XML Data Management — An Overview

Swetha Machanavajhala

Database Seminar

Spring 2012 University of Utah

Structured Data

§0.00 | $207| $200] $150] $0.00| $0.90] 897|5720.79] 6.47|16:52] 14.21]30.73| 33.69 ISOTOE0]
{250 | $3.77) $250| $1.00| S$1.40| $0.00| 15.17|573595| 11.2|17.00[14.02|31.02] 3255| $976.43]
150 | $907 $350| $0.00| $0.70| $0.30| 3307|676873| 16.1]17.65| 14.00/31.74| 33.15| 95437
19.00 [$10.47| $050| $150| $1.40| $0.00| 46.87|5815.60| 22.9|18.14| 14.38| 32.52| 34.08 |'$1,022.
250 | $444| $200| $150| $3.15) $000| 3384 5849.44| 136|17.49 14.39) 31.88| 33.58| $1,007.52
50 [$1372| $150| $050| $4.20 $0.90| 4457|5893.11| 263(17.76|1434|32.10] 33.451$1,00366
200 | s472| s250| s0.00| $1.05| s0.00| 37.27|5930.38| 10.3|16.40]15.13|31.62| 33.08| $99262
200 | $156| %000 $0.00| $0.35 50,60_ 10.51 5940,29_ 451 16_.15 15.23| 31.39 31_._51 $945 38
100 | $4.00] $0.00 $1.00| $1.05| $0.00| 14.05/5954.34| 7.05|16.08]15.27|31.35| 29.91| $897.27
350 [$1342] $750| $0.50| $0.70| $0.30| 48.07|6002.11| 25.916.65|15.71/3256| 31.06| $93167
8.00 | $8.23] $400] 5250 $1.05| $0.00| 42.68|6044.79| 23.8]17.44|15.65|33.09| 32.04| $961.09
400 | $7.50] $200| $1.25| $4.20| $030| 4395|6088.44| 19.7|17.12|16.17|33.28] 32.28| §968.37
300 | $678| $250| $250| $1.05| $0.00| 4463|613307| 158)1678|16.94|3372| 32.34| $970.29
200 | $620| $150| $150) $0.70| $0.00| 36.50 616957 | 11.9)15.31|17.55| 3287 31.79| $953.70
100 | $1.26] $0.00] $0.25| $0.35| $0.00| 10.96|6180.53) 2:8615.06]17.95/33.01| 30.95| $928.44]
000 | $383| $150| $2.00| $1.40| $0.90 1863/ 6198.26| 963|14.95| 18.31)|33.26| 30.91 $927 .25
B.50 | $9.74| §300| $0.00] §$1.40 $0.00| 4244)624070| 22.6|15.49|18.44|33.93| 31.78| $953.46]
350 | $9.17| $2.00| $150| $1.40| $120| 4187|6281.37) 188|15.19/18.38|33567| 3281| $984.22]
300 | $9.73| $550| $0.50| $5.25| $0.00| 49.78|6331.15| 24)|1594|18.77|34.71] 33.70 .51',911.02.
400 [$11.00] $300 $200]521.00| 50.00| 7220640335 41)16.99|19.70| 36.68| 34.91| $1,047.20
100 | $7.12| $1.00| $150] $350| 50.00| 40.52|644387] 14.1)17.26|19.65/36.91| 3483 | $1.04493
T T [
1 T
PublD Publisher PubAddress
03-4472822 | Random House 123 4th Street, New York
04-7733903 | Wiley and Sons 45 Lincoln Bivd, Chicago
03-4859223 | O'Beilly Press 77 Boston Ave, Cambridge
03-3920886 | City Lights Books | 99 Market, San Francisco
AuthorlD AuthorMame AuthorBDay
345-28-2038 | Haile Selassie 14-Aug-92
392-48-9965 | Joe Blow 14-Mar-15
454-22-4012 | Sally Hemmings 12-Sept-70
B63-59-1254 | Hannah Arendt 12-Mar-06
ISEN AuthorlD PublD Date Titla
1-34532-482-1 | 345-28-2938 | 034472822 | 1980 Cold Fusion for Dummies
1-38482-995-1 | 2392-48-9965 | 04-7732903 | 1985 Macrame and Straw Tying
2-35921-499-4 | 454-22.4012 | 03-48508223 | 1852 Fluid Dynamics of Aquaducts
1-38278-293-4 663-59-1254 | 03-3920886 1967 Beads, Baskets & Hevolution

Spreadsheets

> Data resides 1n fixed fields within a
record or file.

