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Introduction

This manual describes TPIE, a Transparent Parallel I/O Environment, designed to assist programmers
in writing high performance I/O-efficient programs for a variety of platforms.-1-

[1]: LA: Before
distribution
add a note
about block
collection stuff
not documented
yet

This manual, like the whole of the TPIE project, is work in progress. The authors are making it
available in its current state in the hopes that it will be useful, but without any warranty whatsoever.
Refer to the copyright page at the beginning of this manual for full details. Please send comments, bug
reports, etc., to tpie@cs.duke.edu.
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Chapter 1

Overview

<TO BE WRITTEN>(Block oriented part of TPIE)-4-

[4]: LA: Should
we also talk
a little about
memory manager
somewhere in
this chapter?

The-5- data sets involved in some modern applications are too large to fit in the main memory of

[5]: LA:
Rewrite/update
this this sec-
tion, e.g. by
removing parallel
disk stuff and
include newer
references/results

even the most powerful computers and must therefore reside on disk. Thus communication between
internal and external memory, and not actual computation time, often becomes the bottleneck in the
computation. This is due to the huge difference in access time of fast internal memory and slower
external memory such as disks. While typical access time of main memory is measured in nanoseconds,
a typical access time of a disk is on the order of milliseconds [20]. So roughly speaking there is a
factor of a million difference in the access time of internal and external memory. A good example of
an applications involving massive amounts of geometric data is NASA’s Earth Observation System
(EOS) [29, 42], which is expected to manipulate petabytes (thousands of terabytes, or millions of
gigabytes) of data.

The goal of theoretical work in the area of external memory (EM) algorithms (also called I/O
algorithms or out-of-core algorithms) is to eliminate or minimize the I/O bottleneck through better
algorithm design. In order to cope with the high cost of accessing data, efficient EM algorithms exploit
locality in their design. They access a large block of B contiguous data elements at a time and perform
the necessary algorithmic steps on the elements in the block while in the high-speed memory. The
speedup can be considerable. A second effective strategy for EM algorithms is the use of multiple
parallel disks; whenever an input/output operation is performed, D blocks are transferred in parallel
between memory and each of the D disks (one block per disk).

The study of EM algorithm design was effectively started in the late eighties by Aggarwal and
Vitter [6] and an important model for designing I/O algorithms called the Parallel Disk Model (PDM)
was later proposed by Vitter and Shriver [56]. The PDM proposed that a good EM algorithm should
transfer data between main memory and disk in a blocked manner, and should use all of the available
disks concurrently. An optimal EM algorithm under this model minimizes the number of such blocked,
parallel I/O operations it performs.

Subsequently, I/O algorithms for the PDM (mostly with a single disk and single processor) have
been developed for many problem domains, including computational geometry [5, 38, 7, 13, 15, 4, 16,
41, 50, 51, 53, 3, 57, 2, 12, 13, 17, 37, 39, 14], graph algorithms [19, 7, 43, 1, 27, 8, 36, 45, 52], and
string processing [34, 35, 11, 26].

The use of parallel disks has also received some theoretical attention [56, 46, 47, 30, 31]. There are
more complicated models than the PDM, designed to address the I/O bottleneck in different ways.
These include models that address the communication bottleneck between multiple layers in memory
hierarchies []-6-, and models incorporating parallel processors as well as parallel disks [22, 30, 31]. [6]: Add refer-

ence!
Implementations of these theoretical results are scarce. TPIE, a Transparent Parallel I/O En-

vironment, is intended to bridge the gap between the theory and practice of parallel I/O systems.
On one hand, TPIE attempts to provide usable implementations of (sometimes complex) theoreti-
cal algorithms, feeding back that experience to algorithm designers. On the other hand, TPIE also

15
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accommodates the use of heuristics from the practice of I/O algorithms in order to achieve maxi-
mum performance. Other EM implementation work includes benchmarking of certain geometric I/O
algorithms by Chiang [18], experiments with FFT and related algorithms by Cormen et al. [25], imple-
mentation of the buffer tree [7] by Hutchinson et al. [40], and the LEDA-SM system for implementing
data types by Crauser et al.[28]. Surveys of previous work in EM algorithm design and implementation
can be found in [10, 9, 55]

The objectives of the TPIE project include the following:

• Abstract away the details of how I/O is performed so that programmers need only deal with a
simple high level interface.

• Provide a collection of I/O-optimal paradigms for large scale computation that are efficient not
only in theory, but also in practice.

• Be flexible, allowing programmers to specify the functional details of computation taking place
within the supported paradigms. This will allow a wide variety of algorithms to be implemented
within the system.

• Be portable across a variety hardware platforms.

• Be extensible, so that new features can be easily added later.

TPIE is implemented as a set of templated classes and functions in C++. It also includes a small
library and a set of test and sample applications.

1.1 Hardware Platforms

TPIE has been tested on a variety of hardware platforms with a variety of UNIX, Linux, MacOS X,
and Windows operating systems and using several C++ compilers. Among others, TPIE is known to
compile using the gcc compiler versions 2.95, 3.3, 3.4 and 4.0, as well as using the MS Visual Studio
2003 compiler (with large file support - 64bit file offsets).

1.2 Future releases

The current release of TPIE (082902) includes the fundamental routines for solving fundamental
batched problems such as sorting. These routines enable the programmer to write efficient and portable
implementations of algorithms that makes use of fundamental streaming primitives [10, 54]. Relative-7-[7]: LA: Up-

date before
distribution to versions 0.8.02a and 0.9.01a, the current version of TPIE has been updated to improve performance

and a number of bugs have been fixed. This manual has been updated to reflect these changes and
several chapters have been expanded in order to allow the TPIE programmer to tune the system for
best performance on a given platform. A list of the major changes can be found on the TPIE web
page at http://www.cs.duke.edu/TPIE/. Users of TPIE are encouraged to send bug reports, etc.,
to tpie@cs.duke.edu.

The TPIE project is work in progress and several extensions and/or improvements to TPIE are in
progress, including e.g. addition of the distribution sweeping primitive [38], and addition of several
application examples (examples of applications written using TPIE can be found in the papers listed
on the TPIE home page). This manual is also very much work in progress. In fact, the manual
does not (really) cover a recent major extension to TPIE, namely the addition of support for random
access to blocks as opposed to the stream oriented access described in this manual. This addition
facilitate implementation of indexing structures (external data structures). The extension is briefly
described in the reference part of the manual. A major revision of TPIE (that e.g. include several
changes to classes and functions used at user level) is currently underway and the current manual will
be updated and extended ones the revision is done. Users interested in obtaining/testing preliminary
versions TPIE extensions/revisions are encouraged to send a request to tpie@cs.duke.edu.

http://www.cs.duke.edu/TPIE/


Chapter 2

Obtaining and Installing TPIE

[8]: LA: Jan
check/update
this and e.g add
windows stuff.
Add something
about autoconf
tools?

2.1 Licensing

TPIE is available under the terms of the GNU General Public License, version 2.-9- A copy of this license
[9]: LA: Updateappears in Appendix D.

2.2 Where to get TPIE

The latest version of TPIE, 082902, is an alpha test version. It is available through the TPIE WWW
Home Page at URL http://www.cs.duke.edu/TPIE/.

To obtain the TPIE source distribution, follow the pointers from the home page to the distribution
itself, which consists of a gzipped tar file named tpie 082902.tgz. Your Web browser should be
capable of downloading this file to your local machine.

2.3 Prerequisites

To-10- uncompress and unarchive the distribution, you will need either the GNU tar utility, or gzip and [10]: JV: This
whole subsection
is obsolete
and should be
removed.

a tar program. (the GNU version can decompress and untar at the same time with the ’z’ option).
The GNU make utility is also needed. This utility is usually located in /usr/local/bin/make (or is
called gmake).

TPIE is heavily dependent on the compiler used, mainly because of the use of C++ templates. It
currently requires the GNU C++ compiler, gcc, version 2.95 or later (it has also been successfully
compiled with gcc version 2.7.2.1 on some systems). We are currently using gcc, version 2.95 for most
development work on TPIE, and we expect that TPIE will also be compatible with future version of
this compiler. TPIE has also been successfully compiled using egcs, version 2.91.66.

Information on how to obtain and install GNU software is available at URL
http://www.gnu.org/software/software.html.

2.4 Installation

Place tpie 082902.tgz in the directory in which TPIE is to be installed, cd into that directory, and
execute the command

tar xzf tpie 082902.tgz (or gunzip -c tpie 082902.tgz | tar xvf - )

This will produce a directory tpie 082902 with subdirectories include/, lib/, lib/src/, test/,
and doc/.

You should now have a complete TPIE system, consisting of the directories listed in Figure 2.1.

17
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Directory Contents
include/ The TPIE header files.
lib/ The TPIE run-time library. This is relatively small, as most of the

TPIE system remains in the form of templated header files.
lib/src/ The source code for the TPIE run-time library.
test/ A series of test applications designed to verify that TPIE is operat-

ing correctly. This directory also includes the code for the sample
program discussed in Chapter 3.

bin/ Compiled executables from the test directory.
apps/ More advanced applications than those in the test directory. Ex-

ample applications are described in Appendix B.
doc/ Written documentation for TPIE, consisting of the document you

are reading now, in DVI and Postscript(TM) formats..

Figure 2.1: Components of the TPIE distribution.

2.4.1 Configuration for use with gcc

Enter the directory tpie 082902. You must now configure TPIE for your particular system. To do
this, use the command

./ configure

Certain configuration options can be specified to the configure script, but usually these will not
be of interest the first time TPIE is installed. These options are described in Section 7.1.1.

The configuration program will take some time to examine the parameters of your system. Once
it has done so, it will produce the various Makefiles and configuration files required to build TPIE on
your system. When this is done, simply invoke your version of GNU make:

make all

to build the complete TPIE system. This will build the components of TPIE that must be tailored
to your system. This includes: the TPIE run-time library tpie 082902/lib/libtpie.a, the test and
sample programs in directory tpie 082902/test, and certain header files in tpie 082902/include.

2.4.2 Configuration for use with Microsoft Visual Studio .NET 2003

The TPIE directory contains a subdirectory named MSVC60
-11- in which you can find a complete “solution”[11]: JV: This

should be re-
named, but I do
not know how to
rename files in
CVS.

for building TPIE. To compile TPIE, simply open the solution file tpie.sln and have Visual Studio
build all projects (by invoking “build all”).

At this point, we find it helpful to briefly discuss how to add a project to the TPIE solution, and
we will provide an illustrated walk-through that also explains which compilation parameters to set.

Step 1: Creating a new project Let us assume that the name of the project to be created is
MyTestProject. To add an empty project, select “Add Project → New Project. . . ” from the “File”
menu.
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Select “Win32 Console Project” as the type of project to be created and enter the name (in our
example MyTestProject) in the dialog box. Then, click “Ok”.

To finalize creating an empty project, make sure to check the corresponding checkbox in the next
dialog. To do so, first click on “Application Settings”, then select “Empty project”, and confirm by
clicking the “Finish” button.

A new project entry MyTestProject should appear in the solution.

Step 2: Adding a main file To add an empty main file to the project, select “Add New Item. . . ”
from the “File” menu. Select the “C++ File” template from the dialog and enter the file name, e.g.,
main.cpp in the dialog box. Confirm by clicking “Ok”.
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Step 3: Setting paths and compile-time parameters To access the project’s properties dialog,
right-click on the project entry and select the “Properties” entry from the pop-up menu. To futher
facilitate setting the parameters, choose the “All Configurations” configuration from the upper left
pulldown menu located in the properties dialog.

The first step is to specify the include directories. Select the “C/C++” entry in the left column of
the dialog (note that this entry exist only if you have added a (possibly empty) file to the project)
and click on the “General” subentry. Enter “..\..\..\include” in the field “Additional Include
Directories”. We strongly suggest to also turn on warning level 3 (compile-time switch /W3) and to
have the compile check for 64-bit portability issues (compile-time switch /Wp64).

TPIE needs to know about the TPIE library file tpie.lib and its location. This information can
be set by opening the “Linker” entry and accessing its subentries. The “General” subentry provides
the means to set the “Additional Library Directory” to “..\..\..\lib”.

The “Input” subentry provides means to force linking against the TPIE library (by setting “Ad-
ditional Dependencies” to tpie.lib) and for also excluding to link againstlibc (by setting “Ignore
Specific Library” to libc). The latter setting is needed to prevent conflicts between the standard
new-operator and TPIE’s memory management.
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Finally, the output directory, i.e., the directory where the compile will put the executables, has
to be set. To maintain executables for all configurations, this step has to be done seperately for the
“Release” and the “Debug” configuration, and we describe the process only for the latter. First,
select “Debug” from the “Configuration” pulldown menu, and then select the “General” entry from
the left-hand side of the dialog box. In the “Output Directory”, enter “..\..\..\bin\Debug”, and in
the “Intermediate Directory”, enter “.\Debug”. Confirm by clicking “Ok” and analogously proceed
for the “Release” configuration.

You should be ready to proceed with the steps described in the next chapter of this manual.
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Chapter 3

A Taste of TPIE via a Sample
Program

<TO BE WRITTEN>(Block oriented part of TPIE)-12-

[12]: LA: Add
block collection
exampleThis chapter presents a quick look at TPIE via a simple TPIE program. A more detailed TPIE

tutorial appears in Chapter 4.
One of the primary themes in TPIE is to allow a user to specify an I/O efficient computation via

high-level coordination of data movement interspersed with appropriate internal memory computing,
with the low level I/O details being transparent, or “under the hood”. TPIE provides various classes
of “management objects”, (e.g. scan management objects, merge management objects, etc.) that
allow the user to specify sophisticated data movement operations on streams of data in a simple
and straightforward manner. These management object classes are built on top of a simple stream
interface called AMI_STREAM. The tutorial in the next chapter explains how to specify and use such
management object classes.

The sample program below uses simple stream operations-13- to generate a stream of random integers, [13]: DH: we use
only STREAM
member functions
in the sample
program, but
never describe
them in the
tutorial. We
should either
describe them
or illustrate the
power of TPIE
using operation
management ob-
jects (scanning,
merging, sorting,
etc.

scans this stream of integers and partitions them into several distinct streams. The manner in which
I/O operations are handled by TPIE ensures that the program is I/O efficient.

The intent of this example is to illustrate the sort of things involved in TPIE programming; the
typical include files, specifying how much memory the program should use, streaming operations, etc.
The program is given in Section 3.1 and it is discussed in Section 3.2.

3.1 Sample Program

The following sample program can be found in tpie 082902/test/sample pgm.cpp after TPIE has
been installed (see Section 2.4 of this manual for installation instructions).

// This program writes out an AMI_STREAM of random integers of

// user -specified length , and then , based on 7 partitioning elements

// chosen from that stream , partitions that stream into 8 buckets . Each

// of the buckets is implemented as an AMI stream and the program

// prints the size of each bucket at the end.

// The user needs to specify the length of the initial stream of

// integers and the size of the main memory that can be used.

10 #include <portability.h>

#include <versions.h>

VERSION(sample_pgm_cpp ,"$Id: sample_pgm.cpp ,v 1.17 2004/11/18 19:27:14 adanner Exp $");

23
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// Include the file that sets application configuration : It sets what

// kind of BTE (Block Transfer Engine ) to use and where applicable ,

// what should be the size of the logical block (the logical block size

// is a user specified multiple of the physical block size) for a

// stream and so on;

20 #include "app_config.h"

// Include the file that will allow us to use AMI_STREAMs.

#include <ami_stream.h>

// Include timer that will allow us to time the program.

#include <cpu_timer.h>

// Include TPIE’s internal memory sorting routines.

#include <quicksort.h>

30

// Include command line parsing functions

#include "getopts.h"

//set up command line options.

struct options opts [] = {

{1, "length" , "Number of integers to generate" , "l" , 1},

{2, "mem" , "Memory size (in bytes ) to use" , "m" , 1},

{0, NULL , NULL , NULL , 0} // getopts requires last option to be emtpy

};

40

//Tell user what program does and how to use it

//if they do not use proper options.

void print_usage(char * progname ){

printf("\nThis program writes out an AMI_STREAM of random integers of\n"

"user -specified length , and then , based on 7 partitioning\n"

"elements chosen from that stream , partitions that stream\n"

"into 8 buckets . Each of the buckets is implemented as an\n"

"AMI stream and the program prints the size of each bucket\n"

"at the end. All created streams are deleted before exiting\n\n");

50 getopts_usage(progname , opts);

printf("\nSuffixes K, M, and G can be appended to the\n"

"--length and --mem options to mean\n"

"*1024 , *1024*1024 , and *2^30 respectively\n"

"e.g., --length 10M --mem 32M creates roughly 10 million elements\n"

"and can use a maximum of 32 MB of memory\n\n");

printf("Sample usage :\n%s -l 50M -m 32M\n"

"Writes 50 million random integers and partitions them using\n"

"no more than 32 MB of memory\n\n", progname );

}

60

// Convert a string to a number

// Just like atoi or atol , but should also work for 64 bit numbers

// Also supports KMG suffixes (e.g. 2K = 2*1024)

TPIE_OS_OFFSET ascii2offset(char *s){

int i, len , digit;

TPIE_OS_OFFSET multfactor , value;

bool ok;

i=0;

70 len=strlen(s);

value =0;
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if (len < 1){ return 0; }

//look for KMG suffix

switch(s[len -1]){

case ’K’:

case ’k’:

multfactor = 1024;

80 break;

case ’M’:

case ’m’:

multfactor = 1024*1024;

break;

case ’G’:

case ’g’:

multfactor = 1024*1024*1024;

break;

default:

90 multfactor = 1;

break;

}

// convert string to decimal

ok=true;

do {

digit=s[i]-’0’;

if((digit < 0) || ( digit > 9)){ ok = false ;} //stop on non -digit

else{value = 10* value+digit;}

100 i++;

} while((i<len ) && ok);

return value*multfactor;

}

void get_app_info(int argc , char ** argv ,

TPIE_OS_OFFSET & len , TPIE_OS_OFFSET & mem){

int optidx , opts_set =0;

110 char* optarg;

if(argc <5){

//not enough options specified

print_usage(argv [0]);

exit (1);

}

while(optidx=getopts(argc , argv , opts , & optarg )){

if(optidx ==-1){

120 printf("Could not allocate space for arguments . Exiting ...\n");

exit (1);

}

switch(optidx ){

case 1:

len=ascii2offset(optarg );

opts_set=opts_set | 1;

break;

case 2:

mem=ascii2offset(optarg );

130 opts_set=opts_set | 2;

break;
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default:

printf("Unhandled option - %d\n",optidx );

break;

}//end switch

}//end while

if(opts_set != 3){

printf("Both length and memory must be specified\n\n");

print_usage(argv [0]);

140 exit (1);

}

}

// The user needs to specify the length of the initial stream of

// integers and the size of the main memory that can be used.

int main(int argc , char *argv []) {

TPIE_OS_OFFSET Gen_Stream_Length;

TPIE_OS_OFFSET test_mm_size;

150 //get length , mem size from command line

get_app_info(argc , argv , Gen_Stream_Length , test_mm_size );

cout << "Writing " << Gen_Stream_Length << " random integers\n"

<< "using a maximum " << test_mm_size << " bytes of memory\n"<<endl;

//Tell the memory manager to abort if the allocated

// internal memory exceeds the specified amount

MM_manager.enforce_memory_limit ();

160 //Set the size of memory the application is allowed to use

MM_manager.set_memory_limit(test_mm_size );

//the source stream of ints

AMI_STREAM <int > source;

//the 8 bucket streams of ints

AMI_STREAM <int > buckets [8];

// ************************************************************

170 // Generate the stream of randon integers

AMI_err ae;

int src_int;

TPIE_OS_OFFSET i;

cout << "Writing random stream ..."<<endl;

for (i = 0; i < Gen_Stream_Length ; i++) {

// Generate a random int.

src_int = TPIE_OS_RANDOM ();

180 // Write out the integer into the AMI_STREAM source using

// the AMI_STREAM member function write_item ()

if ((ae = source.write_item(src_int )) != AMI_ERROR_NO_ERROR ) {

cout << "AMI_ERROR " << ae << " during source.write_item ()" << endl;

exit (1);

}

}

// Print stream length

cout << "source stream is of length " << source.stream_len () << endl;

190
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// ************************************************************

// Pick the first 7 integers in source stream as partitioning elements

// ( pivots)

// Seek to the beginning of the AMI_STREAM source.

if ((ae = source.seek (0))!= AMI_ERROR_NO_ERROR ) {

cout << "AMI_ERROR " << ae << " during source.seek()" << endl;

exit (1);

}

200

// Read first 7 integers and fill in the partitioning array.

int partitioning [8];

int * read_ptr;

for (i = 0; i < 7; i++) {

// Obtain a pointer to the next integer in AMI_STREAM source

// using the member function read_item ().

if ((ae = source.read_item (& read_ptr )) != AMI_ERROR_NO_ERROR ) {

210 cout << "AMI_ERROR " << ae << " during source.read_item ()" << endl;

exit (1);

}

// Copy the current source integer into the partitioning element array.

partitioning[i]= * read_ptr;

}

cout << "Loaded partitioning array" << endl;

// ************************************************************

220 // Sort partitioning array

quick_sort_op ((int *) partitioning ,7);

cout << "Sorted partitioning array" << endl;

partitioning [7] = INT_MAX;

// ************************************************************

// PARTITION INTS OF source INTO THE buckets USING partitioning ELEMENTS

// Binary search variables.

230 int u, v, l, j;

cout << "Partitioning elements into 8 buckets ..." <<endl;

// Start the timer.

cpu_timer timer;

timer.start ();

// Seek to the beginning of the AMI_STREAM source.

if ((ae = source.seek (0))!= AMI_ERROR_NO_ERROR ) {

cout << "AMI_ERROR " << ae << " during source.seek()" << endl;

240 exit (1);

}

// Scan source stream distributing the integers in the approriate

// buckets

for (i = 0; i < Gen_Stream_Length ; i++) {

// Obtain a pointer to the next integer in AMI_STREAM source

// using the member function read_item ()

if ((ae = source.read_item (& read_ptr )) != AMI_ERROR_NO_ERROR ) {
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250 cout << "AMI_ERROR " << ae << " during source.read_item ()" << endl;

exit (1);

}

v = * read_ptr;

// Using a binary search , find the stream index l to which v

// should be assigned.

l = 0;

u = 7;

while (u >= l) {

260 j = (l+u)>>1;

if (v < partitioning[j]) {

u = j-1;

} else {

l = j+1;

}

}

// Write out the int into the AMI_STREAM buckets[l] using

// the AMI_STREAM member function write_item ().

270 if ((ae = buckets[l]. write_item(v)) != AMI_ERROR_NO_ERROR ) {

cout << "AMI_ERROR " << ae << " during buckets[" << l

<< "]. write_item ()" << endl;

exit (1);

}

}

// Stop the timer.

timer.stop ();

cout << "Time taken to partition is " << timer.wall_time ()

280 << " seconds" << endl;

// Delete the file corresponding to the source stream when source

// stream gets destructed (this is the default , so this call is not

// needed ).

source.persist(PERSIST_DELETE );

// Print the lengths of the bucket streams.

for (i = 0; i < 8; i++) {

cout << "Length of bucket " << i << " is "

290 << buckets[i]. stream_len () << endl;

}

cout << "Program ran successfully" << endl;

return 0;

}

Listing 3.1: Code taken from tpie 082902/test/sample pgm.cpp

3.2 Discussion of Sample Program

In-14- this section we discuss the simple C++ sample program shown in the previous section. The file app_[14]: LA: Jan
do we need
something about
portability here?

config.h is the TPIE configuration file. TPIE’s AMI_STREAM stream I/O operations are carried out
transparently by one of three possible block transfer engines (BTEs). Briefly, the file app_config.h
chooses a specific BTE, and the amount of internal memory used as buffer space for each AMI_STREAM.
The app_config.h configuration file is further discussed in Section 7 which also contains a discussion
of how to choose a BTE for a given platform. The file ami.h contains TPIE’s templated classes
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and functions, while the file quicksort.h contains various quicksort polymorphs. Note that each
AMI_STREAM corresponds to an underlying Unix file.

