Var[\hat{\mathbf{s}}(x)] = Var[M/\varepsilon\sqrt{m}] = Var[M]/\varepsilon^2 m \le m'/\varepsilon^2 m \le 1/\varepsilon^2$ ### **Theorem** $\widehat{\mathbf{s}}(x)$ is an estimator of $\mathbf{s}(x)$ with standard deviation at most $1/\varepsilon$. - **1** Our estimator is $\hat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - Assume in the first m' splits $\mathbf{s}_j(x) < 1/(\varepsilon \sqrt{m})$. - Let $X_j = 1$ if x is sampled in split j and 0 otherwise. - Let $M = \sum_{j=1}^{m'} X_j$. - **3** $\operatorname{Var}[M] \leq \sum_{j=1}^{m'} \operatorname{Var}[X_j] \leq \sum_{j=1}^{m'} \varepsilon \sqrt{m} \cdot \mathbf{s}_j(x) \leq m' \cdot \varepsilon \sqrt{m} \cdot 1/(\varepsilon \sqrt{m}) = m'.$ #### Theorem The expected total communication cost of our two-level sampling algorithm is $O(\sqrt{m}/\varepsilon)$. #### Theorem The expected total communication cost of our two-level sampling algorithm is $O(\sqrt{m}/\varepsilon)$. ### Proof. • Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. #### Theorem The expected total communication cost of our two-level sampling algorithm is $O(\sqrt{m}/\varepsilon)$. - Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - The first-level sample size is $pn = 1/\varepsilon^2$. #### Theorem The expected total communication cost of our two-level sampling algorithm is $O(\sqrt{m}/\varepsilon)$. - **1** Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - The first-level sample size is $pn = 1/\varepsilon^2$. - If $\mathbf{s}_j(x) \geq 1/(\varepsilon \sqrt{m})$ we emit $(x, s_j(x))$. #### Theorem The expected total communication cost of our two-level sampling algorithm is $O(\sqrt{m}/\varepsilon)$. - ① Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - The first-level sample size is $pn = 1/\varepsilon^2$. - If $\mathbf{s}_j(x) \geq 1/(\varepsilon \sqrt{m})$ we emit $(x, s_j(x))$. - ② There are $\leq (1/\varepsilon^2)/(1/\varepsilon\sqrt{m}) = \sqrt{m}/\varepsilon$ such keys. ### Theorem The expected total communication cost of our two-level sampling algorithm is $O(\sqrt{m}/\varepsilon)$. - ① Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - The first-level sample size is $pn = 1/\varepsilon^2$. - If $\mathbf{s}_j(x) \geq 1/(\varepsilon \sqrt{m})$ we emit $(x, s_j(x))$. - ② There are $\leq (1/\varepsilon^2)/(1/\varepsilon\sqrt{m}) = \sqrt{m}/\varepsilon$ such keys. - If $s_j(x) < 1/(\varepsilon \sqrt{m})$, we emit (x, null) with probability $\varepsilon \sqrt{m} \cdot \mathbf{s}_j x$. #### Theorem The expected total communication cost of our two-level sampling algorithm is $O(\sqrt{m}/\varepsilon)$. - ① Our estimator is $\hat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - The first-level sample size is $pn = 1/\varepsilon^2$. - If $\mathbf{s}_j(x) \geq 1/(\varepsilon \sqrt{m})$ we emit $(x, s_j(x))$. - ② There are $\leq (1/\varepsilon^2)/(1/\varepsilon\sqrt{m}) = \sqrt{m}/\varepsilon$ such keys. - If $s_j(x) < 1/(\varepsilon \sqrt{m})$, we emit (x, null) with probability $\varepsilon \sqrt{m} \cdot \mathbf{s}_j x$. - **3** On expectation there are, $\sum_{j} \sum_{x} \varepsilon \sqrt{m} \cdot \mathbf{s}_{j}(x) \leq \varepsilon \sqrt{m} \cdot 1/\varepsilon^{2}$ #### Theorem The expected total communication cost of our two-level sampling algorithm is $O(\sqrt{m}/\varepsilon)$. - ① Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - The first-level sample size is $pn = 1/\varepsilon^2$. - If $\mathbf{s}_j(x) \geq 1/(\varepsilon \sqrt{m})$ we emit $(x, s_j(x))$. - ② There are $\leq (1/\varepsilon^2)/(1/\varepsilon\sqrt{m}) = \sqrt{m}/\varepsilon$ such keys. - If $s_j(x) < 1/(\varepsilon \sqrt{m})$, we emit (x, null) with probability $\varepsilon \sqrt{m} \cdot \mathbf{s}_j x$. - **3** On expectation there are, $\sum_{i} \sum_{x} \varepsilon \sqrt{m} \cdot \mathbf{s}_{j}(x) \leq \varepsilon \sqrt{m} \cdot 1/\varepsilon^{2} = \sqrt{m}/\varepsilon.