> Has a fixed schema.

> Contains information stored in columns
and rows.

> Has an 1dentifiable structure understood
by computers.

> Well organized for human readers.

Relational Databases

Unstructured Data

Blogs Word Processing Documents

e =R 7 (B
~ r Q_j_ A || .
Open Save As Quick Print Print || Create | Create
‘ Print Preview || PDF ePUB ‘

Google+ all the way...!

IX—WHO STOLE THE TARTS?

| have just got an invite to join G+. The moment | looked at the email, | was baffled as

The King and Queen of Hearts were seated on their throne when they arrived, with a great crowd
assembled about them—all sorts of little birds and beasts, as well as the whole pack of cards: the
Knave was standing before them, in chains, with a soldier on each side to guard him; and near the
King was the White Rabbit, with a trumpet in one hand and a scroll of parchment in the other. In the
very middle of the court was a table, with a large dish of tarts upon it. "I wish they'd get the trial
done," Alice thought, "and hand 'round the refreshments!"

in what the invite was telling me to do? There was no Join button but a mere informal
statement - and View . Confused,
I clicked on and voila | am able to get a view of the all
new G+ product! | wonder,

— Now is this a worry on privacy or not? | am sure Google would beat
Facebook on privacy but still need to get clear on this!

When | clicked Join Google+, that is available in the form of
and , it asked me to . Now |
really wonder why Google came up with such a concept??? It is a good thing to
integrate all Google products on one platform. But then is it really

— one thing which | dislike. It
might be a good option for time being as a start in expenencing web 3.0 applications.
But in the long run, our picasa web might get unne ily cluttered with too many
photos. And also there is no back up for the photos if this is to be considered in terms

of web 3.0 — you add a photo in G+, it gets added in picasa web. You delete in G+, it

gets deleted in picasa web! Correct me, if | am wrong here. tered to Tom Andreas Mannerud B Edit Mode

> Currently most of the data are unstructured.

> Data has minimal structure like “text” in <Title> vs text in <Body>

> Does not fit well into relational tables.

Why XML?

Current data is in the form of Web Documents.

Data from different sources contain different schema. Cannot model this data using
RDBMS.

- XML is known for its flexible schema
Need to structure this data such that it can be fit into a RDBMS.
Need to handle, store, query and exchange data across different systems and architectures.

- Semi structured / Unstructured data consists of data objects whose attributes are not
known in advance.

- XML contains self-describing tags that can structure these data objects.

- These tags describe “what” data represent — Useful for sharing data between
applications.

- Not easy to query such data using SQL. So we go for pure XML databases.

Example of an XML Document

<Presenters> < [ROOt Element nOde]

<Presenter @name = “Swetha”> < [Attribute Node]

<topic> XML Data Management </topic>

</Presenter>
[Descendants of “Presenter” element

— <Paper>, <topic> and <name>|

<Presenter> =
<paper>
<topic> Map Reduce </topic> < |Element node]

<name> XYZ </name>

</paper>
</Presenter>

</Presenters> [Ancestors of “name” element
— <Paper>, <Presenter> and <Presenters>|]

Basic Model: Tree

Q Presenters

Presenter Presenter

/ Paper

(@name Q O topic

topic name

Swetha Q Q

XML Data
Management

.

Map Reduce XYZ

Representing Primary and Foreign Keys

ID attribute uniquely identifies an element

IDREF attribute refers to other elements identified by ID attributes.

<Presenters>
<Presenter ID = “17>
<paper>
<topic> XML Data Management </topic>
<name> Swetha </name>
</paper>
</Presenter>
<Presenter ID = “2” Friend Of IDREF = “1">
<paper>
<topic> Map Reduce </topic>
<name> XYZ </name>
</paper>
</Presenter>
</Presenters>

Extended Model: Directed Acyclic Graphs

Paper

(@name Q topic Q

sweir @D @

XML Data
Management

Friend of

topic name

Map Reduce

XML Queries — Relational Approach

1. XPath

Based on structural hierarchical navigation through elements and attributes in an XML
document.