The program illustrates the use of the basic AMI_STREAM member functions seek(), read_item(),
write_item(), and persist(). Successful execution of these member functions is indicated by a
return value of AMI_ERROR_NO_ERROR. The program distributes a randomly generated source stream
of integers into eight bucket streams, and then displays the time taken by this operation and the
size of each of the eight output buckets. The randomly generated stream is deleted upon comple-
tion of the program (source.persist(PERSIST_DELETE)), while the bucket streams are saved (made
persistent with buckets[i].persist(PERSIST_PERSISTENT)) in the default scratch directory /var/
tmp/. The default location for the scratch files can be changed by setting the environment variable
AMI_SINGLE_DEVICE appropriately (see Section 7.1.3).

TPIE can run with a user-specified amount of internal memory (although typically, about 4 MB is
required as a minimum for most simple applications) or it can run with virtual memory like an ordinary
non-TPIE application. The former mode is invoked by calling MM_manager.ignore_memory_limit(),
and the latter by calling MM_manager.enforce_memory_limit().

In the sample program, we call MM_manager.enforce_memory_limit(), which means that the
program will abort if the allocated internal memory exceeds the specified amount. The successive
function call MM_manager.set_memory_limit(test_mm_size) tells TPIE’s internal memory manager
MM_manager to prevent the program’s internal memory usage from exceeding test_mm_size bytes
(test_mm_size is the second input argument to our program). When MM_manager.enforce_memory_limit()
is used, it is the responsibility of the user to inform MM_manager via set_memory_limit() of the de-
sired memory limit. For example, one might set this value to the amount of physical main memory
minus the main memory used by the operating system and other programs running on the machine.

The sample program can be compiled as follows: (recall that Section 2.3 discussed the version of
GNU C++ required):

cd test
make sample_pgm

By way of example, the program can be run with 1000000 random integers and 5000000 bytes of
main memory as follows:

cd ../ bin
sample_pgm 1000000 5000000
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Chapter 4

Tutorial

<TO BE WRITTEN>(Block oriented part of TPIE)

4.1 Introduction

This tutorial is designed to introduce new users to the TPIE system. It introduces the fundamental
paradigms of computation that TPIE supports, giving source code examples of each. The majority
of the code presented in the tutorial is available in the test applications directory of the distribution,
tpie 082902/test/.

For the sake of brevity, much of the code presented in this tutorial is incomplete, in the sense that
necessary header files and macros are omitted. Details concerning how to write your own complete
TPIE code is presented at the end of the tutorial in Section 4.12 (see also Sections 3 and 7.2.1)-15-

[15]: LA: Maybe
we should talk
briefly about
AMI, BTE,
MM somewhere
around here -
we talk about
main memory
issues in merging
and compiling
sections.

TPIE is written in the C++ language, and this manual assumes that the reader is familiar with
C++. If you would like to use TPIE but are not familiar with the C++ language, a number of good
books are available.-16- If you are familiar with C, [48] is a good place to start. A more basic, but

[16]: LA: Up-
date?

very comprehensive book is [32], and [44] is an excellent source of information on intermediate and
advanced C++. Finally, [33] is the definitive book on C++, though not necessarily the best place for
new programmers to start.

Familiarity with the theoretical results on I/O-efficient algorithms is not necessary in order to use
TPIE. However, this tutorial (and the rest of this manual) may be easier to follow with some general
background information such as how a theoretically optimal external (merge) sort algorithm works.
Good references are [?, ?]. Some of the basic concepts required for understanding the discussion of
I/O issues and external memory algorithms in this manual are outlined in Section 4.2.

4.2 Basic Concepts

Roughly speaking there is a factor of a million difference in the access time of internal and external
memory. In order to cope with the high cost of accessing externally-stored data, efficient EM algo-
rithms exploit locality in their design. They access a large block of B contiguous data elements at
a time and perform the necessary algorithmic steps on the elements in the block while it is in the
high-speed memory. The speedup can be considerable. A second effective strategy for EM algorithms
is the use of multiple parallel disks; whenever an input/output operation is performed, D blocks are
transferred in parallel between memory and each of the D disks (one block per disk).

The performance of an EM algorithm on a given set of data is affected directly by how much
internal memory is available for its use. We use M to denote the number of application data elements
that fit into the internal memory available to the algorithm, and m = M/B denotes the number of
blocks that fit into the available internal memory. Such a block is more precisely called a logical block

31
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because it may be a different size (usually larger) than either the physical block size or the system
block size. We will reserve the term physical block size to mean the block size used by a disk controller
to communicate with a physical disk, and the system block size will be the size of block used within
the operating system for I/O operations on disk devices. In EM algorithms we will assume that the
logical block size is a multiple of the system block size. In TPIE, for instance, this factor is currently
set to 32 if not changed by the user.

TPIE is implemented as a set of templated classes and functions in C++, and employs an object-
oriented abstraction to EM computation. TPIE provides C++ templates of various optimal EM com-
putation patterns or paradigms. Examples of such paradigms are the EM algorithms for merge
sorting, distribution sweeping, time forward processing, etc. (see [55]). In a TPIE program, the
application programmer provides application-specific details of the specific computation paradigm
used, such as C++ object definitions of the application data records, and code for application-specific
sub-computations at critical points in the computation pattern, but TPIE provides the application-
independent parts of the pattern.

The definition of an application data element (or record) is provided by the user as a class definition.
Such a class definition is typically used as a template parameter in a TPIE code fragment (e.g. a
templated function). Other template parameters may be instantiated by choices the user makes
between algorithm options (e.g. between sorting variants) or between operating system interfaces (e.g.
the choice of BTE)-17- for instance. These user selections allow a pattern replesented by a templated[17]: LA: Does

reader know what
BTE is? C++ code fragment to be instantiated as an actual piece of executable code, tailored to the data types

required by the user’s application.
Application-dependent sub-computations (e.g. a comparison object used to determine the order

of two application data elements during a sort) are typically structured as methods of an operation
management object . TPIE dictates the names and required functionality of each method of an op-
eration management object, but the details of the computation performed by a specific method are
application-specific and thus are the responsibility of the application programmer.

4.3 Streams

In-18- TPIE, a stream is an ordered collection of objects of a particular type, stored in external memory,[18]: LA: some-
thing in this sec-
tion about persis-
tence, read/write
primitives?

and accessed in sequential order. Streams can be thought of as fundamental TPIE objects which map
volatile, typed application data elements in internal memory to persistent, untyped data elements in
external memory, and vice-versa. Streams are read and written like files in Unix and support a number
of primitive file-like operations such as read(), write(), truncate(), etc. TPIE also supports the
concept of a substream, which permits a contiguous subset of the elements in a stream to accessed
sequentially. Multiple substreams can be created on streams and even on other substreams.

Various paradigms of external memory computation are supported on streams (and substreams)
in TPIE, including scanning (see Section 4.5), merging (see Section 4.6), and sorting (see Section
4.8). TPIE reduces the programming effort required to perform an external sort, merge, etc., by
providing the high level flow of control within each paradigm, and therefore structuring this part of
the computation so that it will be I/O efficient. The programmer is left with the task of providing
what amount to “event handlers”, specifying the application-specific details of the computation. For
instance in sorting, the programmer defines a stream of input data, a comparison object (the event
handler for the task of comparing two application data elements), and an output stream for the results.
In TPIE terminology, the collection of necessary event handlers for a particular EM computational
paradigm is contained in an operation management object . Operation management objects differ
according to which paradigm is used. See Section 4.5 for a discussion of scan management objects,
Section 4.6 for a discussion of merge management objects, and Section 4.8 for a discussion of sort
management objects.-19-

[19]: LA: We
don’t have a
sort management
object anymore
do we?! AD: We
do, but it is never
used directly.

Creating a stream of objects in TPIE is very much like creating any other object in C++. The only
difference is that the data placed in the stream is stored in external memory (on disk). For example,
to create an (empty) stream stream0 capable of storing integers, we could use the following:

AMI_STREAM <int > stream0;
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Alternatively, the following creates a pointer p to an empty stream of applrec objects:

AMI_STREAM <applrec > *p = new AMI_STREAM <applrec >;

The AMI prefix in AMI_STREAM stands for Access Method Interface. This layer of TPIE contains
the services and functionality which a normal user of TPIE will require. (AMI_STREAM is actually a
compile-time macro that evaluates to the name of a particular implementation of streams, but for
now it is safe to assume that it is simply a C++ class).

The AMI_STREAM constructor does not actually put anything into the stream; it simply creates the
necessary data structures to keep track of the contents of the stream when data is actually put into
it. One basic way of putting data into a stream is via AMI_scan(), which is described in Section 4.5.

4.4 Operation Management Objects

TPIE-20- provides a structure for performing a number of basic operations, such as scanning a stream of [20]: LA: This
first paragraph
seems to be
repeat and the
rest I don’t know
why is there.
Remove whole
section?

items, merging streams of items, sorting a stream of items, etc. Much of the application-independent
work in these operations is handled by TPIE. The TPIE user, however, must provide the code for
the application-dependent aspects of these operations via a TPIE operation management object. An
operation management object in TPIE is an object which contains member functions to control the
critical, application-varying aspects of operations such as scanning, merging, and sorting. TPIE ex-
pects certain named methods of the object to be present, depending on the operation being performed.

The operation management object for scanning (called a “scan management object”), for instance,
must provide methods initialize (for initializing any user-required data structures of the scan), and
operate (for performing whatever steps are needed as each data item is encountered in the scan). See
Section 4.5 below for more information.

In the example of merging, the rules for “combining” elements of the merge operation are nec-
essarily application dependent. TPIE expects a “merge management object” to contain members
initialize and operate, as well as several others. Detailed requirements for merge management
objects are described in Section 4.6.

4.5 Scanning

The simplest paradigm available in TPIE is scanning. Scanning can be used to produce streams,
examine the contents of streams, or transform streams.

4.5.1 Basic Scanning

One basic thing a scan can do is write a series of objects to a stream. In the following example, we
create a stream of integers consisting of the first 10000 natural numbers.

class scan_count : AMI_scan_object {

private:

int maximum;

int nextint;

public:

scan_count(int max ) : maximum(max), ii (0) {};

AMI_err initialize(void)

{

nextint = 0;

return AMI_ERROR_NO_ERROR;

};

AMI_err operate(int *out1 , AMI_SCAN_FLAG *sf)

{

*out1 = ++ nextint;
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return (*sf = ( nextint <= maximum )) ? AMI_SCAN_CONTINUE :

AMI_SCAN_DONE;

};

};

scan_count sc (10000);

AMI_STREAM <int > amis0;

void f()

{

AMI_scan (&sc , & amis0 );

}

The object sc is called a scan management object. It has two member functions, initialize() and
operate(), which TPIE calls when asked to perform a scan. The first member function, initialize()
is called at the beginning of the scan. TPIE expects that a call to this member function will cause
the object to initialize any internal state it may maintain in preparation for performing a scan. The
second member function, operate(), is called repeatedly during the scan to create objects to go
into the output stream. operate() sets the flag *sf to indicate whether it generated output or not.
TPIE will call operate() as long as operate() returns AMI_SCAN_CONTINUE. The normal way for
operate() to signal that it is finished is to return the value AMI_SCAN_DONE.

AMI_scan behaves as the following pseudo-code:

AMI_err AMI_scan(scan_count &sc , AMI_STREAM <int > * pamis)

{

int nextint;

AMI_err ae;

AMI_SCAN_FLAG sf;

sc.initialize ();

while ((ae = sc.operate (&nextint , &sf )) == AMI_SCAN_CONTINUE ) {

if (sf) {

Write nextint to * pamis;

}

}

if (ae != AMI_SCAN_DONE ) {

Handle error conditions;

}

return AMI_ERROR_NO_ERROR;

}

Thus, after the function f() in the original example code returns, the stream amis0 will contain
the integers from 1 to 10000 in increasing order.

One of the simplest things we can do with a stream of objects is scan it in order to transform it in
some way. As an example, suppose we wanted to square every integer in the stream amis0. We could
do so using the following code:

class scan_square : AMI_scan_object {

public:

AMI_err initialize(void)

{

return AMI_ERROR_NO_ERROR;

};

AMI_err operate(const int &in , AMI_SCAN_FLAG *sfin ,

int *out , AMI_SCAN_FLAG *sfout)

{

if (* sfout = * sfin ) {
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*out = in * in;

return AMI_SCAN_CONTINUE;

} else {

return AMI_SCAN_DONE;

}

};

};

scan_square ss;

AMI_STREAM <int > amis1;

void g()

{

AMI_scan (&amis0 , &ss , & amis1 );

}

Notice that the call to AMI_scan() in g() differs from the one we used in f() in that it takes two
stream pointers and a scan management object. By convention, the stream amis0 is an input stream,
because it appears before the scan management object ss in the argument list. By similar convention,
amis1 is an output stream. Because the call to AMI_scan has one input stream and one output stream,
TPIE expects the operate() member function of ss to have one input argument (which is called in
in the example above) and one output argument (called out in the example above). Note that the
operate() member function of the class square_scan also takes two pointers to flags, one for input
(sfin) and one for output (sfout). *sfin is set by TPIE to indicate that there is more input to
be processed. *sfout is set by the scan management object to indicate when output is generated.
A scan management object must contain an operate() member function that takes the appropriate
types and number of arguments for the invocation of AMI_scan() that uses it, or else a compile-time
error will be generated.

AMI_scan with one input stream and one output stream behaves as the following pseudo-code:

AMI_err AMI_scan(AMI_STREAM <int > * instream , scan_square &ss ,

AMI_STREAM <int > * outstream)

{

int in , out;

AMI_err ae;

AMI_SCAN_FLAG sfin , sfout;

sc.initialize ();

while (1) {

{

Read in from * instream;

sfin = ( read succeeded );

}

if ((ae = ss.operate(in , &sfin , &out , &sf )) ==

AMI_SCAN_CONTINUE ) {

if (sfout ) {

Write out to * outstream;

}

if (ae == AMI_SCAN_DONE ) {

return AMI_ERROR_NO_ERROR;

}

if (ae != AMI_SCAN_CONTINUE ) {

Handle error conditions;

}

}

}

}
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AMI_scan() can operate on up to four input streams and four output streams. Here is an example
that takes two input streams of values, x and y, and produces four output streams, one consisting of
the running sum of the x values, one consisting of the running sum of the y values, one consisting of
the running sum of the squares of the x values, and one consisting of the running sum of the squares
of the y values.

class scan_sum : AMI_scan_object {

private:

double sumx , sumx2 , sumy , sumy2;

public:

AMI_err initialize(void)

{

sumx = sumy = sumx2 = sumy2 = 0.0;

return AMI_ERROR_NO_ERROR;

};

AMI_err operate(const double &x, const double &y,

AMI_SCAN_FLAG *sfin ,

double *sx , double *sy,

double *sx2 , double *sy2 ,

AMI_SCAN_FLAG * sfout)

{

if (sfout [0] = sfout [2] = sfin [0]) {

*sx = ( sumx += x);

*sx2 = ( sumx2 += x * x);

}

if (sfout [1] = sfout [3] = sfin [1]) {

*sy = ( sumx += y);

*sy2 = ( sumy2 += y * y);

}

return (sfin [0] || sfin [1]) ? AMI_SCAN_CONTINUE : AMI_SCAN_DONE;

};

};

AMI_STREAM <double > xstream , ystream;

AMI_STREAM <double > sum_xstream , sum_ystream , sum_x2stream , sum_y2stream;

scan_sum ss;

void h()

{

AMI_scan (&xstream , & ystream , &ss,

&sum_xstream , & sum_ystream , & sum_x2stream , & sum_y2stream );

}

4.5.2 ASCII Input/Output

TPIE provides a number of predefined scan management objects. Among the most useful are instances
of the template classes cxx_ostream_scan<T> and cxx_ostream_scan<T>, which are used for reading
ASCII data into streams and writing the contents of streams in ASCII respectively. This is done
in conjunction with the iostream facilities provided in the standard C++ library. Any class T for
which the operators ostream &operator<<(ostream &s, T &t) and istream &operator>>(T &t)
are defined can be used with this mechanism.

As an example, suppose we have an ASCII file called input_nums.txt containing one integer per
line, such as

17
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289
4195835
3145727
.
.
.

The following code copies this file into a TPIE stream of integers, squares each one, and writes
the results to the file output_nums.txt.

void f()

{

ifstream in_ascii("input_nums.txt");

ofstream out_ascii("output_nums.txt");

cxx_istream_scan <int > in_scan(in_ascii );

cxx_ostream_scan <int > out_scan(out_ascii );

AMI_STREAM <int > in_ami , out_ami;

scan_square ss;

// Read them.

AMI_scan (&in_scan , & in_ami );

// Square them.

AMI_scan (&in_ami , &ss , & out_scan );

// Write them.

AMI_scan (&out_ami , out_scan );

}

In order to read from an ASCII input file using the scan management object in_scan, AMI_scan()
repeatedly calls in_scan->operate(), just as it would for any scan management object. Each time
in_scan->operate() is called, it uses the >> operator to read a single integer from the input file.
When the input file is exhausted, in_scan->operate() returns AMI_SCAN_DONE, and AMI_scan()
returns to its caller. The behavior of out_scan is similar to that of in_scan, except that it writes to
a file instead of reading from one.

4.5.3 Multi-Type Scanning

In all of the examples presented up to this point, scanning has been done on streams of objects that
are all of the same type. AMI_scan() is not limited to such scans, however. In the following example,
we have a scan management class that takes two streams of doubles and returns a stream of complex
numbers.

class complex {

public:

complex(double real_part , imaginary_part );

...

};

class scan_build_complex : AMI_scan_object {

public:

AMI_err initialize(void ) {};

AMI_err operate(const double &r, const double &i,

AMI_SCAN_FLAG *sfin ,

complex *out , AMI_SCAN_FLAG * sfout)

{

if (* sfout = ( sfin [0] || sfin [1])) {

*out = complex ((sfin [0] ? r : 0.0) , ( sfin [1] ? i : 0.0));
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return AMI_SCAN_CONTINUE;

} else {

return AMI_SCAN_DONE;

}

};

};

class complex {

public:

complex(double real_part , imaginary_part );

double re(void);

double im(void);

...

};

int compare_re(const complex &c1 , const complex &c2)

{

return (c1.re() < c2.re()) ? -1 :

((c1.re() > c2.re ()) ? 1 : 0);

}

int compare_im(const complex &c1 , const complex &c2)

{

return (c1.im() < c2.im()) ? -1 :

((c1.im() > c2.im ()) ? 1 : 0);

}

AMI_STREAM <complex > instream;

AMI_STREAM <complex > outstream_re;

AMI_STREAM <complex > outstream_im;

void f()

{

AMI_sort (&instream , & outstream_re , compare_re );

AMI_sort (&instream , & outstream_im , compare_im );

}

4.5.4 Out of Step Scanning

In all the examples up to this point, the operate() member function of a scan management object has
been called exactly once for each object in the input stream(s). In this section, we discuss the concept
of out of step scanning, which involves using a scan management object to reject certain inputs and
ask that they be resubmitted in subsequent calls to the operate() member function.

Suppose we have two streams of integers, each of which is sorted in ascending order. We would
like to merge the two streams into a single output stream consisting of all the integers in the two
input streams, in sorted order. In order to do this with a scan, we must have the ability to look at the
next integer from each stream, choose the smaller of the two and write it to the output stream, and
then ask for the next number from the stream from which it was taken. There is a simple mechanism
for doing this. The same flags that TPIE uses to tell the scan management object which inputs are
available can also be used by the scan management object to indicate which inputs were used (i.e.
“consumed”) and which should be presented again.

Consider the following example of a scan management object class which performs this sort of
binary merge:

class scan_binary_merge : AMI_scan_object {

public:

AMI_err initialize(void ) {};
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AMI_err operate(const int &in0 , const int &in1 , AMI_SCAN_FLAG *sfin ,

int *out , AMI_SCAN_FLAG *sfout)

{

if (sfin [0] && sfin [1]) {

if (in0 < in1 ) {

sfin [1] = false;

*out = in0;

} else {

sfin [0] = false;

*out = in1;

}

} else if (! sfin [0]) {

if (! sfin [1]) {

*sfout = false;

return AMI_SCAN_DONE;

} else {

*out = in1;

}

} else {

*out = in0;

}

*sfout = 1;

return AMI_SCAN_CONTINUE;

}

};

In the operate method, we first check that both inputs are valid by looking at the flags pointed
to by sfin. If both are valid, then we select the smaller of the inputs and copy it to the output. We
then clear the other input flag to let TPIE know that we did not use that input, but we will need it
later and it should be resubmitted on the next call to operate. The remainder of the function handles
the cases when one of more of the input streams are empty.

4.6 Merging

While AMI_scan() is limited to operate on up to four input and four output streams, theoretically
efficient external memory algorithms often operate on eight or more streams, the exact number de-
pending on the amount of internal memory available. An especially common operation is merging of
a large number of input streams into one output stream.1 An example of the this is external merge
sorting. The scan_binary_merge scan management object presented in the previous section could be
used recursively to implement a merge sorting algorithm. We could simply divide the input stream
into sub-streams small enough to fit into main memory, read each sub-stream into memory and sort
it, and then merge pairs of streams, then pairs of merged pairs of streams, and so on, until we had
merged all the input back into one completely sorted stream. While this approach would correctly
sort the input, it would not be nearly as efficient as possible on most machines. The reason is that we
typically have enough main memory available to merge many more streams together at one time [6].

TPIE therefore provides the function AMI_merge() which, depending on the main memory avail-
able, merges a variable number of input streams into an output stream in a single scan of the input
streams. As in the case of AMI_scan, the application-specific details of how the merge is performed
are specified via an operation management object (in this case, a merge management object) with
member functions initialize() and operate().2-21- [21]: LA: The

AMI merge
stuff should be
rewritten with
some examples!
(should we also
write more about
the sorted run
version? - the
footnote)

1Note that “merge” here means the process of reading the content of a number of input streams in some interleaved
order producing an output stream. Merging a number of sorted input streams into a sorted output stream is a special
(but common) case of merging.

2ami_merge also has three specialized polymorphs for merging according to a total order on the data elements. These
specialized polymorphs do not use a merge management object. Refer to Section 5.7.
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However, often, as in the merge sort example, one wants to merge more streams than memory
constraints allow in a single pass, and so the merge may have to be done in several recursive stages.

-22- Since it can be cumbersome to compute precisely how many streams can be merged in one pass —[22]: LA: Here
we start talking
about memory
constraints -
there should be a
general intro to
blocks and stuff
somewhere.

one must keep track of the space needed for input blocks from each of the streams being merged, as
well as the overhead of any data structures needed for the merge — TPIE provides a mechanism that
does most of this work for us. The function AMI_partition_and_merge() divides an input stream
into “sub-streams” just small enough to fit into main memory, operates on each in main memory,
then merges them back into a single output stream, using intermediate streams if memory constraints
dictate. As in the case of AMI_merge(), the functional details of AMI_partition_and_merge() are
specified via a merge management object. In fact the merge management object for AMI_merge() is
a special case of the one for AMI_partition_and_merge().-23- The following example illustrates the use[23]: LA: True?

of AMI_partition_and_merge():

class my_merger : AMI_merge_base {

public:

AMI_err initialize(arity_t arity , const T * const *in,

AMI_merge_flag * taken_flags ,

int & taken_index );

AMI_err operate(const T * const *in , AMI_merge_flag * taken_flags ,

int & taken_index , T *out);

AMI_err main_mem_operate(T* mm_stream , size_t len);

size_t space_usage_overhead(void);

size_t space_usage_per_stream(void);

};

AMI_STREAM <T> instream , outstream;

void f()

{

my_merger mm;

AMI_partition_and_merge (&instream , & outstream , &mm);

}

The member functions of the merge management object mm are as follows:

initialize(): Tells the object how many streams TPIE has chosen to-24- (arity) and what the[24]: LA: ?

first item from each stream is (in). The variables taken_flags and taken_index provide two
mechanisms for the merge manager to tell TPIE what objects it took from the input streams.
These are discussed in more detail in the context of a merge sorting example in Section 4.6.1.

operate(): Just as in scanning, this member function is called repeatedly to process input objects.

main_mem_operate(): Called by TPIE to operate on an array of data in main memory.

space_usage_overhead(): Called by TPIE prior to initialization to assess how much main memory
this object will use.-25-

[25]: LA: Do
we really want
these in the
tutorial? Prob-
ably, but then
the issue should
be discussed
more/better

space_usage_per_item(): Called by TPIE prior to initialization to assess how much main memory
may be used per input stream. Merge management objects are allowed to use main memory
space linear in the number of input streams.