$ #### Theorem The expected total communication cost of our two-level sampling algorithm is $O(\sqrt{m}/\varepsilon)$. - **①** Our estimator is $\widehat{\mathbf{s}}(x) = \rho(x) + M/\varepsilon\sqrt{m}$. - The first-level sample size is $pn = 1/\varepsilon^2$. - If $\mathbf{s}_j(x) \geq 1/(\varepsilon \sqrt{m})$ we emit $(x, s_j(x))$. - ② There are $\leq (1/\varepsilon^2)/(1/\varepsilon\sqrt{m}) = \sqrt{m}/\varepsilon$ such keys. - If $s_j(x) < 1/(\varepsilon \sqrt{m})$, we emit (x, null) with probability $\varepsilon \sqrt{m} \cdot \mathbf{s}_i x$. - ① On expectation there are, $\sum_{i} \sum_{x} \varepsilon \sqrt{m} \cdot \mathbf{s}_{i}(x) \leq \varepsilon \sqrt{m} \cdot 1/\varepsilon^{2} = \sqrt{m}/\varepsilon.$ - By (2) and (3), the total number of emitted keys is $O(\sqrt{m}/\varepsilon)$. n_j = records in split j s_i = split j sample frequency vector **1** RandomizedRecordReader j samples $t_j = n_j/\varepsilon^2 n$ records. **9** RandomizedRecordReader j samples $t_j = n_j/\varepsilon^2 n$ records. **9** RandomizedRecordReader j samples $t_i = n_i/\varepsilon^2 n$ records. **1** RandomizedRecordReader j samples $t_j = n_j/\varepsilon^2 n$ records. **9** RandomizedRecordReader j samples $t_i = n_i/\varepsilon^2 n$ records. - **1** RandomizedRecordReader j samples $t_i = n_i/\varepsilon^2 n$ records. - ② If $\mathbf{s}_j(x) > \varepsilon t_j$, the Mapper emits $(x, \mathbf{s}_j(x))$. - **1** RandomizedRecordReader j samples $t_i = n_i/\varepsilon^2 n$ records. - ② If $\mathbf{s}_j(x) > \varepsilon t_j$, the Mapper emits $(x, \mathbf{s}_j(x))$. - RandomizedRecordReader j samples $t_i = n_i/\varepsilon^2 n$ records. - ② If $\mathbf{s}_j(x) > \varepsilon t_j$, the Mapper emits $(x, \mathbf{s}_j(x))$. - RandomizedRecordReader j samples $t_i = n_i/\varepsilon^2 n$ records. - ② If $\mathbf{s}_j(x) > \varepsilon t_j$, the Mapper emits $(x, \mathbf{s}_j(x))$. - **3** Reducer uses $\hat{\mathbf{v}}(x) = \mathbf{s}(x)/p$, our estimator for $\mathbf{v}(x)$. - RandomizedRecordReader j samples $t_i = n_i/\varepsilon^2 n$ records. - ② If $\mathbf{s}_j(x) > \varepsilon t_j$, the Mapper emits $(x, \mathbf{s}_j(x))$. - **3** Reducer uses $\widehat{\mathbf{v}}(x) = \mathbf{s}(x)/p$, our estimator for $\mathbf{v}(x)$. - RandomizedRecordReader j samples $t_i = n_i/\varepsilon^2 n$ records. - ② If $\mathbf{s}_j(x) > \varepsilon t_j$, the Mapper emits $(x, \mathbf{s}_j(x))$. - **3** Reducer uses $\hat{\mathbf{v}}(x) = \mathbf{s}(x)/p$, our estimator for $\mathbf{v}(x)$. - RandomizedRecordReader j samples $t_i = n_i/\varepsilon^2 n$ records. - ② If $\mathbf{s}_j(x) > \varepsilon t_j$, the Mapper emits $(x, \mathbf{s}_j(x))$. - **3** Reducer uses $\hat{\mathbf{v}}(x) = \mathbf{s}(x)/p$, our estimator for $\mathbf{v}(x)$. - RandomizedRecordReader j samples $t_i = n_i/\varepsilon^2 n$ records. - ② If $\mathbf{s}_j(x) > \varepsilon t_j$, the Mapper emits $(x, \mathbf{s}_j(x))$. - 3 Reducer uses $\hat{\mathbf{v}}(x) = \mathbf{s}(x)/p$, our estimator for $\mathbf{v}(x)$.