Selecting Nodes:
2 commonly used axes:
'/" - Child axis — “A/B”
Select all B-tagged child nodes of A-tagged nodes.
'/I' - Descendant axis — “A//B”

Select all B-tagged descendant nodes of A-tagged nodes

XPath — An Example

/[Presenter/topics — returns all topics under the element node of
“Presenter”

— Path Pattern

/Presenter[(@name = Swetha]/topic — returns the topic of presenter named

Swetha. \

[Predicate]

XPath query with a predicate represents a “Twig Pattern” — Returns
exactly one output node!

XML Queries — Relational Approach (contd.)

2. Xquery
> Xquery for XML same as SQL for databases.

> Designed to query XML files and databases that appear as XML.

Composed Of:
For-Let-Where-Return (FLWR) clauses.

Usage:

> Search Web documents for relevant details.
> Extract information to use 1in a web service.

> Transform XML data to XHTML

XQuery — An Example

Select the topics of presenter named Swetha

We have the following path expression:

//Presenters/Presenter| (@name = Swetha]/topic

FLWR equivalent of the above expression:

For $Sx in [/[Presenters/Presenter/topic
Where $x/name = “Swetha”
Return $x/topic

XML Queries — IR Style Approach

Information Retrieval — Style XML queries are used to query text-dense XML
documents.

Text-dense

Value elements in XML document involve long text.

In the previous examples, value elements are not text-dense.

Why IR-Style approach?

Need to search large texts that total in the order of billions to trillions of words.
Allows Ranked Retrieval — return the best answer to the query among many documents.

Database-style approach using Xpath and Xquery does not support the above.

Boolean 1R Queries

Scenario: A collection of Shakespeare's Plays. Determine which play of Shakespeare
contain the words Brutus AND Caesar NOT Calpurnia.

Linear scan through the text — not a good option for large texts.
We need to index the documents in advance.

Done using Binary term — document Incidence Matrix where Terms are the indexed units.

<+—— Playsin

Antony Julius The Hamlet Othello Macbeth columns
Words and Caesar Tempest
. Cleopatra
1N TOWS Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
Y mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

“Brutus” appears in Play
“Antony and Cleopatra”

Boolean 1R Queries (contd.)

Solution to the query Brutus AND Caesar AND NOT Calpurnia

Consider the vectors for each of the terms.

110100 AND 110111 AND NOT(010000)

— 110100 AND 110111 AND 101111 = 100100

Look up the incidence matrix for the result

Result — Antony and Cleopatra and Hamlet.

DB + IR Queries

Enhances database-style XML queries like Xpath and Xquery with IR-style
characteristics.

Example, add “Contains” function to Xpath query as we have seen previously:

/Presenter[contains (“Databases” , “Swetha”]/ (@name

Returns names of all presenters whose (child or descendant) subelements
contain approximate matches to keywords “Databases” and “Swetha”

Storing & Querying XML Data efficiently...

Approach 1: Relational Approach

Leverage RDBMS by mapping XML to Relational Tables.

Approach 2: Native Approach

Perform navigation, insertion, deletion and update operations using
optimized operators on a tree-structured data model.

1. XML Query Processing: Relational Approach

Main Idea:

Shred XML documents into relational tables.

Transform XML queries to SQL queries for querying the database.

How is this done?

There are many approaches but we will look into 2 basic approaches.

Basic Edge Approach
Binary Approach

Basic Edge Approach

Key Idea:

* Assign an ID to every node of an XML tree.
e Store information about an edge in a row in Edge Table

e Edge Table representation:

Edge Table(Source ID , Ordinal Number , Target ID , Label, Flag , Value)

_ i i

[Source node in [Target node to [Type of
the XML Tree] which the current | target node]
[Order of outgoing node is pointing] '
edge from Source] lue of
[Tag on the edge] [Value o

target node]|

An Example... Step 1

Assigning ID
to every node

“Databases” “Ramakrishnan” “Gerhke” “1999”

Step 2: Edge Table

Source ID 13:;?;22_ Target ID Label Flag Value

1 1 2 Book Ref -

2 1 3 Title Val Databases

2 2 4 Author Val Ramakrishnan
2 3 5 Author Val Gerkhe

2 4 6 Year Val 1999

Step 3: Transform XML query to SQL

SQL Query for “/Book|title = “Databases’]/year”

Select year, Value

From Edge Book, Edge title, Edge year

Where Book.label = 'book’ and
title.label = 'title’' and — —» [Edge Selection]
year.label = 'year' and |
book.Source = 1 and
book.Target = title.source and ——» [Edge Joining]
book.Target = year.source and

title.Value = 'Databases’

Efficiency of Basic Edge Approach

Helps in shredding XML data into relations.