The following pseudo-code describes the operation of AMI_partition_and_merge(). Note that
for simplicity of presentation, boundary conditions are not covered.

AMI_err AMI_partition_and_merge(instream , outstream , mm)

{

max_ss = max # of items that can fit in main memory;

Partition instream into num_substreams substreams of size max_ss;
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Foreach substream[i] {

Read substream[i] into main memory;

mm ->main_mem_operate(substream[i]);

Write substream[i];

}

Call mm->space_usage_overhead () and mm ->space_usage_per_stream;

Compute merge_arity ; // Maximum # of streams we can merge.

while ( num_substreams > 1) {

for (i = 0; i < num_substreams ; i += merge_arity ) {

Merge substream[i] .. substream[i+merge_arity -1];

}

num_substreams /= merge_arity;

max_ss *= merge_arity;

}

Write single remaining substream to outstream;

return AMI_ERROR_NO_ERROR;

}

4.6.1 Implementing Mergesort: An Extended Example

In-26-the following we give an example of the implementation and use of a merge management object [26]: LA: Should
we use another
example?for merge sorting integers. We use merge sorting as a non-trivial example to illustrate the interfaces

and mechanisms involved in using a merge management object. However, the reader should refer to
Section 4.8 on sorting for a more straightforward and efficient way to sort with TPIE.

First, we declare the class:-27-
[27]: LA: We
should prob-
ably change
AMI merge base
to
AMI merge object
at some point

class MergeMgr : public AMI_merge_base <int > {

private:

arity_t input_arity;

pqueue *pq;

public:

MergeMgr (void);

virtual ~ MergeMgr (void);

AMI_err initialize ( arity_t arity , const int * const *in,

AMI_merge_flag * taken_flags , int & taken_index );

AMI_err operate (const int * const *in,

AMI_merge_flag * taken_flags ,

int & taken_index , int *out);

AMI_err main_mem_operate (int* mm_stream , size_t len);

size_t space_usage_overhead (void);

size_t space_usage_per_stream(void);

};

In addition to the standard class members for a merge management object, we have the following:

input_arity: The number of input streams the merge management object must handle.

pq: A priority queue into which items will be placed.

MergeMgr(): A constructor.

~MergeMgr(): A destructor.

Construction and destruction are fairly straightforward. At construction time, we have no priority
queue because we do not yet know how big the priority queue should be. pq will be set up when
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initialize is called. The destructor checks whether pq is valid, and deletes it if it is. The constructor
and destructor are implemented as follows:

MergeMgr :: MergeMgr(void)

{

pq = NULL;

}

MergeMgr ::~ MergeMgr(void)

{

if (pq != NULL ) {

delete pq;

}

}

When AMI_partition_and_merge() is called it calls the member functions space_usage_overhead()
and space_usage_per_stream() of the merge management object (MergeMgr in this case). These
return the number of bytes of main memory that the merge management object will allocate when
initialized. In our example, the return value from space_usage_overhead() indicates that space will
needed for a priority queue, and the return value from space_usage_per_stream() indicates that
space will be needed for an object of type int and one of type arity associated with each stream.

size_t MergeMgr :: space_usage_overhead(void)

{

return sizeof(pqueue <arity_t ,int >);

}

size_t MergeMgr :: space_usage_per_stream(void)

{

return sizeof(arity_t ) + sizeof(int);

}

As an early step in its processing, AMI_partition_and_merge() will divide the input stream into
“memoryloads” (which fit into main memory). It then calls the member function main_mem_operate()
of the merge management object to perform application specific processing on these memoryloads.
Since we are sorting in this example, we simply sort each memoryload via quicksort. The sorted
memoryloads are then stored on the disks as substreams.

AMI_err MergeMgr :: main_mem_operate(int* mm_stream , size_t len)

{

qsort(mm_stream , len , sizeof(int), c_int_cmp );

return AMI_ERROR_NO_ERROR;

}

Having sorted all of the initial substreams, AMI_partition_and_merge() begins to merge them.
Before merging a set of substreams, the merge management object’s member function initialize()
is called to inform the merge management object of the number of streams it should be prepared to
handle at the merge step. The object is also provided with the first object from each of the streams
to be merged. In our example the initialize() member function is as follows:

AMI_err MergeMgr :: initialize(arity_t arity , const int * const *in,

AMI_merge_flag * taken_flags ,

int & taken_index)

{

input_arity = arity;

if (pq != NULL ) {

delete pq;

}
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// Construct a priority queue that can hold arity items.

pq = new pqueue_heap_op(arity );

for ( arity_t ii = arity ; ii - -; ) {

if (in[ii] != NULL ) {

taken_flags[ii ] = 1;

pq ->insert(ii ,*in[ii]);

} else {

taken_flags[ii ] = 0;

}

}

taken_index = -1;

return AMI_MERGE_READ_MULTIPLE;

}

Note the use of the return value AMI_MERGE_READ_MULTIPLE. This indicates that the flags in the
array *taken_flags are set to indicate which of the inputs were used (and should not be presented
again). This is very similar to the use of input flags to indicate which inputs were used by a scan
management object as described in Section 4.5.4. The reason that we have a special return value to
indicate when these flags are used is to increase performance. In order for AMI_scan() to determine
which inputs were taken, it must examine all the flags. In a many way merge, this might be time
consuming. In cases where only one item is taken, its index can be returned in taken_index in order
to save the time that would be spent scanning the flags. This technique is illustrated in our operate()
member function, below.

AMI_err MergeMgr :: operate(const int * const *in,

AMI_merge_flag * taken_flags ,

int & taken_index ,

int *out)

{

// If the queue is empty , we are done. There should be no more

// inputs.

if (!pq ->num_elts ()) {

return AMI_MERGE_DONE;

} else {

arity_t min_source;

int min_t;

pq ->extract_min(min_source ,min_t);

*out = min_t;

if (in[min_source ] != NULL ) {

pq ->insert(min_source ,*in[min_source ]);

taken_index = min_source;

} else {

taken_index = -1;

}

return AMI_MERGE_OUTPUT;

}

}

4.7 Distribution

<TO BE WRITTEN>
-28-

[28]: Is there re-
ally anything in
there?
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4.8 Sorting
[29]: LA: Andy
please check this
section 4.8.1 Comparison Sorting

Sorting is a common primitive operation in many algorithms. It can be performed in a variety of ways.
The two most basic approaches for external memory sorting are based on merging (See Section 4.6),
and distribution (See Section 4.7). TPIE currently provides several efficient sorting functions based
on merging. In the future a number of other sorting algorithms may be implemented and it is the
intention that when calling AMI_sort(), TPIE should automatically select the best algorithm for the
given hardware platform.

4.8.2 Merge Sorting

While the AMI_merge example in Section 4.6 was not intended as an illustration of how to sort in TPIE,
it contains the main ideas of how merge sorting should be done in order to achieve I/O optimality,
and how it is done internally by TPIE’s merge sort manager.-30-

[30]: LA:
“services”? In
general this
whole section is
not well written
and should be
rewritten at some
point (note; the
same text is in
the reference
- not good as
they serve two
very different
purposes)

Merge sort consists of two phases: the run formation phase and the merging phase. During the run
formation phase, the N input elements are input M (one memory-load) at a time; each memory-load
is sorted and written to the disks as a “run”. In the merge phase, the sorted runs are merged together
approximately M/B at a time (where M is the internal memory size and B is the block size) in a
round-robin manner until a single sorted run remains. Typically, a heap or similar data structure is
used during the merge phase to select the next record to be output from the set of records presented
by the sorted runs being merged.

Currently, TPIE offers three merge sorting variants. The user must decide which variant is most
appropriate for their circumstances. All accomplish the same goal, but the performance can vary
depending on the situation. They differ mainly in the way they perform the merge phase of merge
sort, specifically how they maintain their heap data structure used in the merge phase. The three
variants are as follows:

AMI_sort: keeps the (entire) first record of each sorted run (each is a stream) in a heap. This
approach is most suitable when the record consists entirely of the record key.

AMI_ptr_sort: keeps a pointer to the first record of each stream in the heap. This approach works
best when records are very long and the key field(s) take up a large percentage of the record.

AMI_key_sort: keeps the key field(s) and a pointer to the first record of each stream in the heap.
This approach works best when the key field(s) are small in comparison to the record size.

Any of these variants will accomplish the task of sorting an input stream in an I/O efficient way,
but there can be noticeable differences in processing time between the variants. As an example,-31-

[31]: LA: Do we
really want to
discuss this here
(as opposed to
in reference/im-
plementation
sections)?

AMI_key_sort appears to be more cache-efficient than the others in many cases, and therefore often
uses less processor time, despite extra data movement relative to AMI_ptr_sort.

In addition to the three variants discussed above, there are multiple choices within each variant
regarding how the actual comparison operations are to be performed. These choices are described in
detail for AMI_sort, below.-32-

[32]: LA: Not
really true
(key sort) -
change!

AMI sort()

AMI_sort() has two comparison polymorphs, described below.-33- We will refer to these as the comparison[33]: LA: More
- e.g. 2X sort.
Need to update!
Andy?

operator and the comparison object versions of AMI_sort. The comparison operator version tends to
be the fastest and most straightforward to use. The comparison object version is comparable in speed
(maybe slightly slower), but somewhat more flexible, as it can support multiple, different sorts on the
same keys.

Comparison operator version: This version works on streams of objects for which the operator <
is defined. For example, the following code would sort a stream instream of int objects, creating the
sorted stream outstream.
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AMI_STREAM <int > instream;
AMI_STREAM <int > outstream;

void f()
{

AMI_sort (&instream , & outstream );
}

Comparison object version:
This version of AMI_sort() uses a special method of a user-defined comparison class to determine

the order of input two objects. This is useful in cases where we may want to sort a stream of objects
in several different ways. This polymorph of AMI_sort expects an object as its third argument. This
object must have a public member function named compare. For example, the following code sorts a
stream of complex numbers in two ways, by their real parts and by their imaginary parts.-34-

[34]: LA: Check
that this is cor-
rect. AD: yes,
correct.class compare_re_class {

public:

int compare ( const complex &c1 , const complex &c2 ) {

return (c1.re() < c2.re()) ? -1 :

((c1.re() > c2.re ()) ? 1 : 0);

};

};

class compare_im_class {

public:

int compare ( const complex &c1 , const complex &c2 ) {

return (c1.im() < c2.im()) ? -1 :

((c1.im() > c2.im ()) ? 1 : 0);

};

};

AMI_STREAM <complex > instream;

AMI_STREAM <complex > outstream_re;

AMI_STREAM <complex > outstream_im;

compare_re_class compare_re

compare_im_class compare_im

void f()

{

AMI_sort (&instream , & outstream_re , & compare_re );

AMI_sort (&instream , & outstream_im , & compare_im );

}

AMI ptr sort()

The AMI_ptr_sort variant of merge sort in TPIE keeps only a pointer to each record in the heap
used to perform merging of runs. Similar to AMI_sort above, it offers a comparison operator and a
comparison class polymorphs. The syntax is identical to that illustrated in the AMI_sort examples;
simply replace AMI_sort by AMI_ptr_sort.

AMI key sort()

The AMI_key_sort variant of TPIE merge sort keeps the key field(s) plus a pointer to the correspond-
ing record in an internal heap during the merging phase of merge sort. It requires a sort management
object with member functions compare and copy. The usage of AMI_key_sort() is illustrated by the
following example:

Consider the class rectangle below, meant to describe axis-parallel rectangles,
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class rectangle{

double northEast_x;

double northEast_y;

double southWest_x;

double southWest_y;

char long_text_description [200];

}

and suppose that we want to sort a stream of rectangles in descending order according to the
southWest_y coordinate. The user-written sort management object smo below contains a member
function copy for copying the desired key field from a record (whose address will be provided by
TPIE) to a location in the heap (determined by TPIE).

// Here is the definition of the sort management class

class SortManager {

private:

int result;

public:

inline int compare ( const double & k1 , const double & k2) {

return ((k1 < k2)? -1 : (k1 > k2 ) ? 1 : 0);

}

inline void copy ( double *key , const rectangle & record ) {

*key = record.southwest_y;

}

};

// create a sort management object

SortManager <rectangle ,double > smo;

Assuming that the size of each double is 8 bytes, we can sort the stream as follows:

AMI_STREAM <rectangle > instream;

AMI_STREAM <rectangle > outstream;

double dummyKey;

void f()

{

AMI_key_sort (&instream , & outstream , dummyKey , & smo );

}

The third argument of AMI_key_sort() is a a dummy argument having the same type as the key
field, and the fourth argument is the sort management object.-35-

[35]: LA: Maybe
we should add
something about
this being a C++

requirement? 4.8.3 Key Bucket Sorting

<TO BE WRITTEN>
-36-

[36]: LA: We
should look at
kb sort stuff and
either clean up or
remove

4.9 Permutation

4.9.1 General Permutation

Permutation-37- is a basic building block in many I/O algorithms. Routing a general permutation in[37]: LA: We
should remove/-
fix the permuting
stuff! I think I
suggest keeping
the general stuff
but removing the
bit stuff

the I/O model is asymptotically as complex as sorting [6], though for some important classes of
permutations, such as BMMC permutations (See Section 4.9.2) faster algorithms are possible [21]. In
this section, we discuss AMI_general_permute(), which routes arbitrary permutations, but always
takes as long as sorting, regardless of whether the particular permutation can be done more quickly
or not.
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General permutations are routed using the function AMI_general_permute(). Like other AMI
functions, AMI_general_permute() relies on an operation management object to determine its precise
behavior. Unlike functions covered up to now, however, the type of the operation management object
need not depend on the type of object in the stream being permuted.

A general permutation management object must provide two member functions, initialize()
and destination(). initialize() is called to inform the general permutation object of the length
of the stream to be permuted. destination() is then called repeatedly to determine the destination
for each object in the stream based on it’s initial position.

Here is an example of using general permutation to reverse the order of the items in a stream.

class reverse_order : public AMI_gen_perm_object {

private:

off_t total_size;

public:

AMI_error initialize(off_t ts) {

total_size = ts;

return AMI_ERROR_NO_ERROR;

};

off_t destination(off_t source ) {

return total_size - 1 - source;

};

};

AMI_STREAM <int > amis0 , amis1;

void f()

{

reverse_order ro;

AMI_general_permute (&amis0 , &amis1 , ( AMI_gen_perm_object *)&ro);

}

4.9.2 Bit Permutation
[38]: LA: Do we
really want this
in the tutorial?Bit permuting is a permutation technique in which the destination address of a given item is computed

by manipulating the bits of its source address. The particular class of bit permutations that TPIE
supports is the set of bit matrix multiply complement (BMMC) permutations. These permutations
are defined on sets of objects whose size is a power of 2.

Suppose we have an input consisting of N = 2n objects. A BMMC permutation on the input is
defined by a nonsingular n × n bit matrix A and an n element column vector c of bits. Source and
destination addresses are interpreted as column vectors of bits, with the low order bit of the address
at the top. The destination address x′ corresponding to a given source address x is computed as

x′ = Ax + c

where addition and multiplication of matrix elements is done over GF(2). For a detailed description
of BMMC permutations, see [23].

Routing BMMC permutations in TPIE is done using the AMI_BMMC_permute() entry point-39-, which [39]: LA:
Is it really
implemented?takes an input stream, and output stream, and a pointer to a bit permutation management object.

In the following example, we route a permutation that simply reverses the order of the source address
bits to produce the destination address.

First, we construct the matrices the permutation will use.

bit_matrix A(n,n);

bit_matrix c(n,1);

{
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unsigned int ii ,jj;

for (ii = n; ii - -; ) {

c[ii ][0] = 0;

for (jj = n; jj - -; ) {

A[n-1-ii][jj ] = (ii == jj);

}

}

}

Now we simply construct a permutation management object from the matrices and perform the
permutation.

AMI_bit_perm_object bpo(A,c);

ae = AMI_BMMC_permute (&amis0 , &amis1 , ( AMI_bit_perm_object *)& bpo);

4.10 Distribution Sweeping
[40]: LA: Get
sweeping under
distribution in
the index <TO BE WRITTEN>

4.11 Matrix Operations

In-41- addition to streams, which are linearly ordered collections of objects, the AMI provides a mechanism[41]: LA:
We should
remove/fix this! for storing large matrices in external memory. Matrices are a subclass of streams, and can thus be

used with any of the stream operations discussed above. When a matrix is treated as a stream its
elements appear in row major order. In addition to stream operations, matrices support three simple
arithmetic operations, addition, subtraction, and multiplication.

It is assumed that the class T of the elements in a matrix forms a quasiring with the operators
+ and *. Furthermore, the object T((int)0) is assumed to be an identity for +. At the moment, it
is not assumed that the operator - is an inverse of +, and therefore no reduced complexity matrix
multiplication algorithms analogous to Strassen’s algorithm are used.

TPIE provides support for both dense and sparse matrices.

4.11.1 Dense Matrix Operations

Dense matrices are implemented by the templated class AMI_matrix, which is a subclass of AMI_STREAM.
Dense matrices can be initialized or “filled” using AMI_scan(), though typically they are filled us-
ing the function AMI_matrix_fill(). AMI_matrix_fill() wuses a scan management object whose
member function element is given the row and column of each element of the matrix and must return
the value to be inserted at that position of the matrix. In the following example, we create a 1000 by
1000 upper triangular matrix of ones and zeroes:

template <class T>

class fill_upper_tri : public AMI_matrix_filler <T> {

AMI_err initialize(unsigned int rows , unsigned int cols)

{

return AMI_ERROR_NO_ERROR;

};

T element(unsigned int row , unsigned int col)

{

return (row <= col ) ? T(1) : T(0);

};

};
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AMI_matrix m(1000 , 1000);

void f()

{

fill_upper_tri <double > fut;

AMI_matrix_fill (&em , ( AMI_matrix_filler <T > *)& fut);

}

Arithmetic on dense matrices is performed in a straightforward way using the (global) functions
AMI_matrix_add(), AMI_matrix_subtract(), and AMI_matrix_multiply(), as is the following ex-
ample:

AMI_matrix m0(1000 , 500) , m1(500 , 2000) , m2 (1000 , 2000);

AMI_matrix m3(1000 , 500) , m4 (1000 , 500);

void f()

{

// Add m3 to m4 and put the result in m0.

AMI_matrix_add(em3 , em4 , em0);

// Multiply m0 by em1 to get m2.

AMI_matrix_mult(em0 , em1 , em2);

// Subtract m4 from m3 and put the result in m0.

AMI_matrix_subtract(em3 , em4 , em0);

}

4.11.2 Sparse Matrix Operations

<TO BE WRITTEN>

4.11.3 Elementwise Arithmetic

The functions AMI_matrix_add() and AMI_matrix_subtract() defined in Section 4.11.1 perform ele-
mentwise arithmetic on matrices. At times, we might also wish to perform elementwise multiplication
or division, or perform a scalar arithmetic operation on all elements of a matrix. TPIE provides mech-
anisms for doing this not only on matrices, but on arbitrary streams, so long as they are of objects
for which the appropriate arithmetic operators (i.e. +, -, *, /) are defined.

Elementwise arithmetic can be done with scan management objects of the classes AMI_scan_add,
AMI_scan_sub, AMI_scan_mult and AMI_scan_div. Here is an example that performs elementwise
division on the elements of two streams.

#include <ami_stream_arith.h>

void foo()

{

AMI_STREAM <int > amis0;

AMI_STREAM <int > amis1;

AMI_STREAM <int > amis2;

AMI_scan_div <int > sd;

// Divide each element of amis0 by the corresponding element of

// amis1 and put the result in amis2.
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AMI_scan (&amis0 , &amis1 , &sd , & amis2 );

}

4.12 Compiling and Executing a TPIE Program

The-42- fragments of code presented in this tutorial are designed for instructive purposes but they are[42]: LA: Jan
chech/rewrite
(remember its a
tutorial). Add
portability?

incomplete. In order to successfully compile, link, and run a complete TPIE application, some ad-
ditional code and configuration is needed. The configuration and compilation of a TPIE program
is discussed below. The recommended way for a novice TPIE programmer to learn how to write a
complete TPIE application is to go through the sample program of Chapter 3 or to look at the source
code provided in the test directory.

The main steps involved in setting up and running a TPIE program are as follows:-43-
[43]: DH: This
mixes apples and
oranges. Should
rewrite with more
focus, e.g compil-
ing a TPIE Hello
World program?

1. Various behaviors of TPIE at run time can be controlled by compile-time variables. These
variables are defined in the file app_config.h which is included at the beginning of a TPIE
program before including any TPIE headers. The test application code distributed with TPIE
contains such a file (/test/app_config.h). See Section 7 for a discussion of these options and
of how they should be set on a given hardware platform for best performance.

2. TPIE’s templated classes and functions are included by including the header file ami.h from the
include/ directory. Normally, this directory is indicated via the -I argument to the compiler.

3. The following statements are used to indicate that the TPIE memory manager MM_manager
should restrict the internal memory that it uses (to the value of mm_size in this case).

MM_manager.enforce_memory_limit ();
MM_manager.set_memory_limit ( mm_size );

Calling the MM_manager member function enforce_memory_limit () indicates that the pro-
gram should abort if the allocated internal memory exceeds a specified amount. This amount
is set by the member function set_memory_limit (mm_size). Normally, this amount is the
amount of physical main memory minus the main memory used by the operating system and
other programs running on the machine. If MM_manager.ignore_memory_limit () is called,
the application will run with virtual memory like an ordinary non-TPIE application.

4. If a TPIE program file foo.cpp exists in the TPIE base directory it can be compiled with the
following command:

g++ foo.cpp -Iinclude/ -Llib/ -ltpie -o foo

Users interested in setting up a Makefile for the compiling task can look at a sample Makefile
in the test/ subdirectory.
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[44]: LA: Andy
and Jan please
check if this chap-
ter is ok. JV:
As far as I’m con-
cerned, the mm
and stream stuff
is ok.

[45]: LA: Add
progress bar
stuff?! JV: Done.
(and what about
in section 4?).
Jan? No, the
example is in this
section.

5.1 Registration-based Memory Manager

5.1.1 Files

#include <mm register.h>
Note that there is no need to include this file when using the AMI entry points, since it is
included by all AMI header files.

5.1.2 Class Declaration

class MM register;

5.1.3 Global Variables

MM register MM manager;
This is the only instance of the MM_register class that should exist in a program.

5.1.4 Description

The TPIE memory manager MM_manager, the only instance of class MM_register, traps memory
allocation and deallocation requests in order to monitor and enforce memory usage limits. The actual
memory allocation requests are done using the standard C++ operators new and delete, which have
been replaced with in-house versions that interact with the memory manager.

5.1.5 Public Member Functions

MM err enforce memory limit();
Instruct TPIE to abort computation when the memory limit is exceeded.

MM err ignore memory limit();
Instruct TPIE to ignore the memory limit set using set_memory_limit.

size t memory available();
Return the number of bytes of memory which can be allocated before the user-specified
limit is reached.

53
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size t memory limit();
Return the memory limit as set by the last call to method set_memory_limit.

size t memory used();
Return the number of bytes of memory currently allocated.

MM err set memory limit(size t size);
Set the application’s memory limit. The memory limit is set to size bytes. If
the specified memory limit is greater than or equal to the amount of memory al-
ready allocated, set_memory_limit returns MM_ERROR_NO_ERROR, otherwise it returns
MM_ERROR_EXCESSIVE_ALLOCATION. By default, successive calls to operator new will cause
the program to abort if the resulting memory usage would exceed size bytes. This
behavior can be controlled explicitly by the use of methods enforce_memory_limit,
warn_memory_limit and ignore_memory_limit.

MM err warn memory limit();
Instruct TPIE to issue a warning when the memory limit is exceeded.

int space overhead();
TPIE imposes a small space overhead on each memory allocation request received by op-
erator new. This involves increasing each allocation request by a fixed number of bytes.
The precise size of this increase is machine dependent, but typically 8 bytes. Method
space_overhead returns the size of this increase.

void pause allocation counting();
Instruct the memory manager not to keep track of how much memory is allocated. See below
for a more detailled discussion of situtations in which this feature may come in handy.

void resume allocation counting();
Instruct the memory manager to keep track of how much memory is allocated. This behavior
is the default behavior. See below for a more detailled discussion of situtations in which
this feature may come in handy. The pause/resume calls may be nested.

size t allocation count factor() const;
Returns 1 iff allocation is switched on. In all other cases, a value of zero is returned.

Allocation Counting When using certain implementations of STL, some dynamic data structures
such as stacks or vectors change the size of their scratch space by invoking the system call realloc.
Such calls will invalidate the memory manager’s information about how much space is allocated, and
eventually will lead the memory manager to loose track of the available space. The suggested solution
is to instruct STL not to use realloc but corresponding delete/new-delete calls, and this behavior
is implemented by TPIE.

However, the performance-oriented programmer may not want to sacrifice potentially fast reallo-
cation, and thus TPIE offers the possibility to switch off and on allocation counting. If allocation
counting is switched off, reallocation is re-enabled in STL (if STL’s implementation supports this),
but TPIE cannot guarantee that the memory limit is respected. Thus, it is the programmer’s re-
sponsibility to keep track of how much memory is allocated while allocation counting is switched off.
Being in “pause”-mode does not affect correct deallocation of objects that have been allocation with
allocation counting switched on (and vice versa).
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5.2 Streams

5.2.1 Files

#include <ami stream.h>

5.2.2 Class Declaration

template<class T> class AMI STREAM;

5.2.3 Description

An AMI_STREAM<T> object stores an ordered collection of objects of type T on external memory.
The stream type of an AMI_STREAM indicates what operations are permitted on the stream. An

AMI_STREAM<T> object can have one of four different types:-46-
[46]: LA: Add
something like
this about
persistence flag• AMI_READ_STREAM: Input operations on the stream are permitted, but output is not permitted.

• AMI_WRITE_STREAM: Output operations are permitted, but input operations are not permitted.

• AMI_APPEND_STREAM: Output is appended to the end of the stream. Input operations are not
permitted. This is similar to AMI_WRITE_STREAM except that if the stream is constructed on a
file containing an existing stream, objects written to the stream will be appended at the end of
the stream.

• AMI_READ_WRITE_STREAM: Both input and output operations are permitted.

5.2.4 Constructors, Destructor and Related Functions
[47]: LA: Jan
please check (new
substream). Also
please add “tell”,
right? Done (tell)AMI STREAM(unsigned int device = UINT MAX);

A new stream of type AMI_READ_WRITE_STREAM is constructed on the given device as a file
with a randomly generated name.

AMI STREAM(const char *path name);
A stream of type AMI_READ_WRITE_STREAM is constructed on the file whose path name is
given. If the file does not already exist, a new stream is constructed on a newly created
file with the specified file name. If the file already exists, it is checked if it contains a valid
stream, and if so, the new stream is constructed on this file. If the file does not contain a
valid stream, the status flag is set to AMI_STREAM_STATUS_INVALID.

AMI STREAM(const char *path name, AMI stream type st);
A stream of type st is constructed on the file whose pathname is given.

AMI STREAM(BTE STREAM<T> *bs);
A stream is constructed from an existing BTE_STREAM (see Section 6.2). This constructor
will not normally be used by a TPIE application programmer. The new AMI_STREAM gets
the same type as the BTE_STREAM.

∼AMI STREAM();
Destructor. Free the memory buffer and close the file. IF the persistence flag is
PERSIST_DELETE, also remove the file.

AMI err new substream(AMI stream type st, TPIE OS OFFSET sub begin, TPIE OS OFFSET
sub end, AMI stream<T> **sub stream );
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A substream is an AMI stream that is part of another AMI stream. More precisely, a
substream B of a stream A is defined as a contiguous range of objects from the ordered
collection of objects that make up the stream A. If desired, one can construct substreams
of substreams of substreams ad infinitum. Since a substream is a stream in its own right,
many of the stream member functions can be applied to a substream. A substream can
be created via the pseudo-constructor1 new_substream(). Here, st specifies the type of
the substream, and the offsets sub_begin and sub_end define the positions in the original
stream A where the new substream B will begin and end. Upon completion, *sub_stream
points to the newly created substream.

5.2.5 Public Member Functions
[48]: LA: Andy
please check
memory usage
functions. Does
the reader know
what “data
buffer” is?

bool operator!() const;
Return true if the status of the stream is not AMI_STREAM_STATUS_VALID, false otherwise.
See also is_valid() and status().

off t chunk size() const;
Return the maximum number of items (of type T) that can be stored in one block.

static const tpie stats stream& gstats() const;
Return an object containing the statistics of all streams opened by the application (global
statistics). See also stats().

bool is valid() const;
Return true if the status of the stream is AMI_STREAM_STATUS_VALID, false otherwise.
See also status().[49]: LA: Is

the “current
position”in the
below defined?

AMI err main memory usage(size t *usage, MM stream usage usage type);
This function is used for obtaining the amount of main memory used by an AMI_STREAM<T>
object (in bytes). usage_type is one of the following:

MM_STREAM_USAGE_CURRENT: Total amount of memory currently used by the stream.

MM_STREAM_USAGE_MAXIMUM: Max amount of memory that will ever be used by the stream.

MM_STREAM_USAGE_OVERHEAD: The amount of memory used by the object itself, without
the data buffer.

MM_STREAM_USAGE_BUFFER: The amount of memory used by the data buffer.

MM_STREAM_USAGE_SUBSTREAM: The additional amount of memory that will be used by
each substream created.

AMI err name(char **stream name);
Store the path to the UNIX file name holding the stream, in newly allocated memory.

void persist(persistence p)
Set the persistence flag to p, which can have one of two values: PERSIST_DELETE and
PERSIST_PERSISTENT.

AMI err read array(T *mm array, off t *len);
Read *len items from the current position of the stream into the array mm_array. The
“current position” pointer is increased accordingly.

AMI err read item(T **elt);
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Read the current item from the stream and advance the “current item” pointer to the
next item. The item read is pointed to by *elt. If no error has occurred, return
AMI_ERROR_NO_ERROR. If the “current item” pointer is beyond the last item in the stream,
return AMI_ERROR_END_OF_STREAM.

AMI err seek(off t off);
Move the current position to off (measured in terms of items).

TPIE OS OFFSET tell() const;
Returns the current position in the stream (measured in terms of items).

const tpie stats stream& stats() const;
Return an object containing the statistics of this stream. The types of statistics computed
for a collection are tabulated below. See also gstats().
BLOCK_READ Number of block reads
BLOCK_WRITE Number of block writes
ITEM_READ Number of item reads
ITEM_WRITE Number of item writes
ITEM_SEEK Number of item seek operations
STREAM_OPEN Number of stream open operations
STREAM_CLOSE Number of stream close operations
STREAM_CREATE Number of stream create operations
STREAM_DELETE Number of stream delete operations
SUBSTREAM_CREATE Number of substream create operations
SUBSTREAM_DELETE Number of substream delete operations [50]: LA: We

should really
have different
objects for stats
and gstats!! AND
is it all correct?AMI stream status status() const;

Return the status of the stream instance. The result is either AMI_STREAM_STATUS_VALID
or AMI_STREAM_STATUS_INVALID. The only operation that can leave the stream invalid is
the constructor (if that happens, the log file contains more information). No items should
be read from or written to an invalid stream.

off t stream len(void);
Return the number of items stored in the stream.

AMI err truncate(off t off);
Resize the stream to off items. If off is less than the number of objects in the stream,
truncate() truncates the stream to off objects. If off is more than the number of objects
in the stream, truncate() extends the stream to the specified number of objects. In either
case, the “current item” pointer will be moved to the new end of the stream.

AMI err write array(const T *mm array, off t len);
Write len items from array mm_array to the stream, starting in the current position. The
“current item” pointer is increased accordingly.

AMI err write item(const T &elt);
Write elt to the stream in the current position. Advance the “current item” pointer to the
next item. If no error has occurred AMI_ERROR_NO_ERROR is returned. [51]: LA: In

above return
values sometimes
mentioned
sometimes not
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5.3 Scanning

5.3.1 Files

#include <ami scan.h>

5.3.2 Function Declaration

template<class T1, class T2, ..., class ST, class U1, class U2, ...> AMI err
AMI scan(AMI STREAM<T1> *in1, AMI STREAM<T2> *in2, ..., ST *smo, AMI STREAM<U1> *out1,
AMI STREAM<U2> *out2, ...);

5.3.3 Description

AMI_scan() reads zero, one or multiple input streams (up to four), each potentially of a different type,
and writes zero, one or multiple output streams (up to four), each potentially of a different type. smo
is a pointer to a scan management object of user-defined class ST, as described below.

5.3.4 Scan Management Objects

A scan management object class must inherit from AMI_scan_object:

template <class T1 , class T2 ,..., class U1 , class U2 ,...> class ST:
public AMI_scan_object;

In addition, it must provide two member functions for AMI_scan() to call: initialize() and
operate().

AMI_err initialize(void);

Initializes a scan management object to prepare it for a scan. This member function is called once by
each call to AMI_scan() in order to initialize the scan management object before any data processing
takes place. This function should return AMI_ERROR_NO_ERROR if successful, or an appropriate error
otherwise. See Section C.1 for a list of error codes.

Most of the work of a scan is typically done in the scan management object’s operate() member
function:

AMI_err operate(const T1 &in1 , const T2 &in2 ,... , AMI_SCAN_FLAG
*sfin , U1 *out1 , U2 *out2 ,..., AMI_SCAN_FLAG *sfout );

One or more input objects or one or more output parameters must be specified. These must
correspond in number and type to the streams passed to the polymorph of AMI_scan() with which
this scan management object is to be used.

If present, the inputs *in1, ... are application data items of type T1, and sfin points to an
array of flags, one for each input. On entry to operate(), flags that are set (non-zero) indicate that
the corresponding inputs contain data. If on exit from operate(), the input flags are left untouched,
AMI_scan() assumes that the corresponding inputs were processed. If one or more input flags are
cleared (set to zero) then AMI_scan() assumes that the corresponding inputs were not processed and
should be presented again on the next call to operate(). This permits out of step scanning, as
illustrated in Section 4.5.4.

If present, the outputs *out1, ... are application data items of type U1, and sfout points to an
array of flags, one for each output. On exit from operate(), the outputs should contain any objects
to be written to the output streams, and the output flags must be set to indicate to AMI_scan() which
outputs are valid and should be written to the output streams.

The return value of operate() will normally be one of the following:
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• AMI_SCAN_CONTINUE: indicates that the function should be called again with any “taken” inputs
replaced by the next objects from their respective streams

• AMI_SCAN_DONE: indicates that the scan is complete and no more input needs to be processed.

Note that operate() is permitted to return AMI_SCAN_CONTINUE even when the input flags indicate
that there is no more input to be processed. This is useful if the scan management object maintains
some internal state that must be written out after all input has been processed.
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5.4 Scanning from a C++ stream

5.4.1 Files

#include <ami scan utils.h>

5.4.2 Class Declaration

template<class T> class cxx istream scan;

5.4.3 Description

A scan management class template for reading the contents of an ordinary C++ input stream into a
TPIE stream. It works with streams of any type for which a >> operator is defined for C++ stream
input.

5.4.4 Constructor

cxx istream scan(istream *instr = &cin);
Create a scan management object for scanning the contents of C++ stream *instr. The
actual scanning is done using AMI_scan with no input streams and one output stream.
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5.5 Scanning into a C++ stream

5.5.1 Files

#include <ami scan utils.h>

5.5.2 Class Declaration

template<class T> class cxx ostream scan;

5.5.3 Description

A scan management class template for writing the contents of a TPIE stream into an ordinary C++
output stream. It works with streams of any type for which a << operator is defined for C++ stream
output.

5.5.4 Constructor

cxx ostream scan(istream *outstr = &cout);
Create a scan management object for scanning into C++ stream *outstr. The actual scan-
ning is done using AMI_scan with one input stream and no output streams.
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5.6 Stream Merging
[52]: LA: Andy
please check. AD:
OK 5.6.1 Files

#include <ami merge.h>

5.6.2 Function Declaration

template<class T, class MergeMgr>
AMI err AMI merge(AMI STREAM<T> **instreams, arity t arity, AMI STREAM<T> *outstream,
MergeMgr *mo);

5.6.3 Description

TPIE entry point AMI_merge() allows an arbitrary number of streams to be merged into one stream
in one pass, subject to the available main memory. TPIE-53- will attempt to read the first block of[53]: LA: This

doesn’t seem to
fit in reference
manual

each stream into the internal memory, and will update the contents of these buffers as the merge
progresses. At least one block buffer is also required for the output stream from the merge. The
function takes four arguments: instreams is an array of pointers to the input streams, all of which
are of type AMI_STREAM<T>, arity is the number of input streams, outstream is the output stream,
of type AMI_STREAM<T>, and mo points to a merge management object that controls the merge (merge
management objects are described below).

If the merge cannot be completed in one pass due to insufficient memory, the function fails and it
returns AMI_ERROR_INSUFFICIENT_MAIN_MEMORY. Otherwise, it returns AMI_ERROR_NO_ERROR.

5.6.4 Merge Management Objects

A merge management object class must inherit from AMI_merge_base:

template <class T>
class MergeMgr : public AMI_merge_base;

In addition, a merge management object must provide initialize() and operate() member func-
tions, whose purposes are analogous to their namesakes for scan management objects.

The user’s initialize() member function is called by the merge function once so that application-
specific data structures (if any) can be initialized.

AMI_err initialize(arity_t arity , const T * const *in ,
AMI_merge_flag * taken_flags ,
int & taken_index );

where

• arity is the number of input streams in the merge,

• in is a pointer to an array of pointers to input objects, each of which is the first objects appearing
in one of the input streams,

• taken_flags an array of flags indicating which of the inputs are present (i.e. which of the input
streams is not empty), and a pointer to an output object.

The typical behavior of initialize() is to place all the input objects into a data structure
and then return AMI_MERGE_READ_MULTIPLE to indicate that it used (and is now finished with) all
of the inputs which were indicated to be valid by taken_flags. initialize need not process all
inputs; it can turn off any flags in taken_flags corresponding to inputs that should be presented
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to operate(). Alternatively, it can set taken_index to the index of a single input it processed and
return AMI_MERGE_CONTINUE.

When performing a merge, TPIE relies on the application programmer to provide code to determine
the order of any two application data elements, and certain other application-specific processing. By
convention, TPIE expects these decisions to be made by the operate() function:

AMI_err operate(const T * const *in , AMI_merge_flag * taken_flags ,
int & taken_index , T *out);

The operate() member function is called repeatedly to process input objects. Typically, operate()
will choose a single input object to process, and set taken_index to the index of the pointer to that
object in the input array. This object is then typically added to a dynamic data structure maintained
by the merge management object. If output is generated, for example by removing an object from
the dynamic data structure, operate() should return AMI_MERGE_OUTPUT, otherwise, it returns either
AMI_MERGE_CONTINUE to indicate that more input should be presented, or AMI_MERGE_DONE to indicate
that the merge has completed.

Alternatively, operate() can clear the elements of taken_flags that correspond to inputs it
does not currently wish to process, and then return AMI_MERGE_READ_MULTIPLE. This is generally
undesirable because, if only one input is taken, it is far slower than using taken_index to indicate
which input was taken. The merge management object must clear all other flags, and then TPIE
must test all the flags to see which inputs were or were not processed.
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5.7 Sorted Stream Merging

5.7.1 Files
[54]: LA: Andy
please check! AD:
OK

#include <ami merge sorted runs.h>

5.7.2 Function Declarations

template<class T>
AMI err AMI merge sorted runs(AMI STREAM<T> **instreams, arity t arity, AMI STREAM<T>
*outstream);

template<class T>
AMI err AMI merge sorted runs(AMI STREAM<T> **instreams, arity t arity, AMI STREAM<T> *
outstream, CmpObj *co);

template<class T, class KEY>
AMI err AMI merge sorted runs(AMI STREAM<T> **instreams, arity t arity, AMI STREAM<T>
*outstream, int keyoff, KEY dummy);

5.7.3 Description

TPIE provides several merge entry points for merging sorted streams to produce a single, interleaved
output stream. AMI_merge_sorted_runs has three polymorphs, namely the comparison operator,
comparison class and the key-based polymorphs.-55- The comparison operator version tends to be the[55]: LA: Syntax

of comparator? fastest and most straightforward to use. The comparison class version is comparable in speed (maybe
slightly slower), but somewhat more flexible, as it can support multiple, different merges on the same
keys.-56-

[56]: LA: Key
based?
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5.8 Stream Partitioning and Merging
[57]: LA: Andy
please check. AD:
OK5.8.1 Files

#include <ami merge.h>

5.8.2 Function Declaration

template<class T, class MergeMgr>
AMI err AMI partition and merge(AMI STREAM<T> *instream, AMI STREAM<T> *outstream,
MergeMgr *mo);

5.8.3 Description

This function partitions a stream into substreams small enough to fit in main memory, operates on each
in main memory, and then merges them together, possibly in several passes if low memory conditions
dictate. This function takes three arguments: instream points to the input stream, outstream points
to the output stream, and mo points to a merge management object that controls the merge. This
function takes care of all the details of determining how much main memory is available, how big
the initial substreams can be, how many streams can be merged at a time, and how many levels of
merging must take place.

In order to complete the merge successfully, the function needs sufficient memory for a binary
merge. If not enough memory is available, the function fails and it returns AMI_ERROR_INSUFFICIENT_MAIN_MEMORY.
Otherwise, it returns AMI_ERROR_NO_ERROR.

5.8.4 Merge Management Objects

The AMI_partition_and_merge() entry point requires a merge management object similar to the one
described in Section 5.6.4. The following three additional member functions must also be provided.

• AMI_err main_mem_operate(T* mm_stream , size_t len);

where

– mm_stream is a pointer to an array of objects that have been read into main memory,

– len is the number of objects in the array.

This function is called by AMI_partition_and_merge() when a substream of the data is small
enough to fit into main memory, and the (application-specific) processing of this subset of the
data can therefore be completed in internal memory.

• size_t space_usage_per_stream(void);

This function should return the amount of main memory that the merge management object will
need per per input stream. Merge management objects are allowed to maintain data structures
whose size is linear in the number of input streams being processed.

• size_t space_usage_overhead(void);

This function should return an upper bound on the number of bytes of main memory the merge
management object will allocate in addition to the portion that is linear in the number of
streams.
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5.9 Merge Sorting
[58]: LA: Andy
please check 5.9.1 Files

#include <ami sort.h>

5.9.2 Function Declarations

template<class T>
AMI err AMI sort(AMI STREAM<T> *instream, AMI STREAM<T> *outstream);

template<class T, class CMPR>
AMI err AMI sort(AMI STREAM<T> *instream, AMI STREAM<T> *outstream, CMPR *cmp);

template<class T>
AMI err AMI ptr sort(AMI STREAM<T> *instream, AMI STREAM<T> *outstream);

template<class T, class CMPR>
AMI err AMI ptr sort(AMI STREAM<T> *instream, AMI STREAM<T> *outstream, CMPR *cmp);

template<class T, class KEY, class CMPR>
AMI err AMI key sort(AMI STREAM<T> *instream, AMI STREAM<T> *outstream, KEY dummykey,
CMPR *cmp) ;

template<class T>
AMI err AMI sort(AMI STREAM<T> *instream);

template<class T, class CMPR>
AMI err AMI sort(AMI STREAM<T> *instream, CMPR *cmp);

template<class T>
AMI err AMI ptr sort(AMI STREAM<T> *instream);

template<class T, class CMPR>
AMI err AMI ptr sort(AMI STREAM<T> *instream, CMPR *cmp);

template<class T, class KEY, class CMPR>
AMI err AMI key sort(AMI STREAM<T> *instream, KEY dummykey, CMPR *cmp) ;

5.9.3 Description

Currently,-59- TPIE offers three merge sorting variants. The user must decide which variant is most[59]: LA: Same
text as in tutorial appropriate for their circumstances. All accomplish the same goal, but the performance can vary

depending on the situation. They differ mainly in the way they perform the merge phase of merge
sort, specifically how they maintain their heap data structure used in the merge phase. The three
variants are as follows:
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• AMI_sort: keeps the (entire) first record of each sorted run (each is a stream) in a heap. This
approach is most suitable when the record consists entirely of the record key.

• AMI_ptr_sort: keeps a pointer to the first record of each stream in the heap. This approach
works best when records are very long and the key field(s) take up a large percentage of the
record.

• AMI_key_sort: keeps the key field(s) and a pointer to the first record of each stream in the
heap. This approach works best when the key field(s) are small in comparison to the record size.

Any of these variants will accomplish the task of sorting an input stream in an I/O efficient way,
but there can be noticeable differences in processing time between the variants. As an example,
AMI_key_sort appears to be more cache-efficient than the others in many cases, and therefore often
uses less processor time, despite extra data movement relative to AMI_ptr_sort.

In addition to the three variants discussed above, there are multiple choices within each variant
regarding how the actual comparison operations are to be performed. These choices are described in
detail for AMI_sort, below.

Any sort variant above can sort given an input stream and output stream, or just an input stream.
When just an input stream is specified, the original input elements are deleted the input stream is
rewritten with the sorted output elements. If both the input stream and output stream are specified,
the original input elements are saved. During sorting, a temporary copy of each element is stored on
disk as part of intermediate sorting results. If N is the size on disk of the original input stream, the
polymorphs of sorting with both input and output streams use 3N space, whereas if just an input
stream is specified, 2N space is used. If the original unsorted input stream is not needed after sorting,
it is recommended that users use the AMI_sort polymorph with with just an input stream, to save
space and avoid having to maintain both an input and output stream.

AMI sort()

AMI_sort() has two polymorphs, namely the comparison operator and comparison class polymorphs.
The comparison operator version tends to be the fastest and most straightforward to use. The com-
parison class version is comparable in speed (maybe slightly slower), but somewhat more flexible, as
it can support multiple, different sorts on the same keys.

Comparison operator version. This version works on streams of objects for which the operator
< is defined.

Comparison class version. This version of AMI_sort() uses a method of a user-defined compar-
ison object to determine the order of two input objects. The object must have a public member
function named compare, having the following prototype:

inline int compare ( const KEY & k1 , const KEY & k2);

The user-written compare function computes the order of the two user-defined keys k1 and k2,
and returns −1, 0, or +1 to indicate that k1 < k2, k1 == k2, or k1 > k2 respectively.