Can query the tables using SQL.

However retrieving data for each edge in edge selection part can
lead to slow processing.

Need to speed up the processing of this section.

Binary Approach

- Pregroups all edges in Edge table by their labels and creates one table
for each distinct label.

> Each label has the following schema:

Label(Source, Target, Flag, Value)

> Example:
Table 1: Book (1, 2, Ref, -)
Table 2: Title (2, 3, Val , Databases) ...

SQL Query using Binary Approach

— SQL Query for “/Book|title = “Databases’]/year”
Select year, Value

From Book, title, year

Where book.Source = 1 and
book.Target = title.source and
book.Target = year.source and

title.Value = 'Databases'

Avoiding the edge selection part speeds up processing!

Trade-off: Creating multiple tables for each label in large XML documents can be

chaotic!

2. XML Query Processing — Native Approach

Why Native approach?

Relational approach does not exhibit optimal query processing
performance.

Storage and query processing tailored for XML data only.

How 1s data stored?

Inverted Lists!

Create an inverted list for each distinct tag in the XML document.

How 1s the location of an element defined?

Represented as (Start, End, Level) numbers.

Inverted List

XML Document Inverted List
1
<Presenters> Each distinct tag is stored in an
3 4 5
<name> Swetha </name> Syntax:
6 7 8 9 10 '
. <topic> XML Data Management </topic> (Start, End , Level) numbers.
</P >
/ et <Presenter> (2,11,1) , (12,22.1)
<Presénter>
<p1a?f) o> <name> (3,5,2) , (18,20,3)

. 15 16 7
<topic> Map Reduce </topic>

] <n1a¥ne> XYZ </n221?ne>
<%paper>

22
</Presenter>

</Presenters>

The Multi-Predicate MerGe JoiN (MPMGJN) Approach

Useful for querying “A//B” or “A/B”

Procedure:

Initialize 2 cursors to point to 2 inverted lists.
Consider <Presenter> list as ListA(start , end)

<name> list as ListB(start , end)

Positions within the lists are compared at each iteration

Presenter (2, 11) ; Name (3, 5)

a.start =2 ,a.end =11 ; b.start =3, b.end =5

Algorithm...

If cursor,. start < cursor,. start Then
advance cursor
Else
temp_cursorp = CUIsOIy;
While(temp_cursor,. start < cursor,.end) // the inner-loop join
Output a tuple solution into join results. Specifically,
Case 1 (For the A/B’ query):
Output (cursor,, temp cursory) if cursor,.level+l = temp_cursor,. level;
Case 2 (For the A//B’ query):
Output (cursor,, temp_cursorp);
advance temp cursor,;

B
Endwhile
advance cursor

B’

It

Native Approach - Efficiency

* Experimental results showed that MPMGIN approach is faster
than current RDBMS join implementations.

e Fach element 1n list B 1s iterated to find which B's are children
of A for executing query A/B. This leads to more processing
time.

e Processing time can be reduced by adopting other native
methods such as Stack based approach.

Open lIssues

> Can RDBMS be efficiently leveraged to query XML data ?

> Would a combined approach of relational databases and native
methods be better?

> How to process queries for large XML data?

Conclusion...

What did we see?

Need for XML

How to map XML to Relational Tables.

Opt for IR-Style queries in case of large texts.

Efficiently processing XML queries.

Relational approach — transform XML to SQL queries.

Native approach — query the data stored in special data structures like inverted lists.

Open Issues.

XML is not a replacement for HTML but an extension to it!!!

Reads that might interest you...

[1] http://vgc.poly.edu/~juliana/pub/xml-data-management-slides.pdf

[2] http://plato.asu.edu/slides/y1.pdf

[3] How to Store and Query XML Data, Silvia Stefanova

[4] Efficiently Querying Large XML Data Repositories: A Survey,
Gang Gou and Rada Chirkova

http://vgc.poly.edu/~juliana/pub/xml-data-management-slides.pdf
http://plato.asu.edu/slides/yi.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