AMI ptr sort()

The AMI_ptr_sort variant of merge sort in TPIE keeps only a pointer to each record in the heap used
to perform merging of runs. Similar to AMI_sort above, it offers comparison operator, comparison
function, and comparison class polymorphs. The syntax is identical to that illustrated in the AMI_sort
examples; simply replace AMI_sort by AMI_ptr_sort.
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AMI key sort()

The AMI_key_sort variant of TPIE merge sort keeps the key field(s) plus a pointer to the correspond-
ing record in an internal heap during the merging phase of merge sort. It requires a sort management
object with member functions compare and copy. The dummyKey argument of AMI_key_sort() is a
a dummy argument having the same type as the user key,-60- and *smo is the sort management object,[60]: LA: Clear

why we do this? having user-defined compare and copy member functions as described below.
The compare member function has the following prototype:-61-

[61]: LA: “proto-
type”? AD: Yes,
standard C++
term inline int compare ( const KEY & k1 , const KEY & k2);

The user-written compare function computes the order of the two user-defined keys k1 and k2,
and returns −1, 0, or +1 to indicate that k1 < k2, k1 == k2, or k1 > k2 respectively.

The copy member function has the following prototype:

inline void copy (KEY *key , const T & record );

The user-written copy function constructs the user-defined key *key from the contents of the user-
defined record record. It will be called by the internals of AMI_key_sort to make copies of record
keys as necessary during the sort.
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5.10 Internal Memory Sorting
[62]: LA: Andy
please check
+ add STL
stuff. AD: OK,
STL is part of
internal sort.h,
which is not
exported to user
here

5.10.1 Files

#include <quicksort.h>

5.10.2 Function Declarations

template<class T>
void quick sort op(T *data, size t len);

template<class T>
void quick sort obj(T *data, size t len, CMPR *cmp);

5.10.3 Description

These are internal memory in-place sorting routines that implement the quicksort algorithm (randomized).-63-
[63]: LA: Really?
AD: yesThese routines are used by the external memory sorting routines (see Section 5.9) on streams that are

small enough to fit in memory. The two polymorphs use different comparison methods: quick_sort_op
uses the comparison operator < and quick_sort_obj uses a comparison object of type CMPR.



70 CHAPTER 5. TPIE PROGRAMMER’S REFERENCE

5.11 Distribution

<TO BE WRITTEN>
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5.12 Key bucket sort

<TO BE WRITTEN>
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5.13 Permuting

<TO BE WRITTEN>
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5.14 Stacks

5.14.1 Files

#include <ami stack.h>

5.14.2 Class Declaration

template<class T> class AMI stack;

5.14.3 Description

External stacks are derived from AMI_STREAM<T>.-64- As a consequence, it inherits all public members [64]: LA: Do we
care here? AD:
means there are
additional public
member functions
not listed below
that we can use

of AMI_STREAM<T>, including its constructors. See Section 5.2.-65-

[65]: JV: I’m not
sure inheriting
from AMI_STREAM

is the smartest
way of doing
this. This would
allow the user to
do all kinds of
stuff with a stack
(such as sorting
it. . . ). Why don’t
we aggregate a
stream instead?

5.14.4 Public Member Functions

AMI err push(const &T t);
Insert a copy of the object t to the top of the stack, increasing its length by one.

AMI err pop(T **ppt);
Remove the top object from the stack, decreasing its length by one and returning the address
of a pointer to the popped object in ppt.
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5.15 Queue

5.15.1 Files

#include <ami queue.h>

5.15.2 Class Declaration

template<class T> class AMI queue;

5.15.3 Description

Provides an external FIFO queue.

5.15.4 Public Member Functions

AMI err enqueue(const &T t);
Insert a copy of the object t to the back of queue, increasing its length by one.

AMI err dequeue(T **ppt);
Remove the first element from the front of queue, decreasing its length by one and returning
the address of a pointer to the dequeued object in ppt.
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5.16 Distribution sweeping

<TO BE WRITTEN>
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5.17 Matrix operations

<TO BE WRITTEN>
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5.18 Blocks

5.18.1 Files

#include <ami block.h>

5.18.2 Class Declaration

template<class E, class I> class AMI block;
The types E and I should have a default constructor, a copy constructor and an assignment
operator. The size returned by sizeof(E) and sizeof(I) should be the total size of the
items copied by the copy constructor/assignment operator.

5.18.3 Description

An instance of class AMI_block<E,I> is a typed view of a logical block, which is the unit amount of
data transfered between external storage and main memory.

The AMI_block class serves a dual purpose: (a) to provide an interface for seamless transfer of
blocks between disk and main memory, and (b) to provide a structured access to the contents of the
block. The first purpose is achieved through internal mechanisms, transparent to the user. When
creating an instance of class AMI_block, the constructor is responsible for making the contents of the
block available in main memory. When the object is deleted, the destructor is responsible for writing
back the data, if necessary, and freeing the memory. Consequently, during the life of an AMI_block
object, the contents of the block is available in main memory. The second purpose is achieved by
partitioning the contents of the block into three fields:

Links: an array of pointers to other blocks, represented as block identifiers, of type AMI_bid;

Elements: an array of elements of parameter type E;

Info: an info field of parameter type I, used to store a constant amount of administrative data;

The number of elements and links that can be stored is set during construction: the number of
links is passed to the constructor, and the number of elements is computed using the following formula:

number of elements =
⌊

block size− (sizeof(I) + sizeof(AMI bid) ∗ number of links)
sizeof(E)

⌋

5.18.4 Constructors and Destructor

AMI block(AMI COLLECTION *pcoll, unsigned int l, AMI bid bid);
Read the block with id bid from block collection *pcoll in newly allocated memory and
format it using the template types and the maximum number of links l. Persistence is set
to PERSIST_PERSISTENT.

AMI block(AMI COLLECTION *pcoll, unsigned int l);
Create a new block in collection *pcoll, allocate memory for it, and format it using the tem-
plate types and the maximum number of links l. Persistence is set to PERSIST_PERSISTENT.
The id of the block can be inquired using the access member function bid().

∼AMI block();
Destructor. If persistency is PERSIST_DELETE, remove the block from the collection. If it is
PERSIST_PERSISTENT, write the block to the collection. Deallocate the memory.
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5.18.5 Public Member Objects

b vector<E> el;
Access to the elements is done through this object, using the public methods of the b_vector
class (described below).

b vector<AMI bid> lk;
Access to the links is done through this object, using the public methods of the b_vector
class (described below).

5.18.6 Public Member Functions

AMI block<E,I>& operator=(AMI block<E,I>& B);
Copy block B into the current block, if both blocks are associated with the same collection.
Returns a reference to this block.

bool operator!() const;
Return true if the block’s status is not AMI_BLOCK_STATUS_VALID. See also is_valid()
and status().

AMI bid bid() const;
Return the block id.

size t block size() const;
Return the size of this block in bytes.

char& dirty();
Return a reference to the dirty bit. The dirty bit is used to optimize writing in some
implementations of the block collection class. It should be set to 1 whenever the block data
is modified. See the implementation details for more.

char dirty() const;
Return the value of the dirty bit.

static size t el capacity(size t bsz, size t l);
Return the capacity of the el vector of a block with size bsz and number of links l.

I *info();
Return a pointer to the info element.

const I* info() const;
Return a const pointer to the info element.

bool is valid() const;
Return true if the block’s status is AMI_BLOCK_STATUS_VALID. See also status().

void persist(persistence p);
Set the persistency flag to p. The possible values for p are PERSIST_PERSISTENT and
PERSIST_DELETE.

persistence persist() const;
Return the value of the persistency flag.

AMI block status status() const;
Return the status of the block. The result is either AMI_BLOCK_STATUS_VALID or
AMI_BLOCK_STATUS_INVALID. The status of an AMI_block instance is set during construc-
tion. The methods of an invalid block can give erroneous results or fail.

AMI err sync();
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Synchronize the in-memory image of the block with the one stored in external storage.

5.18.7 The b vector class

The b_vector class stores an array of objects of a templated type T. It has a fixed maximum size,
or capacity, which is set during construction (since instances of this class are created only by the
AMI_block class, the constructors are not part of the public interface). The items stored can be
accessed through the array operator.

Class Declaration

template<class T> class b vector;
The type T should have a default constructor, as well as copy constructor and assignment
operator.

Member Functions

T& operator[](size t i);
Return a reference to the ith item.

const T& operator[](size t i) const;
Return a const reference to the ith item.

size t capacity() const;
Return the capacity (i.e., maximum number of T elements) of this b_vector.

size t copy(size t start, size t length, b vector<T>& src, size t src start = 0);
Copy length items from the src vector, starting with item src_start, to this vector,
starting with item start. Return the number of items copied. Source can be *this.

size t copy(size t start, size t length, const T* src);
Copy length items from the array src to this vector, starting in position start. Return
the number of items copied.

void insert(const T& t, size t pos);
Insert item t in position pos; all items from position pos onward are shifted one position
higher; the last item is lost.

void erase(size t pos);
Erase the item in position pos and shift all items from position pos+1 onward one position
lower; the last item becomes identical with the next to last item.
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5.19 Block Collections

5.19.1 Files

#include <ami coll.h>

5.19.2 Class declaration

class AMI COLLECTION;

5.19.3 Description

A block collection is a set of fixed size blocks. Each block inside the collection is identified by a block
ID, of type AMI_bid.

5.19.4 Constructors and Destructor

AMI COLLECTION(size t lbf = 1);
Create a new collection with access type AMI_WRITE_COLLECTION using temporary file names.
The files are created in a directory given by the AMI_SINGLE_DEVICE environment variable
(or /var/tmp/ if that variable is not set). The lbf (logical block factor) parameter deter-
mines the size of the blocks stored (the block size is lbf times the operating system page
size). The persistency of the collection is set to PERSIST_DELETE.

AMI COLLECTION(char *base file name, AMI collection type t = AMI READ WRITE COLLECTION,
size t lbf = 1);

Create a new or open an existing collection using base_file_name to find the necessary
files. The access type is set to t. It has one of the following values:

AMI_READ_COLLECTION Open an existing collection read-only;

AMI_WRITE_COLLECTION If the files specified by base_file_name exist, open a collec-
tion using those files for reading and writing. If the files do not exist, create a new
collection with read and write access;

The lbf (logical block factor) parameter determines the size of the blocks stored (the block
size is lbf times the operating system page size). The persistency of the collection is set to
PERSIST_PERSISTENT.

∼AMI COLLECTION();
Destructor. Closes all files. If persistency is set to PERSIST_DELETE, it also removes the
files. There should be no blocks in memory. If the destructor detects in-memory blocks, it
issues a warning in the TPIE log file (if logging is turned on). The memory held by those
blocks is lost to this program.

5.19.5 Member Functions

bool operator!() const;
Return true if the status of the collection is not AMI_COLLECTION_STATUS_VALID, false
otherwise. See also is_valid() and status().

size t block factor() const;
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Return the logical block factor. The block size is obtained by multiplying the operating
system page size by this value.

size t block size() const;
Return the size of a block stored in this collection, in bytes (all blocks in a collection have
the same size).

static const tpie stats collection& gstats();
Return an object containing the statistics of all collections opened by the application (global
statistics). See also stats().

bool is valid() const;
Return true if the status of the collection is AMI_COLLECTION_STATUS_VALID, false oth-
erwise. See also status().

void persist(persistence p);
Set the persistency flag to p. The possible values for p are PERSIST_PERSISTENT and
PERSIST_DELETE.

persistence persist() const;
Return the value of the persistency flag.

size t size() const;
Return the number of blocks in the collection.

const tpie stats collection& stats() const;
Return an object containing the statistics of this collection. The types of statistics computed
for a collection are tabulated below. See also gstats().
BLOCK_GET Number of block reads
BLOCK_PUT Number of block writes
BLOCK_NEW Number of block creates
BLOCK_DELETE Number of block deletes
BLOCK_SYNC Number of block sync operations
COLLECTION_OPEN Number of collection open operations
COLLECTION_CLOSE Number of collection close operations
COLLECTION_CREATE Number of collection create operations
COLLECTION_DELETE Number of collection delete operations

AMI collection status status() const;
Return the status of the collection. The result is either AMI_COLLECTION_STATUS_VALID or
AMI_COLLECTION_STATUS_INVALID. The only operation that can leave the collection invalid
is the constructor (if that happens, the log file contains more information). No blocks should
be read from or written to an invalid collection.

void *user data();
Return a pointer to a 512-byte array stored in the header of the collection. This can be used
by the application to store initialization information (e.g., the id of the block containing the
root of a B-tree).
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5.20 B+-tree

5.20.1 Files

#include <ami btree.h>

5.20.2 Class Declaration

template<class Key, class Value, class Compare, class KeyOfValue>
class AMI btree;

5.20.3 Description

The AMI_btree<Key, Value, Compare, KeyOfValue> class implements the behavior of a dynamic
B+-tree or (a, b)-tree storing fixed-size data items. All data elements (of type Value) are stored in
the leaves of the tree, with internal nodes containing keys (of type Key) and links to other nodes. The
keys are ordered using the Compare function object, which should define a strict weak ordering (as in
the STL sorting algorithms). Keys are extracted from the Value data elements using the KeyOfValue
function object.

5.20.4 Constructors and Destructor

AMI btree(const AMI btree params &params = btree params default);
Construct an empty AMI btree using temporary files. The tree is stored in a directory
given by the AMI_SINGLE_DEVICE environment variable (or /var/tmp/ if that variable is
not set). The persistency flag is set to PERSIST_DELETE. The params object contains the
user-definable parameters (see Appendix for an explanation of the AMI_btree_params class
and the default values).

AMI btree(const char *bfn, BTE collection type t = BTE WRITE COLLECTION, const
AMI btree params &params = btree params default);

Construct a B-tree using the files given by bfn (base file name). The files created/used by
a Btree instance are outlined in the following table.
bfn.l.blk Contains the leaves block collection.
bfn.l.stk Contains the free blocks stack for the leaves block collection.
bfn.n.blk Contains the nodes block collection.
bfn.n.stk Contains the free blocks stack for the nodes block collection.

The persistency flag is set to PERSIST_PERSISTENT. The params object contains the user-
definable parameters (see Appendix for an explanation of the AMI_btree_params class and
the default values).

∼AMI btree();
Destructor. Either remove or close the supporting files, depending on the persistency flag
(see method persist()).

5.20.5 Member functions

bool erase(const Key& k);
Delete the element with key k from the tree. Return true if succeeded, false otherwise (key
not found).
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bool find(const Key& k, Value& v);
Find an element based on its key. If found, store it in v and return true.

size t height() const;
Return the height of the tree, including the leaf level. A value of 0 represents an empty tree.

bool insert(const Value& v);
Insert an element v into the tree. Return true if the insertion succeeded, false otherwise
(duplicate key).

bool is valid() const;
Return true if the status of the tree is AMI_BTREE_STATUS_VALID, false otherwise. See
also status().

AMI err load(AMI STREAM<Value>* is, float lf = 0.7, float nf = 0.5)
Bulk load from the stream is of elements. Leaves are filled to lf×capacity, and nodes are
filled to nf×capacity.

AMI err load(AMI btree<Key, Value, Compare, KeyOfValue>* bt, float leaf fill = .7,
float node fill = .5);

Bulk load from another B-tree. This is a means of reorganizing a B-tree after a lot of
updates. A newly loaded structure may use less space and may answer range queries faster.

AMI err load sorted(AMI STREAM<Value>* is, float lf = 0.7, float nf = 0.5);
Same as load() above, but bypasses the expensive sorting step, by assuming that the stream
is is sorted.

const AMI btree params& params() const;
Return a const reference to the AMI_btree_params object used by the B-tree. This object
contains the true values of all parameters (unlike the object passed to the constructor, which
may contain 0-valued parameters to indicate default behavior; see Section 5.20.6 below).

void persist(persistence p);
Set the persistency flag to p. The persistency flag dictates the behavior of the destructor
of this AMI_btree object. If p is PERSIST_DELETE, all files associated with the tree will be
removed, and all the elements stored in the tree will be lost after the destruction of this
AMI_btree object. If p is PERSIST_PERSISTENT, all files associated with the tree will be
closed during the destruction of this AMI_btree object, and all the information needed to
reopen this tree will be saved.

bool pred(const Key& k, Value& v);
Find the highest element stored in the tree whose key is lower than k. If such an element
exists, return true and store the result in v. Otherwise, return false.

void range query(const Key& k1, const Key& k2, AMI STREAM<Value>* os);
Find all elements within the range given by keys k1 and k2 and write them to stream os.

size t size() const;
Return the number of elements stored in the leaves of this tree.

AMI err sort(AMI STREAM<Value>* is, AMI STREAM<Value>* &os);
As a convenience, this function sorts the stream is and stores the result in os. If the value
of os passed to the function is NULL, a new stream is created and os points to it.

AMI btree status status() const;
Return the status of the collection. The result is either AMI_BTREE_STATUS_VALID or
AMI_BTREE_STATUS_INVALID. The only operation that can leave the tree invalid is the
constructor (if that happens, the log file contains more information).

bool succ(const Key& k, Value& v);
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Find the lowest element stored in the tree whose key is higher than k. If such an element
exists, return true and store the result in v. Otherwise, return false.

AMI err unload(AMI STREAM<Value>* s);
Write all elements stored in this tree to the given stream, in sorted order. No changes are
performed on the tree.

5.20.6 The AMI btree params Class

The AMI_btree_params class encapsulates all user-definable B-tree parameters. These parameters
dictate the layout of the tree and its behavior under insertions and deletions. An instance of the class
created using the default constructor gives default values to all parameters. Each parameter can then
be changed independently.

Class Declaration

class AMI btree params;

Constructor

AMI btree params()
Initialize a Btree_params object with default values. The default values are given in the
following table.
Parameter Value
leaf_size_min 0
node_size_min 0
leaf_size_max 0
node_size_max 0
leaf_block_factor 1
node_block_factor 1
leaf_cache_size 5
node_cache_size 10

Public Member Objects

size t leaf size min

Minimum number of elements in a leaf. A value of 0 tells the class to use the default B+-tree
behavior. This parameter is a guideline. To improve performance, some leaves may have
fewer elements.

size t node size min

Minimum number of keys in an internal node. A value of 0 tells the class to use the default
B+-tree behavior. As above, this parameter is a guideline.

size t leaf size max

Maximum number of elements in a leaf. A value of 0 tells the class to fill a leaf to capacity.
This value is strictly enforced.

size t node size max

Maximum number of keys in an internal node. A value of 0 tells the class to fill a node to
capacity. This value is strictly enforced.

size t leaf block factor

The size (in bytes) of a leaf block is leaf_block_factor×os_block_size, where
os_block_size is the operating-system specific page size.
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size t node block factor

The size (in bytes) of an internal node block is node_block_factor×os_block_size.

size t leaf cache size

The size (in number of leaf blocks) of the leaf block cache. The cache implements an LRU
replacement policy.

size t node cache size

The size (in number of node blocks) of the node block cache. The cache implements an LRU
replacement policy.
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5.21 Cache Manager

5.21.1 Files

#include <ami cache.h>

5.21.2 Class Declaration

template<class T, class W> class AMI CACHE MANAGER;

5.21.3 Description

5.21.4 Constructors and Destructor

AMI CACHE MANAGER(size t capacity);
Construct a fully-associative cache manager with the given capacity.

AMI CACHE MANAGER(size t capacity, size t assoc);
Construct a cache manager with the given capacity and associativity.

∼AMI CACHE MANAGER();
Destructor. Write out all items still in the cache.

5.21.5 Member Functions

bool read(size t k, T & item);
Read an item from the cache based on key k and store it in item. If found, the item is
removed from the cache. Return true if the key was found.

bool write(size t k, const T & item);
Write an item in the cache based on the given key k. If the cache was full, the least recently
used item is written out using the W function object, and it is removed from the cache.

bool erase(size t k);
Erase an item from the cache based on the given key k. Return true if the key was found.
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5.22 Progress Indicators

5.22.1 Files

#include <progress indicator arrow.h>

#include <progress indicator spin.h>

5.22.2 Class Declaration

class progress indicator arrow;

class progress indicator spin;

5.22.3 Description

At times, especially when processing large data sets, the user might want the program to provide in-
formation about how much progress has been made. TPIE provides a class hierarchy with an abstract
base class progress_indicator_base for realizing such indicators. TPIE offers terminal-based indica-
tors, such as progress_indicator_arrow that shows an extending arrow or progress_indicator_spin
that shows a spinning “wheel”. To allow for other types of indicators such as graphics-based indica-
tors for (interfaces to) indicators provided by other APIs, the terminal-based indicators inherit from
progress_indicator_terminal which in turn inherits from progress_indicator_base. To include
other types of non-terminal-based indicators, the user thus should subclass progress_indicator_base.

All indicators are based upon the following concept: The indicator is given a range [minRange,maxRange]
and a parameter stepValue. For each update to the indicator and starting at minRange, the progress
status will be advanced by stepValue units.

5.22.4 Constructor

progress indicator arrow(const char* title, const char* description, TPIE OS OFFSET
minRange, TPIE OS OFFSET maxRange, TPIE OS OFFSET stepValue)

Constructs a progress indicator with a given title and task description that can “count”
from minRange to maxRange by advancing stepValue units per step.

5.22.5 Member functions

void init(const char* description=NULL)
Display a zero count. This method may also be used to simultaneously set a new description.

void reset()
Reset the counter. The current position is reset to the lower bound of the counting range.

void done(const char* text = NULL)
Advance the indicator to the end and print an (optional) message that is followed by a
newline.

void set range(TPIE OS OFFSET minRange, TPIE OS OFFSET maxRange, TPIE OS OFFSET
stepValue)
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Simultaneously set the upper and lower bound of the counting range. Also, set the increment
for each step. There is a sanity check that ensures that minRange ≤ maxRange and that
stepValue ∈ [1,maxRange −minRange].

void set percentage range(TPIE OS OFFSET minRange, TPIE OS OFFSET maxRange, unsigned
short percentageUnit = 100)

Simultaneously set the upper and lower bound of the counting range and set the increment
to be max{1, (1/percentageUnit)(maxRange − minRange)}. There is a sanity check that
ensures that minRange ≤ maxRange.

void step()
Record an increment to the indicator and advance the indicator.

void step percentage()
Record an increment but only advance the indicator if it will be advance by at least one
percentageUnit (as defined in setPercentageRange).

void set min range(TPIE OS OFFSET minRange)
Set the lower bound of the counting range. This method also implies a reset of the counter.
In order to be able to set the lower bound independent of setting the upper bound, no range
checking is done.

void set max range(TPIE OS OFFSET maxRange)
Set the upper bound of the counting range. This method also implies a reset of the counter.
In order to be able to set the upper bound independent of setting the lower bound, no range
checking is done.

void set step value(TPIE OS OFFSET stepValue)
Set the increment by which the counter is advanced upon each call to step(). In order to
be able to reset the counter, no range checking is done.

void set title(const char* title)
Set the title of a new task to be monitored. For terminal-based indicators, the following
holds: The terminal line will be newline’d, and the title will be followed by a newline as
well.

void set description(const char* description)
Set the description of the task currently being monitored. For terminal-based indicators,
the following holds: Invoking this method will clear the terminal line.

The following method is realized for terminal-based indicators only.

void set indicator length(int indicatorLength)
Set the maximum length of the indicator, i.e., the number of characters the indicator occu-
pies on a single line. The length is enforced to be an integer in [2, 60].
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5.22.6 Example Program

The following program is meant to illustrate the use of a progress indicator:

// Include the file that will allow us to use the indicator.

#include <progress_indicator_arrow.h>

int main(int argc , char *argv []) {

int upper = 32*1024;

// Count from 0 to upper in units of 5 steps.

progress_indicator_arrow * indicator = new

10 progress_indicator_arrow("Title of an indicator", "Tests so far:",

0, upper , 5);

for (int i=0; i< upper; i++) {

// Advance on every fifth step.

if (!(i % 5)) {

indicator ->step ();

}

}

indicator ->done("Done.");

20

upper = upper * 1024;

indicator ->set_title("Checking the percentage -based indicator");

indicator ->set_description("Pass 1/3:");

// Update the display with every 1.0% of progress

indicator ->set_percentage_range (0,upper );

indicator ->init ();

for (int i=0; i< upper; i++) {

indicator ->step_percentage ();

30 }

indicator ->set_description("Pass 2/3:");

// Update the display with every 0.1% of progress

indicator ->set_percentage_range (0,upper ,1000);

indicator ->init ();

for (int i=0; i< upper; i++) {

indicator ->step_percentage ();

}

40 indicator ->set_description("Pass 3/3:");

// Update the display with every 5.0% of progress

indicator ->set_percentage_range (0,upper ,20);

indicator ->init ();

for (int i=0; i< upper; i++) {

indicator ->step_percentage ();

}

indicator ->done("Done as well.");

50 delete indicator;

return 0;

}

Listing 5.1: A sample program illustrating the use of a progress indicator.
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Chapter 6

The Implementation of TPIE

<TO BE WRITTEN>(Block oriented part of TPIE)-66-

[66]: LA: Should
there be some-
thing about
progress bar in
theis chapter?

6.1 The Structure of TPIE

TPIE-67- has three main components, the Access Method Interface (AMI), a Block Transfer Engine (BTE) [67]: LA: We
should have
something like
this in beginning
of tutorial

component, and a Memory Manager (MM) component. Various Block Transfer Engines (BTEs) can
be chosen for handling disk block transfers, perhaps more than one in a single application.-68- The MM

[68]: LA: really?component provides low level memory management services such as allocating, deallocating, and ac-
counting of internal memory. The AMI works on top of the Memory Manager and one or more
BTEs to provide a uniform interface for application programs. Applications that use this interface
are portable across hardware platforms, since they never have to deal with the underlying details of
how I/O is performed on a particular machine. This chapter describes the design decisions, algo-
rithms, and implementation decisions that were used to build the MM, BTE and AMI components of
TPIE. The Reference Section contains a description of the AMI and Memory Manager entry points
that an application programmer might normally use. Typically, an application programmer will not
request services from a BTE directly. For this reason, the BTE services are not presented in the
Reference Section of this manual, but are presented here for those readers who wish to understand
the implementation details of TPIE.

The MM manages random access memory on behalf of TPIE. Currently, TPIE is distributed with
an MM designed for a single processor, or multiprocessor system with a single global address space.
This MM is relatively simple; its task is to allocate and manage the physical memory used by the
BTE component.

The AMI is an interface layer between the BTE and user level processes. It implements fundamen-
tal access methods, such as scanning, permutation routing, merging, and distribution. It also provides
a consistent, object-oriented interface to application programs. The key to keeping the AMI simple
and flexible is the fact that its user accessible functions serve more as templates for computation than
as actual problem solving functions. The details of how a computation proceeds within the template
is up to the application programmer, who is responsible for providing the functions that the template
applies to data.

6.2 The Block Transfer Engine (BTE)
[69]: LA: Jan
please check this
section

[70]: LA: This
whole section
needs an over-
haul - discuss
implementation
much more

The BTE component is intended to bridge the gap between the I/O hardware and the rest of the
system. It is the layer that is ultimately responsible for moving blocks of data from physical disk
devices to main memory and back. It works alongside the traditional buffer cache in a UNIX system.
Unlike the buffer cache, which must support concurrent access to files from multiple address spaces, the

91
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BTE is specifically designed to support high throughput processing of data from secondary memory
through a single, user level address space. In order to efficiently support the merging, distribution,
and scanning paradigms, several BTEs support stream-oriented input and output of data blocks. To
further improve performance, some BTE implementations move data from disk directly into user space
rather than using a kernel-level buffer cache. This saves both main memory space and copying time.1-71-

[71]: JV: Do you
mean the block
collection BTE? Streams in TPIE are implemented as sequentially accessed files, and each BTE offers public mem-

ber functions that are analogous to, and implemented via corresponding functions available in the
underlying file access method . The main difference is that TPIE maintains a typed view of streams,
where user-defined data elements (i.e. objects) are accessed in a stream, rather than the untyped view
of the data offered by the corresponding file access primitives.-72-
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Version 082902 of TPIE supports the following three BTE stream implementations:

1. BTE_stream_stdio, which uses the stdio library as its file access method;

2. BTE_stream_ufs, which performs I/O via read()/write() system calls;

3. BTE_stream_mmap, which uses memory-mapping to perform I/Os.

The implementation of BTE_stream_stdio can be regarded as an external direct-access array, since
the position of the i-th element in the stream is given by sizeof(BTE_stream_header) + i*sizeof(T)
where T is the type of objects stored in the stream. In this implementation, blocking disk accessed is
completely at the hands of the operating system.

The other two implementation use (logically) blocked I/O, i.e., they allocate a larger chunk of
memory (logical block), place the objects to be written into this memory chunk, and then transfer it
to disk with a single I/O. Since elements cannot be cross block boundaries, some space inside a block
may be wasted, if sizeof(T) does not divide the logical block size. The two implementations differ in
that BTE_stream_ufs uses system calls which in turn are buffered by the operating system, whereas
BTE_stream_mmap directly maps files (or blocks thereof) into main memory thus bypassing the buffer
cache.

The choice of BTE in a given application is controlled by compile-time variables in the app_config.
h file. The BTE_stream_stdio implementation is selected by defining the variable BTE_STREAM_IMP_STDIO,
the BTE_stream_ufs implementation by defining BTE_STREAM_IMP_UFS, and the memory mapped
implementation by defining BTE_STREAM_IMP_MMAP. For example, the following code selects the
BTE_stream_ufs Block Transfer Engine (and does not select the others):

//#define BTE_STREAM_IMP_MMAP

//#define BTE_STREAM_IMP_STDIO

#define BTE_STREAM_IMP_UFS

Multiple implementations are allowed to coexist, with some restrictions, e.g. declarations of
streams must use explicit subclasses of AMI_stream_base-73- to specify what type of streams they are.-74--75-

[73]: LA: BTE?

[74]: LA:
This needs to
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[75]: DH: I am
skeptical that
it works with
multiple impl.,
but I don’t see
why we need
this feature with
single disks.
Multiple impls.
in an app may be
possible with sep-
arate compiles?
We may need
more flexibility
with multi disk
implementations
however.

The best choice of BTE for a given application is both application and system dependent. Section 7.2.1
discuss how to choose an appropriate BTE (also refer to the more detailed descriptions of the BTE’s
in the next three subsections). If none of the available BTEs is selected, BTE_STREAM_IMP_UFS is
defined by default and a warning is generated at compile time.-76-

[76]: LA: Which
BTE is default?

6.2.1 BTE Common Functionality

All BTE stream implementations inherit from class BTE_stream_base (in file include/bte_stream_
base.h) and must support the member functions listed below.

As the details of each access method (i.e. BTE_stream_ufs, BTE_stream_stdio or BTE_stream_mmap
are different, the BTEs generally have different member function implementations, including con-
structors (construction involves opening the appropriate stream file, etc.). The implementations
of the access methods BTE_stream_ufs, BTE_stream_stdio, and BTE_stream_mmap are defined in

1TPIE also provides a BTE implementation with support for random-access to disk blocks. Such functionality is
useful when implementing external data structures (indexes). This BTE will be documented in a future version of this
manual.
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the respective files include/bte_stream_ufs.h, include/bte_stream_stdio.h, and include/bte_
stream_mmap.h. Functionally, the member functions for each BTE are similar and are outlined in the
next subsection.

Header Information In addition to the data elements stored in a stream, a TPIE stream contains
a “header block” which contains BTE-dependent information, as well as context information such as
the length of the stream, the size of each item in the stream, etc. Furthermore, to facilitate debugging,
the stream header also records the type of BTE that was used to create the stream. The complete
listing of all information stored in a BTE header block is given below:

#ifndef _BTE_STREAM_HEADER_H

#define _BTE_STREAM_HEADER_H

// BTE stream header info.

struct BTE_stream_header {

// Unique header identifier . Set to BTE_STREAM_HEADER_MAGIC_NUMBER.

unsigned int m_magicNumber;

10 // Should be 2 for current version ( version 1 has been deprecated ).

unsigned int m_version;

// The type of BTE_STREAM that created this header . Not all types of

// BTE’s are readable by all BTE implementations . For example ,

// BTE_STREAM_STDIO streams are not readable by either

// BTE_STREAM_UFS or BTE_STREAM_MMAP implementations . The value 0 is

// reserved for the base class . Use numbers bigger than 0 for the

// various implementations.

unsigned int m_type;

20

// The number of bytes in this structure.

TPIE_OS_SIZE_T m_headerLength;

// The size of each item in the stream.

TPIE_OS_SIZE_T m_itemSize;

// The size of a physical block on the device this stream resides.

TPIE_OS_SIZE_T m_osBlockSize;

30 // Size in bytes of each logical block , if applicable.

TPIE_OS_SIZE_T m_blockSize;

// For all intents and purposes , the length of the stream in number

// of items.

TPIE_OS_OFFSET m_itemLogicalEOF;

};

#endif // _BTE_STREAM_HEADER_H

Listing 6.1: The definition of the header used for BTE streams.

Stream Constructors

BTE_stream_mmap ( const char *dev_path , BTE_stream_type st );
BTE_stream_stdio ( const char *dev_path , BTE_stream_type st );
BTE_stream_ufs ( const char *dev_path , BTE_stream_type st );
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These constructors each create a stream which is backed by the file whose path is pointed to by
dev_path. The stream can be opened in one of several modes, depending on the value of st:

• BTE_READ_STREAM: the stream can be read, but not written. The underlying file must have been
created previously in this case.

• BTE_WRITE_STREAM or BTE_WRITEONLY_STREAM: the stream can be written, but not read. This
will allow a new stream to be created or overwrite a previously-created one.

• BTE_APPEND_STREAM: the stream is opened, and positioned to the end of stream so that new
data can be appended. This is valid only if the stream was previously created.

Each constructor also takes an optional, third argument lbf of type TPIE_OS_OFFSET that denotes
the so-called logical block factor and indicates of how many consecutive (physical) disk blocks a
logical block is composed. This argument defaults to 1; it is not used in the BTE_stream_stdio
implementation.

new substream

BTE_err new_substream(BTE_stream_type st ,
TPIE_OS_OFFSET sub_begin ,
TPIE_OS_OFFSET sub_end ,
BTE_stream_base <T> ** sub_stream );

Constructs a substream of the current stream. A substream is a logical contiguous subset of a stream,
i.e. from the implementation point of view, it is a contiguous subset of the data elements in a file.
The parameters of new_substream() are as follows:

• sub_begin and sub_end are object offsets into the current stream, indicating the limits of the
new substream.

• st is the stream type of the new substream. Please refer to the discussion of substream con-
structors above for a list of the valid (sub)stream types.

• sub_stream will be given the address of a pointer to the new substream.

While it might seem logical to explicitly define a substream in TPIE as inheriting (in the C++
sense) from a stream, this would imply a need for both to have a constructor, and hence for the stream
constructor to be virtual. This is technically impossible in C++,-77- and so the “pseudo-constructor”[77]: LA: why?

approach described here is used instead.-78- Note that, in order to provide a generic interface, that[78]: LA: Extend
like in AMI ref.
Stream type? may be used, e.g., from within the AMI, the type of the “return value” sub_stream needs to be

BTE_stream_base<T> **, so the user will need to (dynamically) cast it to the appropriate type.

read item

BTE_err read_item(T ** elt);

Update the pointer pointed to by elt to reference the next element in the stream. Since the application
data elements are blocked, this often does not require a physical I/O operation. If the current block
has been exhausted, the first element of the next block will be accessed. In some cases the BTE will
try to prefetch the next block and it may already be in memory. (See descriptions of the individual
BTEs for more details about prefetching or read-ahead.)

write item

BTE_err write_item(const T &elt);
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Writes the data element elt to the current position in the stream. Streams are normally written in
sequential order, and so the current position is usually directly after the previous element written.
The current position (which we will refer to as the value of the file pointer) can be modified via the
seek command below.

seek

BTE_err seek(TPIE_OS_OFFSET offset );

Seeks to the object offset offset in the stream. The BTE seek member function is similar to and
utilizes the seek function supported by the underlying file I/O system being used. The difference is
that TPIE performs a seek to the requested application data element in the stream rather than to a
byte offset within a file of untyped data.

tell

TPIE_OS_OFFSET tell () const;

Returns the file pointer of the current streams in terms of items.

truncate

BTE_err truncate(TPIE_OS_OFFSET offset );

Truncates/extends the stream to the specified number of application data elements. The file pointer
will be moved to the end of the stream. This is analogous to the truncate function of the underlying
file access method. Note: truncate is not supported for substreams.

main memory usage

BTE_err main_memory_usage(TPIE_OS_SIZE_T *usage ,
MM_stream_usage usage_type ) const;

Queries how much memory is used by the stream for usage_type purposes. On return, usage points
to the value used. The valid values for usage_type are as follows:

• MM_STREAM_USAGE_OVERHEAD: the size in bytes of the stream object plus, if this is not a sub-
stream, the stream header block.

• MM_STREAM_USAGE_BUFFER: the number of bytes consumed by block buffers (blocks of elements
in main memory).

• MM_STREAM_USAGE_CURRENT: MM_STREAM_USAGE_OVERHEAD plus the number of bytes currently
consumed by block buffers for this stream.

• MM_STREAM_USAGE_MAXIMUM: MM_STREAM_USAGE_OVERHEAD plus the maximum number of bytes
that will be consumed by block buffers for this stream.

• MM_STREAM_USAGE_SUBSTREAM: The same as MM_STREAM_USAGE_OVERHEAD but assumes that this
is a substream.

status

BTE_stream_status status () const;

Returns the status of the stream as one of the following values:
• BTE_STREAM_STATUS_NO_STATUS: No status information exists for the stream.
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• BTE_STREAM_STATUS_INVALID: An error was encountered while manipulating the stream and
the stream can no longer be used.

• BTE_STREAM_STATUS_END_OF_STREAM: The end of stream was encountered.

stream len

TPIE_OS_OFFSET stream_len () const;

Returns the current number of application data elements in the stream.

name

BTE_err name(char ** stream_name ) const;

Returns the path name of the file backing the stream. The name will be stored in newly allocated
space.

read only

bool read_only () const;

Returns true if the stream mode is BTE_READ_STREAM. The file mode is set when creating a stream.
See BTE constructors, above for details.

available streams

int available_streams () const;

Returns the number of additional streams that can be activated (i.e. created) before an operating
system limit on the number of open files would be exceeded. This reflects only the operating system
limit on number of open files. The TPIE memory requirements for active streams are not reflected in
this limit.

chunk size

TPIE_OS_OFFSET chunk_size () const;

Returns the number of application data elements that fit in a logical block of the current stream.

os block size

TPIE_OS_OFFSET os\_block\_size () const;

Returns the number of bytes in one physical disk block.

persist

void persist(persistence per);

Sets the persistence attribute of the current stream to the value of persistence. This may be one of
the following values:

• PERSIST_DELETE: Delete the stream from the disk when the stream destructor is called.

• PERSIST_PERSISTENT: Do not delete the stream from the disk when the stream destructor is
called.

By default, all streams are deleted when their destructors are called.
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persist

persistence persist () const;

Returns the persistence attribute of the current stream.

stats

const tpie_stream_stats & stats () const;

Returns a reference to the internal object that maintains statistical information such as read and write
operations performed.-79-

[79]: JV: Do we
have a discussion
of tpie_stats some-
where?

6.2.2 BTE stdio

The stdio BTE is implemented by the class BTE_stream_stdio, defined in file include/bte_stdio.
h. BTE_stream_stdio streams are stored as ordinary operating system files which are manipulated
via the stdio file access method, i.e., via the standard C I/O library. The read/write primitives of
BTE_stream_stdio streams are implemented using the system calls fread and fwrite. The under-
lying operating system blocking and prefetching assure that stream accesses are done in blocks and
so both blocking and prefetching are therefore automatic and invisible to the TPIE developer. Note
that this means that a (OS) kernel call is incurred every time a stream object is accessed, and that
every object passes through kernel level buffer space on its way to user space.-80-

[80]: DH: this
seems incorrect
to me.BTE_stream_stdio implements the public member functions required for all BTEs—see Sec-

tion 6.2.1 for a list of these member functions and their semantics. [81]: JV: There
used to be a dis-
cussion of several
constructors none
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code anymore.
Why did they get
deleted?

6.2.3 BTE mmap

The mmap BTE is implemented by the class BTE_stream_mmap, defined in file include/bte_stream_
stdio.h. BTE_stream_mmap streams are stored as ordinary operating system files. The TPIE BTE_stream_mmap
implementation uses memory-mapping and -unmapping mechanisms such as the Unix mmap and
munmap calls to perform I/O. A memory-mapping call allows a part of a file to be associated with a
corresponding section of internal memory. When the memory is accessed, the corresponding portion
of the file is copied directly into that memory buffer. The BTE_stream_mmap primitives explicitly
maintain the currently accessed block of the file mapped into memory. When an object outside the
current block boundaries is requested, the current block is unmapped and a new one is mapped from
the source file.

The BTE_stream_mmap is not limited to mapping in blocks of size equal to the physical block size of
the OS (typically 8K bytes). Often improved performance can be obtained by mapping blocks of much
larger size (for example 256KB). This is typically due to (track) buffering and prefetching performed
in the disk controller. The (logical) block size used by BTE_stream_mmap can be set using the macro
BTE_STREAM_MMAP_BLOCK_FACTOR in the app_config.h file. However, choosing a large (logical) block
size limits the amount of main memory available for an application program and thus the (logical)
block size should be chosen very carefully in order to obtain maximal performance.

Unlike in BTE_stream_stdio, where a function call is incurred every time a stream object is
accessed, the BTE_stream_mmap only incurs such a call on every (logical) block. This can lead to
improved performance, especially on systems with a relatively slow CPU compared to the disk. How-
ever, while prefetching of disk blocks is implicitly done by the operating system in BTE_stream_stdio,
BTE_stream_mmap has to implement its own prefetching scheme. (Note on the other hand that unlike
in BTE_stream_stdio objects does not pass through the kernel level buffer space on its way to user
space.)-82-

BTE_stream_mmap prefetching can be turned on by defining the macro BTE_MMAP_READ_AHEAD [82]: JV: If DHs
comment above
is correct, this
should go.

in the app_config.h file. If this compile-time variable is defined, BTE_stream_mmap optimize for
sequential read speed by reading (mapping) blocks into main memory before the data they contain is
actually needed. Two methods of read-ahead is provided:-83--84-

[83]: LA: Does
the asynchronous
stuff really work?

[84]: JV: A com-
ment in the code
says, AIO does
not work, so we
should get rid of
it for good.
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• If the USE_LIBAIO macro is undefined (and BTE_MMAP_READ_AHEAD is set), read ahead is done
using mmap calls.

• If the USE_LIBAIO macro is defined (and BTE_MMAP_READ_AHEAD is set), read ahead is done using
the asynchronous I/O library. This feature requires the asynchronous I/O library libaio.

By default BTE_MMAP_READ_AHEAD is defined, USE_LIBAIO is not.-85-
[85]: LA: Discuss
the two and how
they differ. BTE_stream_mmap implements the public member functions required for all BTEs—see Section 6.2.1

for a list of these member functions and their semantics. In addition to that, BTE_stream_mmap pro-
vides a substream constructor that can be used to create a stream as a substream of some other
stream.

BTE_stream_mmap(BTE_stream_mmap * super_stream ,
BTE_stream_type st,
TPIE_OS_OFFSET sub_begin ,
TPIE_OS_OFFSET sub_end );

The parameters (except for the reference to the “parent” stream) are exactly the same as for the
new_substream() method, and we refer the reader to Section 6.2.1 for their discussion.-86-

[86]: JV: Why
don’t we have
a constructor
like this for the
stdio BTE? Is it
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to re-open the
file? Strange. . .

[87]: LA: More
here?

6.2.4 BTE ufs

The ufs BTE is implemented by the class BTE_stream_ufs, defined in file include/bte_stdio.h.
BTE_stream_ufs streams are stored as ordinary operating system files. BTE_stream_ufs streams use
the read() and write() calls to implement their I/O.

Like in the case of BTE_stream_mmap the (logical) block size can be controlled using the macro
BTE_STREAM_UFS_BLOCK_FACTOR on a global basis or using the lbf constructor parameter (see Sec-
tion 6.2.1) on a per-stream basis. BTE_stream_ufs also has the same advantage as BTE_stream_mmap
over BTE_stream_stdio of only incurring one kernel call per block. However, unlike BTE_stream_mmap
(but like BTE_stream_stdio), prefetching is done implicitly by the filesystem underlying TPIE (and
objects have to pass through kernel level buffer space).-88- In BTE_stream_ufs streams, when the asyn-[88]: JV: Please

double-check
against DH’s
above comment.

chronous I/O library libaio is available, there is a provision to do (user-level) prefetching within
BTE_stream_ufs streams but we do not recommend its use on account of the implicit filesystem
prefetching.-89--90-

[89]: LA: So why
there?

[90]: JV: LIBAIO
should go, no?

BTE_stream_ufs implements the public member functions required for all BTEs—see Section 6.2.1
for a list of these member functions and their semantics. In addition to that, BTE_stream_ufs provides
a substream constructor that can be used to create a stream as a substream of some other stream.

BTE_stream_ufs(BTE_stream_ufs * super_stream ,
BTE_stream_type st,
TPIE_OS_OFFSET sub_begin ,
TPIE_OS_OFFSET sub_end );

The parameters (except for the reference to the “parent” stream) are exactly the same as for the
new_substream() method, and we refer the reader to Section 6.2.1 for their discussion.-91-

[91]: JV: Why
don’t we have
a constructor
like this for the
stdio BTE? Is it
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[92]: LA: Discuss
implementation!

6.3 The Memory Manager (MM)

The Memory Manager components of TPIE provide services related to the management of internal
memory:

• allocation and deallocation of (internal) memory as requested by the new and delete operators,

• accounting of memory usage (when required),

• enforcing of the user-specified internal memory usage limit (when required),

• logging of memory allocation requests (when required).
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In version 082902 of TPIE, the memory manager MM_manager, is built from the source files lib/
src/mm_register.cpp, lib/src/mm_base.cpp, include/mm_register.h, and include/mm_base.h.
The memory manager traps memory allocation and deallocation requests in order to monitor and
enforce memory usage limits. It provides a number of user-callable functions and services, which are
documented in Chapter 5.

<TO BE WRITTEN>
[93]: LA: There is
some text in here
that I commented
out.

[94]: (Need some
comments on the
current simple
MM that we have
and some OS
issues that come
up in attempting
to make it more
robust.)

[95]: JV: Who
wrote this? What
are the issues
mentioned?

6.4 The Access Method Interface (AMI)

The-96- AMI-level entry points provided by TPIE are documented in the Reference section of this manual

[96]: LA: As for
other sections
- whole AMI
sections need
many more
implementation
details

(see Section 5), and a number of examples of their use are given in the Tutorial section (see Section 4).
In this section we examine the TPIE source files which compose the AMI and provide a brief discussion
of their purpose and relationship to to each other. We also discuss the algorithmic decisions that were
made in constructing the various TPIE services such as creation, scanning, merging, sorting, and
permutation of streams, and the services of the block collection class. The presentation of this section
is organized by TPIE service (creation of streams, scanning of stream, etc.) and within each service
the relevant source files are itemized (alphabetically) and discussed. The index of this manual provides
a more direct way to find the documentation for a particular source file.

6.4.1 General Considerations

The following TPIE files are fundamental and therefore involved in every TPIE program, no matter
which TPIE services are accessed:-97-

[97]: DH: There
may be a better
place for some of
the stuff in this
intro• include/ami.h: This file should be included in every TPIE application program that uses the

AMI-level interface. It in turn inputs the definitions for the AMI-level services of TPIE. The
files input by include/ami.h are itemized below.

• test/app_config.h: This file contains TPIE flags and settings that can be customized to an
individual application. The options available in this file are described in detail in Section 7.1.2.

• include/config.h: This file contains flags and indicators that describe the machine and oper-
ating system on which TPIE is currently running. It is generated automatically by the TPIE
installation process and is not intended to be modified.

• lib/libtpie.a: This is the static TPIE load library. It contains code for the memory man-
ager MM_manager, TPIE logging, BTE statistics, and a small number of other services. While
most TPIE code is in the form of templates, which generate code at compile-time, application
programs must also link with lib/libtpie.a. This is described further in Section 4.12.

• include/portability.h: This file should be included in every TPIE application program since
it provides the type definitions and function declarations needed for compiling on multiple
platforms. Due to this particular importance, this file gets automatically included from include/
ami.h, so the user only should not need to explicitly include it. See Section ?? for more details.-98-

[98]: JV: This
section needs
to be writ-
ten. . .what is the
best place for
putting it?

File: include/ami.h

This include file inputs the various include files required for compilation of an application program
with TPIE.
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// Copyright (c) 1994 Darren Erik Vengroff

//

// File: ami.h

// Author : Darren Erik Vengroff <dev@cs.duke.edu >

// Created : 5/19/94

//

// $Id: ami.h,v 1.19 2003/04/17 11:59:40 jan Exp $

//

#ifndef _AMI_H
#define _AMI_H

// Get definitions for working with Unix and Windows

#include <portability.h>

// Get a stream implementation.

#include <ami_stream.h>

// Get templates for ami_scan ().

#include <ami_scan.h>

// Get templates for ami_merge ().

#include <ami_merge.h>

// Get templates for ami_sort ().

#include <ami_sort.h>

// Get templates for general permutation.

#include <ami_gen_perm.h>

// Get templates for bit permuting.

#include <ami_bit_permute.h>

// Get a collection implementation.

#include <ami_coll.h>

// Get a block implementation.

#include <ami_block.h>

// Get templates for AMI_btree.

#include <ami_btree.h>

#endif // _AMI_H

Listing 6.2: The AMI configuration file.

Each of these files is discussed in the sections that follow.

6.4.2 Creation of Streams

AMI-99- stream objects are created in a TPIE program via the AMI_STREAM keyword. AMI_STREAM is a[99]: LA: Jan
please look at
this subsection.
JV: Done

macro that resolves to a class template invocation appropriate to the declared target I/O architecture.
This involves the declared AMI implementation (see Section 5), BTE implementation (see Section 6.2)
and whether one or multiple disks are used. In the current version of TPIE an AMI_STREAM is stored
in a standard UNIX file on a single disk. For most applications, an AMI_STREAM will have type
AMI_stream, which is the TPIE base class for a stream backed by a single file (normally on a single
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disk). The string AMI_STREAM is #define’d to be the string AMI_stream in the header file include/
ami_stream_compatibility.h. This arrangement is intended to permit alternative implementations
of AMI_STREAM if necessary in the future.

The TPIE code associated with the creation and manipulation of stream objects is contained
mainly within include/ami_stream.h: This include file defines the class AMI_stream, which is the
base class for all AMI-level streams backed by a single operating system file. By means of including
include/ami_device.h, include/ami_err.h, and include/ami_stream_base.h the following basic
definitions are made:

• The code in these files defines means for accessing device names and reading environment vari-
ables.

• Also, a non-templated base class for all AMI_streams is defined that maintains basic device
information.

• The code in this file defines the AMI_err codes returned by the AMI-level services (these and
their meanings are listed in Appendix C.1.

Based upon these definitions, AMI_stream<T> is defined as follows:

1. The template parameter <T> represents the type of the application data element in the stream.

2. The code in this file defines the AMI stream types discussed in Section 5 (AMI_READ_STREAM,
AMI_WRITE_STREAM, AMI_APPEND_STREAM, and AMI_READ_WRITE_STREAM).

3. At construction time, an AMI_stream<T> is mapped onto a BTE_STREAM<T> and the AMI stream
type is mapped as follows:

• AMI_READ_STREAM is mapped to BTE_READ_STREAM

• AMI_APPEND_STREAM is mapped to BTE_APPEND_STREAM

• AMI_WRITE_STREAM and AMI_READ_WRITE_STREAM are mapped to BTE_WRITE_STREAM

4. The AMI-level services for streams are implemented by corresponding BTE-level services. The
AMI member functions described in Sections 5.2 (see examples of use of some of these in Sec-
tion 3.1) are implemented by calls to the BTE-level functions documented in Section 6.2. An
AMI stream has little internal context information as a result. Two exceptions are the following:

• r_only: this flag is true if the stream is only readable, and not writable, corresponding
to the status AMI_READ_STREAM. Maintaining this flag allows the AMI stream member
functions to catch erroneous attempt by application-level code to write to a stream whose
underlying file was opened for reading.

• destruct_bte: this flag is true if the destructor of the underlying BTE stream should
be called by the AMI-level destructor (the normal situation). If the AMI-level stream was
constructed from a pre-existing BTE stream via the constructor

AMI_stream(BTE_STREAM <T> *bs);

then a destruct_bte value of false is used to prevent the destructor from deleting the
BTE stream (owned by another AMI stream).

[100]: LA: There
is a lot of text in
here I have com-
mented out
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6.4.3 Using Multiple BTE Implementations

For-101--102- instance, if a single implementation is needed, it is sufficient for the application code to create a [101]: LA:
What does
this subsection
do/say? Seem
to be missing
something. And
does it work??

[102]: JV: Moved
it here (it was be-
fore the previous
section).

stream of int as follows:

AMI_STREAM <int > aStream;

However, if different implementations, say a ufs and an mmap stream are desired, the code would be
similar to the following:

BTE_stream_mmap firstStream(const char *dev_path , BTE_stream_type st);
BTE_stream_stdio secondStream(const char *dev_path , BTE_stream_type st);

6.4.4 Scanning

The file include/ami_scan.h defines the scanning functionality provided by TPIE. This file is me-
chanically generated by make when TPIE is compiled and built. It is essentially a concatenation
of the files include/ami_scan.h.head, include/ami_scan_mac.h, and include/ami_scan.h.tail
– for more details, see the file include/Makefile.-103- It is not intended that include/ami_scan.h be[103]: LA: Details

needed!! modified manually.

6.4.5 Merging

Merging

The file include/ami_merge.h. . .-104-
[104]: AD: The
“Darren” version

<TO BE EXTENDED>
-105-

[105]: LA: Merge
management ob-
ject etc

Merging sorted runs

<TO BE EXTENDED>

The AMI_merge_sorted() polymorphs (defined in file include/ami_merge_sorted_runs.h) work
without a merge management object and perform standard (total order/comparison based) merging.
The elimination of the merge management object object results in one less level of function calls and
thus in improved efficiency over a similar comparison based merging based on a merge management
object. The merge is controlled by a priority queue (defined in file include/mergeheap.h) which
exploits the fact that delete-min and insert are always performed together. This improves efficiency.
In AMI_key_merge() the heap stores the key and not the entire object. When the object size is large
compared to the key size, this often leads to further performance improvement.-106-

[106]: LA: Ex-
tend this stuff so
it becomes read-
able

Partition and Merge

<TO BE EXTENDED>

AMI_partition_and_merge() repeatedly merges together the maximum possible number of sub-
streams using AMI_merge(). An important point is that the substreams input to AMI_merge() dur-
ing the execution of AMI_partition_and_merge() all originate from the same underlying parent
AMI_STREAM; thus filesystem accesses are inherently non-sequential. Throughout the execution of the
merging method AMI_partition_and_merge(), there are only two active AMI_STREAMs at any time:
One which stores the substreams being merged at that stage and one which stores the substreams
output by that stage.-107-

[107]: LA: Ex-
tend this stuff so
that it becomes
readable! Is it
even true?
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6.4.6 Comparison Sorting

The file include/ami_sort.h . . .
The-108- TPIE sort implementation is a multi-way merge sort. Merge sort consists of two phases: the [108]: LA:

Add 2x sorting
somewhere. AD:
added in user
Reference. Does
progress bar stuff
also go here or is
it more general?
AD: More general

run formation phase and the merging phase. During the run formation phase, the N input elements
are read approximately M (one memory-load) at a time, sorted in memory, and written to disk as
sorted “runs”. In the merge phase, the sorted runs are merged together approximately M/B at a time
(where M is the internal memory size and B is the block size) in a round-robin manner until a single
sorted run remains; During each merge an internal merge heap is used to select the next element to be
output among the first element in each of the input runs. Below we discuss the sort implementation
in more detail.

Sort manager. The sort manager class in include/sort_manager.h is responsible for performing
the general external merge sort. It takes as template arguments the type of object to sort, an internal
sort object to use for sorting internal runs, and an mergeheap object to use for merging sorted run.
Given memory and OS restrictions, the sort manager then computes the size of internal runs to sort
as well as the number of runs to merge at one time.2-109- The manager then partitions the input data [109]: LA: Foot-

note really true?
AD: Yes. Number
of default open
file descriptors
per process in
Linux is typically
1-4K

(stream) and use the internal sort object to sort the partitioned runs (streams). Then it loops over
the sorted runs (streams) and merges runs using the merge heap object provided until a single output
run (stream) is produced.-110-

[110]: LA: Some-
thing somewhere
about why not
using merge man-
agement object
(AMI merge)?

Internal sorting. The details of how a set of elements is sorted in internal memory in the run
formation phase is defined in an internal sort class. Three different internal sort class objects–one
for each comparision type–are defined in include/internal_sort.h. Each class object has a public
function

sort(AMI_STREAM <T>* in , AMI_STREAM <T>* out , TPIE_OS_OFFSET nItems)

that reads nItems from in, sorts them and writes the sorted run to out. They all use an implementa-
tion of quicksort defined in include/quicksort.h. Optionally STL sort can be used by defining the
flag TPIE_USE_STL_SORT. In our experiments both the STL and our quicksort have similar running
times. Neither the quicksort implementation nor the STL sort is a stable sort, i.e., they do not
preserve the relative order of input elements that compare equal. If users need a stable sort, the sort
key should be modified to include the initial item offset in the comparison.

What distinguishes the different sort class objects is the way two input elements are compared
in the quicksort algorithm. The tree different variants use a comparison operator, a comparison
object, and a key plus object comparison method, respectively, to compare elements. The comparison
operator based class object uses the operator < to compare two elements; The comparison object based
class object compares two elements with a user specified comparison object containing a method
compare(const T& left, const T& right); The key plus object comparison based class object
takes a user-specified class that has two methods

copy(KEY* key , const T& item)

and

compare(const KEY& left , const KEY& right)

The copy method is used to extract a (presumably) small KEY from each input data element of type T
and the compare method is then used in to compare such keys in the quicksort algorithm.-111- Note that [111]: LA: Write

more? AD: not in
implementation
details, discussed
in user ref.

the (natural) C-style comparison function pointer sorting variant is not implemented because each
comparison would then incur a function call; the other methods can (and do) use inlined comparison
methods and thus avoid such a function call, something which is not possible with C-style comparison
functions.

2Often the number of streams that can be merged at one time is not limited by the amount of memory, but the
number of open file descriptors a running process can open at once in a given OS.



104 CHAPTER 6. THE IMPLEMENTATION OF TPIE

Sorting Comparison Class of Internal Class of Merge
Template Variant Sorter Heap
AMI_sort operator Internal_Sorter_Op merge_heap_op
AMI_sort object Internal_Sorter_Obj merge_heap_obj
AMI_ptr_sort operator Internal_Sorter_Op merge_heap_ptr_op
AMI_ptr_sort object Internal_Sorter_Obj merge_heap_ptr_obj
AMI_key_sort key object Internal_Sorter_KObj merge_heap_kobj

Figure 6.1: Customization of Arguments to sort_manager.

Merge heap. The merge heap classes used in the merge phase is defined in include/mergeheap.
h. To merge k sorted runs in k streams, the sort manager repeatedly removes the smallest element
from the merge heap, writes it to a merged sorted output stream (run) and inserts the next element
from the stream (run) that contained the output element. Because the removal of an element from a
mergeheap is (almost) always followed by a immediate insertion, each merge heap class implements
a function delete_min_and_insert that removes the smallest element and inserts the next element
from the corresponding stream in one atomic operation. This saves one heapify operation for each
delete min and insert and greatly improves performance.

Similar to the internal sort class objects, TPIE implements different mergeheap class objects
that utilize a comparison operator, a comparison object, and a key plus object comparison method,
respectively, to compare elements. In addition, mergeheap objects are implemented where pointers to
elements are maintained in the heap rather than the elements themselves. While a pointer must now
be dereference each time a comparison or heap operation is done, these variants may still be faster
than non-pointer variants for large elements, since the large elements do not have to be copied into
and around the heap.-112- Two pointer variants are implemented, namely variants that uses comparison[112]: LA: Is this

clear/true? operator and comparison object to perform comparisons; because (small) keys are extracted from the
elements and inserted in the heap in the key plus object comparison variants of the heapsort class, a
pointer version of this variant is not implemented.

Run storage on disk. The last remaining implementation detail to mention is how the sort manager
store sorted streams (runs) on disk. For a k-way merge (k ≈ M/B), the N/M initial sorted runs are
distributed evenly across k output streams, with the first N

kM runs in the first output stream, the
next N

kM sorted runs in the second output stream, and so on. When merging runs, k runs are then
merged at a time—one from each of the k streams—and newly formed runs are distributed across
k new output streams.-113- This approach has several advantages over other methods. For example, the[113]: LA: Is it

understandable? number of streams (files on disk) during sorting is at most 2k + 2; one for each for the input and
output streams, k for the runs formed in the previous pass over the data and k for the merged output
runs. Alternatively one stream could have been used per run but since most file systems have a limit
on the number of files in a directory this could lead to problems. Another alternative would be to put
all the sorted runs into a single stream (file) and use substreams to merge k runs at a time. However,
this would lead to “random access” to k different locations in the stream (file), making it difficult
for the OS or disk to predict the file access pattern, leading to inferior performance. The approach
of using a number of streams equal to the number of merged runs result in sequential access to k
separate streams (files), often leading to improved performance.

Various combinations of internal sort class and merge heap are exposed as easier to use AMI_sort
functions described in 6.1.

6.4.7 Distribution

<TO BE WRITTEN>
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6.4.8 Key Bucket Sorting

<TO BE WRITTEN>

6.4.9 General Permuting

The file include/ami_gen_perm.h . . .

<TO BE WRITTEN>

6.4.10 Bit Permuting

The file include/ami_bit_permute.h . . .-114-
[114]: JV: The
naming is incon-
sistent.

<TO BE WRITTEN>

JV: We’re missing include/ami coll.h, include/ami block.h, and include/ami btree.h.

JV: It’s not obvious that they should be included by default, though.

JV: None of the following is included from include/ami.h.

6.4.11 Dense Matrices

<TO BE WRITTEN>

6.4.12 Sparse Matrices

<TO BE WRITTEN>

6.4.13 Stacks

<TO BE WRITTEN>

6.4.14 Queues

<TO BE WRITTEN>

6.4.15 Elementwise Arithmetic

<TO BE WRITTEN>
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Chapter 7

Configuration and Performance
Tuning

[115]: LA: Jan
please check
this and add
something about
portability. Also
add something
about compiling?

7.1 TPIE Configuration

Certain behaviours of TPIE at run-time are controlled by compile-time variables, whose values should
be defined before including any TPIE headers. Depending on the options desired, the values of
these variables can be specified as early as when TPIE is installed, or as late as when an individual
application program is compiled. Section 7.1.1 described the options available at installation time.
Section 7.1.2 describes how TPIE can be configured differently for individual TPIE applications.

7.1.1 Installation Options
[116]: LA: Has
this been updated
after we changed
logging, i.e., is it
correct?

It is possible to customize certain TPIE behaviours by providing arguments to the configure script
when TPIE is first installed (see Section 2.4). None of these arguments are necessary and the first
time you build TPIE you should not need any of them. The arguments recognized are as follows:

--enable-log-lib Enable logging in TPIE library code. This can also be accomplished at com-
pile time by defining the macro TP_LOG_LIB using the syntax make lib TP_LOG_LIB=1. This
is useful for debugging the TPIE library, but slows it down. This option works by defining
TPL_LOGGING when compiling the library. Section 7.3 discusses TPIE logging.

--enable-assert-lib Enable assertions in the TPIE library code for debugging purposes. This can
also be accomplished at compile time by defining the macro TP_ASSERT_LIB using the syntax
make lib TP_ASSERT_LIB=1. This option works by defining DEBUG_ASSERTION when compiling
the library.

--enable-log-apps and

--enable-assert-apps Similar to --enable-log-lib and --enable-assert-lib, but they apply
to the test application code. Running make test with the option TP_LOG_APPS=1 and/or the
option TP_ASSERT_APPS=1 accomplishes the same thing.

--enable-expand-ami-scan Expand the macros in the file ami_scan.h when making the include
directory with the command make include (or make all). This is mainly useful for debugging
the code in ami_scan.h itself, and is not normally needed by TPIE programmers. It may make
compilation of TPIE programs slightly faster because the macro processor of the C++ compiler
will have less work to do. In addition to the standard GNU tools mentioned in Section 2.3, this
requires perl.

--disable-* Any of the options above can be explicitly disabled by using this syntax. For example
--disable-expand-ami-scan.

107
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7.1.2 Configuring TPIE for Individual Applications

Certain TPIE configuration options can be selected by setting compile-time variables in the file test/
app_config.h which is then included in an application program. A typical example of this file can
be found in the test/ directory. Selected parts of the file are shown and discussed below.-117-

[117]: LA: Some-
thing general
about TPIE
configuration as
set up by the
configure-script
needs to be
included here
(e.g. discuss
config.h file).

The File test/app config.h

//

// File: app_config.h

// Authors : Darren Erik Vengroff

// Octavian Procopiuc <tavi@cs.duke.edu >

//

// Created : 10/6/94

//

// $Id: app_config.h,v 1.36 2004/08/17 16:49:16 jan Exp $

//

10 #ifndef _APP_CONFIG_H
#define _APP_CONFIG_H

// Get the configuration as set up by the TPIE configure script.

#include <config.h>

// <><><><><><><><><><><><><><><><><><><><><><> //

// <><><><><><><> Developer use <><><><><><><> //

// <><><><><><><><><><><><><><><><><><><><><><> //

20 // Set up some defaults for the test applications

#include <portability.h>
#include <sys/types.h> // for size_t

#include <stdlib.h> // for random ()

#define DEFAULT_TEST_SIZE (20000000)
#define DEFAULT_RANDOM_SEED 17
#define DEFAULT_TEST_MM_SIZE (1024 * 1024 * 32)

30 extern bool verbose;
extern TPIE_OS_SIZE_T test_mm_size;
extern TPIE_OS_OFFSET test_size;
extern int random_seed;

// <><><><><><><><><><><><><><><><><><><><><><> //

// <><><> Choose default BTE COLLECTION <><><> //

// <><><><><><><><><><><><><><><><><><><><><><> //

40 #if (! defined(BTE_COLLECTION_IMP_MMAP ) && ! defined(BTE_COLLECTION_IMP_UFS ) && ! defined(BTE_COLLECTION_IMP_USER_DEFINED ))
// Define only one ( default is BTE_COLLECTION_IMP_MMAP)

#define BTE_COLLECTION_IMP_MMAP
//#define BTE_COLLECTION_IMP_UFS

//#define BTE_COLLECTION_IMP_USER_DEFINED

#endif
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// <><><><><><><><><><><><><><><><><><><><><><> //

// <><><><><><> Choose BTE STREAM <><><><><><> //

// <><><><><><><><><><><><><><><><><><><><><><> //

50

// Define only one ( default is BTE_STREAM_IMP_UFS)

#define BTE_STREAM_IMP_UFS
//#define BTE_STREAM_IMP_MMAP

//#define BTE_STREAM_IMP_STDIO

//#define BTE_STREAM_IMP_USER_DEFINED

// <><><><><><><><><><><><><><><><><><><><><><><><> //

// <> BTE_COLLECTION_MMAP configuration options <> //

60 // <><><><><><><><><><><><><><><><><><><><><><><><> //

// Define write behavior.

// Allowed values:

// 0 (synchronous writes)

// 1 (asynchronous writes using MS_ASYNC - see msync (2))

// 2 (asynchronous bulk writes ) [ default]

#ifndef BTE_COLLECTION_MMAP_LAZY_WRITE
#define BTE_COLLECTION_MMAP_LAZY_WRITE 2
#endif

70

// <><><><><><><><><><><><><><><><><><><><><><><><> //

// <> BTE_COLLECTION_UFS configuration options <> //

// <><><><><><><><><><><><><><><><><><><><><><><><> //

// <><><><><><><><><><><><><><><><><><><><><><><><> //

// <><> BTE_STREAM_MMAP configuration options <><> //

// <><><><><><><><><><><><><><><><><><><><><><><><> //

80

#ifdef BTE_STREAM_IMP_MMAP
// Define logical blocksize factor ( default is 32)

#ifndef BTE_STREAM_MMAP_BLOCK_FACTOR
#ifdef _WIN32
#define BTE_STREAM_MMAP_BLOCK_FACTOR 4
#else

#define BTE_STREAM_MMAP_BLOCK_FACTOR 32
#endif

#endif

90

// Enable/disable TPIE read ahead; default is enabled (set to 1)

//#define BTE_STREAM_MMAP_READ_AHEAD 1

// read ahead method , ignored unless BTE_STREAM_MMAP_READ_AHEAD is set

// to 1; if USE_LIBAIO is enabled , use asynchronous IO read ahead;

// otherwise use use mmap -based read ahead; default is mmap -based read

// ahead ( USE_LIBAIO not defined)

//#define USE_LIBAIO

100 #endif
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// <><><><><><><><><><><><><><><><><><><><><><><><> //

// <><> BTE_STREAM_UFS configuration options <><><> //

// <><><><><><><><><><><><><><><><><><><><><><><><> //

#ifdef BTE_STREAM_IMP_UFS
// Define logical blocksize factor ( default is 32)

#ifndef BTE_STREAM_UFS_BLOCK_FACTOR
110 #ifdef _WIN32

#define BTE_STREAM_UFS_BLOCK_FACTOR 4
#else

#define BTE_STREAM_UFS_BLOCK_FACTOR 32
#endif

#endif

// Enable/disable TPIE read ahead; default is disabled (set to 0)

#define BTE_STREAM_UFS_READ_AHEAD 0
// read ahead method , ignored unless BTE_STREAM_UFS_READ_AHEAD is set

120 // to 1; if USE_LIBAIO is set to 1, use asynchronous IO read ahead;

// otherwise no TPIE read ahead is done; default is disabled (set to 0)

#define USE_LIBAIO 0
#endif

// <><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> //

// logging and assertions ; //

// this should NOT be modified by user !!! //

// in order to enable/disable library/application logging , //

130 // run tpie configure script with appropriate options //

// <><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> //

// Use logs if requested.

#if TP_LOG_APPS
#define TPL_LOGGING 1
#endif

#include <tpie_log.h>

140 // Enable assertions if requested.

#if TP_ASSERT_APPS
#define DEBUG_ASSERTIONS 1
#endif

#include <tpie_assert.h>

#endif

Listing 7.1: The application configuration file.
[118]: LA: add
some intro text
here Compile-Time Options in test/app config.h

BTE_STREAM_IMP_MMAP:

BTE_STREAM_IMP_STDIO:
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BTE_STREAM_IMP_UFS: Used to choose which of the available Block Transfer Engine (see Section 6.2)
implementations to use. Version 082902 of TPIE is distributed with three BTEs and the desired
BTE is chosen by defining BTE_STREAM_IMP_STDIO, BTE_STREAM_IMP_MMAP or BTE_STREAM_IMP_UFS.
See Section 6.2 for a discussion of the implementation details in these BTEs. The next section
discusses how to choose an appropriate BTE for a given application in order to obtain maximal
performance.

If BTE_STREAM_IMP_MMAP or BTE_STREAM_IMP_UFS is defined, the following macros are used to control
BTE options (how to set the options for maximal performance is discussed in the next section):

BTE_STREAM_MMAP_BLOCK_FACTOR:

BTE_STREAM_UFS_BLOCK_FACTOR: The value of this variable determines the logical blocksize used by
the BTE as a multiple of the physical block size (refer to Section 6.2). A value of 1 indicates
that the logical blocksize is the same as the physical blocksize of the OS.

BTE_STREAM_MMAP_READ_AHEAD:

BTE_STREAM_UFS_READ_AHEAD: Defining this variable instructs the corresponding BTE (BTE_stream_mmap
or BTE_stream_ufs) to optimize for sequential read speed by reading blocks into main memory
before the data they contain is actually needed.

USE_LIBAIO: If BTE_STREAM_MMAP_READ_AHEAD is defined, defining USE_LIBAIO results in read ahead
being performed using the asynchronous I/O library libaio. If the macro USE_LIBAIO is not de-
fined the read ahead is done using mmap and double buffering in the case of BTE_STREAM_IMP_MMAP
and not done at all in the case of BTE_STREAM_IMP_UFS (refer to Section 6.2).

The rest of the compile-time variables are normally not modified by TPIE application programmers:

AMI_STREAM_IMP_SINGLE: This macro controls which Access Method Interface implementation (see
Section 6.2) to use. Version 082902 of TPIE is distributed with a single AMI implementation,
which stores the contents of a given stream on a single disk. This implementation is selected by
defining AMI_STREAM_IMP_SINGLE.

TPL_LOGGING: Set to a non-zero value to enable logging of TPIE’s internal behavior.-119- By default, [119]: LA: Is this
correct?information is logged to the log file /tmp/TPLOG_XXX where XXX is a unique system dependent

identifier. Typically it encodes the process ID of the TPIE process that produced it in some
way. See Section 7.3 for information on exactly what TPIE writes to the log file.

DEBUG_ASSERTIONS: Define to enable TPIE assertions. These assertions check for inconsistent or
erroneous conditions within TPIE itself. They are primarily intended to aid in the debugging
of TPIE. Some overhead is added to programs compiled with this macro set.

DEBUG_CERR: Defining this macro tells TPIE to write all internal assertion messages to the C++
standard error stream cerr in addition to the TPIE log file.

DEBUG_STR: Defining this macro enables certain debugging messages that report on the internal
behavior of TPIE but do not necessarily indicate error conditions. In some cases this can
increase the size of the log dramatically.

7.1.3 Environment Variables

In the current version 082902 of TPIE there is only one environment variable. The environment
variable is called AMI_SINGLE_DEVICE and defines where TPIE places temporary streams. The default
location is /var/tmp. If a different location is desired, AMI_SINGLE_DEVICE must be set accordingly.
For example (in C-shell): setenv AMI SINGLE DEVICE /usr/project/tmp/.
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7.2 TPIE Performance Tuning

7.2.1 Choosing and Configuring a BTE Implementation

Choosing an appropriate BTE implementation (and BTE parameter settings) for best performance
is both application and system dependent. (See section 6.2 for a description of the three existing
BTEs). Theoretically, BTE_stream_mmap should have the best performance for most applications,
because space and copy time is saved relative to BTE_stream_stdio and BTE_stream_ufs as steam
objects do not have to pass through kernel level buffer space when accessed. On the other hand, buffer-
ing and prefetching has to be explicitly implemented in BTE_stream_mmap whereas it is (typically)
done by the OS in BTE_stream_stdio and BTE_stream_ufs. Also theoretically, BTE_stream_ufs
(and BTE_stream_mmap) should perform better than BTE_stream_stdio because of fewer kernel calls
and because of the (possible) larger logical block size. However, in practice the performance of the
three BTE’s are very system (and application) dependent. This is for example due to different im-
plementations of the fread(), fwrite(), read(), write(), mmap(), and munmap() calls on different
machines.-120-

[120]: LA: Other
reasons?

The most important BTE configuration parameter is BTE_LOGICAL_BLOCKSIZE_FACTOR (but note
that this parameter only applies to BTE_stream_mmap and BTE_stream_ufs). The size of each buffer
and the size of each I/O in the BTE stream is BTE_LOGICAL_BLOCKSIZE_FACTOR times the operat-
ing system blocksize, so this roughly corresponds to the amount of data brought in or written out
at the cost of a single disk operation. Increasing this parameter, therefore, can reduce the num-
ber of I/O operations required to read through a stream from beginning to end. However, the
amount of memory dedicated to a stream is either BTE_LOGICAL_BLOCKSIZE_FACTOR times the op-
erating system blocksize (if prefetching is disabled) or twice BTE_LOGICAL_BLOCKSIZE_FACTOR times
the operating system blocksize (if prefetching is enabled). Consequently, the value of the parameter
BTE_LOGICAL_BLOCKSIZE_FACTOR, together with available memory, determines the number of BTE
streams (and hence AMI streams) that can be active at the same time. This gives an upper bound
on the arity of a multi-way merge or a multi-way distribution operation that can be undertaken by a
TPIE application. This in turn can have a crucial impact on (say, the number of passes required in
external sorting and hence the) net running time. A large value for BTE_LOGICAL_BLOCKSIZE_FACTOR
increases performance due to fewer kernel calls and due to the (track) buffering and prefetching in
the disk controller. Too large a value results in decreased performance due to the BTE’s use of main
memory. Thus this parameter should be chosen carefully.

As far at the other BTE configuration parameters (prefetching) are concerned, the default settings
in the app_config.h file in the test/ directory are normally the best.

In order to help in deciding which BTE to choose for a given application/system, as well as decid-
ing on what logical block size to use (in BTE_stream_mmap and BTE_stream_ufs), we have included
a C program in the test/ directory of the TPIE distribution called bte_test.c. This program can
be used to determine the streaming speeds attained by BTE_stream_stdio, BTE_stream_mmap, and
BTE_stream_ufs streams on a given system. The program simulates the buffering and I/O mecha-
nisms used by each of the BTE stream implementations so that the “raw” (in the sense that there is no
TPIE layer between the program and the filesystem) streaming speed of an I/O-buffering mechanism
combination can be determined. To use the program, define one of MMAP_TEST, READ_WRITE_TEST-121-

[121]: LA: Why
not UFS TEST? or STDIO_TEST in the program depending on whether you want to test the streaming speed of

BTE_stream_mmap, BTE_stream_ufs or BTE_stream_stdio. Also define the BLOCKSIZE_BASE pa-
rameter to be equal to the underlying operating system blocksize.-122- Compile the program using a C[122]: LA: Why

not automatic? compiler. In order to test the streaming performance of BTE streams of objects of size ItemSize, the
program first writes out some specified number NumStreams of BTE streams containing a specified
number NumItems of items. Then it carries out a perfect NumStreams-way interleaving of the streams
via a simple merge like process, writing the output to an output stream. During the computation,
each of the NumStreams streams input to the merge, as well as the stream being output by the merge
uses either one (when READ_WRITE_TEST or STDIO_TEST are set to 1) or two (when MMAP_TEST is set
to 1) buffers. In case of STDIO_TEST, the buffers are not maintained in the program but by the stdio
library. In the case of MMAP_TEST or READ_WRITE_TEST, each buffer is set to be of size block_factor
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times BLOCKFACTOR_BASE, and each I/O operation corresponds to a buffer-sized operation. To test the
streaming performance of a BTE stream with items_in_block items in each block simply execute:

bte_test NumItems ItemSize NumStreams block_factor items_in_block DataFile

The output of the program (streaming speed) is appended to the file DataFile. The streaming
speed, alternatively called I/O Bandwidth, is given in units of MB/s, and can be used to decide which
BTE to use and how to configure it.

7.2.2 Other Factors Affecting Performance

In addition to the choice (and configuration) of BTE, a number of other factors, not all of which are
TPIE specific, can effect the performance of a TPIE application.

Inlining operation management object methods. Failing to inline the operate() method of
operation management objects can be a major source of lackluster performance of an application,
since operate() is called once for every object in a stream being scanned. Inlining of operate()
is, however, just a suggestion to the compiler, which can choose to ignore it. In order to maximize
the likelihood of inlining, it is a good idea to keep the function short and simple. One way of
doing this is to wrap complex pieces of code that are called less often in separate functions.

gcc optimization. We recommend using the -O2 level of optimization of gcc in order to obtain
the best overall performance. Although better performance can normally be obtained using
-O3, this optimization leads to increased program size which can potentially result in decreased
performance.

Memory size. To insure that no disk swapping is done by the OS, the size of main memory used
by TPIE (set by MM_manager.set_memory_limit(), see Section 4.12 and Section 5.1) should
be set to a realistic value. The best value is usually much smaller than the size of the memory
installed in the computer (due to memory use of operating system resources and daemons).

7.3 TPIE Logging
[123]: LA: Is all
this true?When logging is turned on (see Section 7), TPIE creates a log file in /tmp/TPLOG_XXXXXX, where

XXXXXX is a unique system dependent identifier. TPIE writes into this file using a logstream class,
which is derived from ofstream and has the additional functionality of setting a priority and a
threshold for logging. If the priority of a message is below the threshold, the message is not logged.
There are four priority levels defined in TPIE, as follows.

TP_LOG_FATAL is the highest level and is used for all kinds of errors that would normally impair
subsequent computations. Errors are always logged;

TP_LOG_WARNING is the next lowest and is used for warnings.

TP_LOG_APP_DEBUG can be used by applications built on top of TPIE, for logging debugging infor-
mation.

TP_LOG_DEBUG is the lowest level and is used by the TPIE library for logging debugging information.

By default, the threshold of the log is set to the lowest level, TP_LOG_WARNING. To change the
threshold level, the following macro is provided:

LOG_SET_THRESHOLD(level)

where level is one of TP_LOG_FATAL, TP_LOG_WARNING, TP_LOG_APP_DEBUG, or TP_LOG_DEBUG.
The threshold level can be reset as many times as needed in a program. This enables the developer

to focus the debugging effort on a certain part of the program.
The following compile-time macros are provided for writing into the log:
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LOG_FATAL(msg) LOG_FATAL_ID(msg)

LOG_WARNING(msg) LOG_WARNING_ID(msg)

LOG_APP_DEBUG(msg) LOG_APP_DEBUG_ID(msg)

LOG_DEBUG(msg) LOG_DEBUG_ID(msg)

where msg is the information to be logged; msg can be any type that is supported by the C++
fstream class. Each of these macros sets the corresponding priority and sends msg to the log stream.
The macros ending in _ID record the source code filename and line number in the log, while the
corresponding macros without the _ID suffix do not.
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Appendix A

Test and Sample Applications

A.1 General Structure and Operation

The test and sample applications distributed with TPIE are in the test/ directory. The test programs
are designed primarily to test the operation of the system to verify that it has been installed correctly
and is as bug free as possible. These applications all have names of the form test_*. The sample
applications are designed to demonstrate the use of TPIE in the solution of non-trivial problems.

The test and sample applications all share a small amount of common initialization and argument
parsing code. They all include the header file app_config.h, which selects a particular implementation
of streams at the AMI and BTE levels. They also all use the same argument parsing function
parse_args(), which parses certain default arguments and then uses a callback function for arguments
specific to the particular application.

Much of the functionality provided by the common initialization and argument passing code is
intended to eventually be subsumed by operating system provided services. For example, the amount
of main memory a particular application is permitted to use can be set via a command line argument.
It is up to the user to be sure that this number is reasonable and does not exceed the true amount
of main memory available to the application. In the future, it is hoped that this information will be
provided by the operating system. [124]: JV:

The argument
parsing has
changed. This
section needs
to be rewritten
accordingly. LA:
please do! :-)

parse_args() is declared as follows:

parse_args ();

The following is a summary of the common command line arguments that are parsed by parse_args().

-t testsize Set the size of the test to be run to testsize. Typically this is the number of objects
to be put into the application produced input stream. In matrix tests, however, it is the number
of rows and columns in the test matrices. If this argument is not provided, then a default value
of 8 MB is used.

-m memsize The number of bytes of main memory that the application is permitted to use. The
TPIE Memory Manager will ensure that no more than this amount is used. If this option is not
specified, then a default value of 2 MB is used.

-z randomseed Seed the random number generator with the value randomseed. This is useful for
debugging or testing, when we want several runs of the application to rely on the same series of
pseudo-random numbers. For applications that do not generate test data randomly, this has no
effect.

-v Turns on verbose mode. When running in verbose mode, report major actions of the running
program to stdout.

Each application specific argument appears in the string pointed to by aso as a single character,
possibly followed by the single character ‘:’, indicating that the argument requires a value. For

117
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example, if aso pointed to the string “ax:z” then the following command line arguments would all
be parsed correctly:

-a

-x 123

-a -x 123

-ax123

-x123 -a

In each case, parse_app() would be called to take some application specific action for each of the
arguments. It would be called once with opt set to ‘a’ and optarg set to NULL, and/or once with
opt set to ‘x’ and \lstinlineoptarg— pointing to the string “123” When multiple arguments are
present on the command line, they are parsed from left to right.

The following is an example of how a test application, in this case test_ami_sort, can use appli-
cation specific command line arguments to set up its global state.

static const char as_opts [] = "R:S:rsao";
void parse_app_opt(char c, char * optarg)
{

switch (c) {
case ’R’:

rand_results_filename = optarg;
case ’r’:

report_results_random = true;
break;

case ’S’:
sorted_results_filename = optarg;

case ’s’:
report_results_sorted = true;
break;

case ’a’:
sort_again = ! sort_again;
break;

case ’o’:
use_operator = ! use_operator;
break;

}
}

int main(int argc , char ** argv)
{

parse_args(argc ,argv ,as_opts ,parse_app_opt );

...

return 0;
}

A.2 Test Programs

The test programs include with TPIE are as follows:-125-
[125]: LA: Is this
still correct?
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test_ami_merge Test fixed way merging with direct calls to AMI_merge(), as described in Section 5.7.

test_ami_pmerge Test many-way merging using AMI_partition_and_merge(), as described in Sec-
tion 5.7.

test_ami_sort Test sorting using AMI_sort() as described in Section 5.9.

test_ami_gp Test general permutation using AMI_general_permute() as described in Section 6.4.9.
The program generates an input stream consisting of sequential integers, and outputs a stream
consisting of the same integers, in reverse order.

test_ami_bp Test bit permutations using AMI_BMMC_permute() as described in Section 6.4.10. The
program generates an input stream consisting of sequential integers, and outputs a stream
consisting of a permutation of these integers, as described in the example given in the Tutorial,
Section 4.9.2.

test_matrix

test_bit_matrix Test main memory matrix manipulation and arithmetic. This is used both by the
bit permuting code described in Section 6.4.10 and the dense matrix multiplication code de-
scribed in Section 6.4.11 for internal manipulation of sub-matrices of external memory matrices.

test_ami_matrix_pad Test padding of external matrices. This is the preprocessing step for the
external dense matrix multiplication algorithm TPIE uses, which is described in Section 6.4.11.

test_ami_matrix Test external dense matrix arithmetic as described in Section 6.4.11.

test_ami_sm Test external sparse matrix arithmetic as described in Section 6.4.12.

test_ami_stack Test external memory stacks as described in Section 5.14.

test_ami_arith Test elementwise arithmetic on external memory streams as described in Sec-
tion 6.4.15. The program generates an input stream consisting of sequential integers, squares
them, and performs elementwise division between the resulting stream and the input stream.

A.3 Sample Applications

The sample applications included with TPIE are as follows:-126-
[126]: LA: True?

ch2 Two dimensional convex hull program using Graham’s scan. It is implemented using a scan
management object that maintains the upper and lower hull internally as external memory
stacks. Much of the code in this application appears in Section B.1.

lr An implementation of an asymptotically optimal list ranking algorithm. The idea of geometrically
decreasing computation is used. Much of the code in this application appears in Section B.2.

nas_ep An I/O-efficient implementation of the NAS EP parallel benchmark. This benchmark gen-
erates pairs of independent Gaussian random variates.

nas_is An I/O-efficient implementation of the NAS IS parallel benchmark. This benchmark sorts
integers using one of a variety of approaches.

Detailed descriptions of the parallel benchmarks are available from the NAS Parallel Benchmark
Report at URL http://www.nas.nasa.gov/Research/Reports/Techreports/1994/HTML/npbspec.html.

http://www.nas.nasa.gov/Research/Reports/Techreports/1994/HTML/npbspec.html
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Appendix B

Additional Examples

This chapter contains some additional annotated examples of TPIE application code.-127-
[127]: LA: Is this
chapter still ok?

B.1 Convex Hull

The convex hull of a set of points in the plane is the smallest convex polygon which encloses all
of the points. Graham’s scan is a simple algorithm for computing convex hulls. It should be dis-
cussed in any introductory book on computational geometry, such as [49]. Although Graham’s scan
was not originally designed for external memory, it can be implemented optimally in this setting.
What is interesting about this implementation is that external memory stacks are used within the
implementation of a scan management object.

First, we need a data type for storing points. We use the following simple class, which is templated
to handle any numeric type.

template <class T>

class point {

public:

T x;

T y;

20 point () {};

point(const T &rx , const T &ry) : x(rx), y(ry ) {};

~point () {};

inline int operator ==( const point <T> & rhs) const {

return (x == rhs.x) && (y == rhs.y);

}

inline int operator !=( const point <T> & rhs) const {

return (x != rhs.x) || (y != rhs.y);

}

30

// Comparison is done by x.

int operator <(const point <T> & rhs) const {

return (x < rhs.x);

}

int operator >(const point <T> & rhs) const {

return (x > rhs.x);

}

40 //#if ( __GNUC__ > 2) || ( __GNUC__ == 2 && __GNUC_MINOR__ >= 8)

friend ostream & operator << <> ( ostream & s, const point <T> &p);

friend istream & operator >> <> ( istream & s, point <T> &p);

121
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//#else

// friend ostream & operator << ( ostream & s, const point <T> &p);

// friend istream & operator >> ( istream & s, point <T> &p);

//#endif

};

Listing B.1: Code taken from tpie 082902/apps/convex hull/point.h

Once the points are s by their x values, we simply scan them to produce the upper and lower hulls,
each of which are stored as a stack pointed to by the scan management object. We then concatenate
the stacks to produce the final hull. The code for computing the convex hull of a set of points is thus

template <class T>

AMI_err convex_hull(AMI_STREAM < point <T> > * instream ,

AMI_STREAM < point <T> > * outstream)

{

AMI_err ae;

210 point <T> *pt;

AMI_stack < point <T> > uh;

AMI_stack < point <T> > lh;

AMI_STREAM < point <T> > in_sort;

// Sort the points by x.

ae = AMI_sort(instream , & in_sort );

220

// Compute the upper hull and lower hull in a single scan.

scan_ul_hull <T> sulh;

sulh.uh_stack = &uh;

sulh.lh_stack = &lh;

ae = AMI_scan (&in_sort , & sulh);

230 // Copy the upper hull to the output.

uh.seek (0);

while (1) {

ae = uh.read_item (&pt);

if (ae == AMI_ERROR_END_OF_STREAM ) {

break;

} else if (ae != AMI_ERROR_NO_ERROR ) {

return ae;

240 }

ae = outstream ->write_item (*pt);

if (ae != AMI_ERROR_NO_ERROR ) {

return ae;

}

}

// Reverse the lower hull , concatenating it onto the upper hull.

250 while (lh.pop(&pt) == AMI_ERROR_NO_ERROR ) {

ae = outstream ->write_item (*pt);
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if (ae != AMI_ERROR_NO_ERROR ) {

return ae;

}

}

return AMI_ERROR_NO_ERROR;

}

Listing B.2: Code taken from tpie 082902/apps/convex hull/convex hull.cpp

The only thing that remains is to define a scan management object that is capable of producing
the upper and lower hulls by scanning the points. According to the Graham’s scan algorithm, we
produce the upper hull by moving forward in the x direction, adding each point we encounter to the
upper hull, until we find one that induces a concave turn on the surface of the hull. We then move
backwards through the list of points that have been added to the hull, eliminating points until a
convex path is reestablished. This process is made efficient by storing the points on the hull so far
in a stack. The code for the scan management object, which relies on the function ccw() to actually
determine whether a corner is convex or not, is as follows:

30 template <class T>

class scan_ul_hull : AMI_scan_object {

public:

AMI_stack < point <T> > * uh_stack , * lh_stack;

scan_ul_hull(void);

virtual ~ scan_ul_hull(void);

AMI_err initialize(void);

AMI_err operate(const point <T> &in , AMI_SCAN_FLAG *sfin);

};

40

template <class T>

scan_ul_hull <T>:: scan_ul_hull(void ) : uh_stack(NULL), lh_stack(NULL)

{

}

template <class T>

scan_ul_hull <T>::~ scan_ul_hull(void)

{

}

50

template <class T>

AMI_err scan_ul_hull <T>:: initialize(void)

{

return AMI_ERROR_NO_ERROR;

}

template <class T>

AMI_err scan_ul_hull <T>:: operate(const point <T> &in,

60 AMI_SCAN_FLAG *sfin)

{

AMI_err ae;

// If there is no more input we are done.

if (!* sfin ) {

return AMI_SCAN_DONE;

}

if (! uh_stack ->stream_len ()) {

70
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// If there is nothing on the stacks then put the first point

// on them.

ae = uh_stack ->push(in);

if (ae != AMI_ERROR_NO_ERROR ) {

return ae;

}

ae = lh_stack ->push(in);

if (ae != AMI_ERROR_NO_ERROR ) {

80 return ae;

}

} else {

// Add to the upper hull.

{

// Pop the last two points off.

90 point <T> *p1 , *p2;

tp_assert(uh_stack ->stream_len () >= 1 , "Stack is empty.");

uh_stack ->pop(&p2);

// If the point just popped is equal to the input , then we

// are done. There is no need to have both on the stack.

if (*p2 == in) {

100 uh_stack ->push(*p2);

return AMI_SCAN_CONTINUE;

}

if (uh_stack ->stream_len () >= 1) {

uh_stack ->pop(&p1);

} else {

p1 = p2;

}

110 // While the turn is counter clockwise and the stack is

// not empty pop another point.

while (1) {

if (ccw(*p1 ,*p2,in) >= 0) {

// It does not turn the right way. The points may

// be colinear.

if (uh_stack ->stream_len () >= 1) {

// Move backwards to check another point.

p2 = p1;

120 uh_stack ->pop(&p1);

} else {

// Nothing left to pop , so we can’t move

// backwards . We’re done.

uh_stack ->push(*p1);

if (in != * p1) {

uh_stack ->push(in);

}

break;

}
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130 } else {

// It turns the right way. We’re done.

uh_stack ->push(*p1);

uh_stack ->push(*p2);

uh_stack ->push(in);

break;

}

}

}

140 // Add to the lower hull.

{

// Pop the last two points off.

point <T> *p1 , *p2;

tp_assert(lh_stack ->stream_len () >= 1 , "Stack is empty.");

lh_stack ->pop(&p2);

150

// If the point just popped is equal to the input , then we

// are done. There is no need to have both on the stack.

if (*p2 == in) {

lh_stack ->push(*p2);

return AMI_SCAN_CONTINUE;

}

if (lh_stack ->stream_len () >= 1) {

160 lh_stack ->pop(&p1);

} else {

p1 = p2;

}

// While the turn is clockwise and the stack is

// not empty pop another point.

while (1) {

if (cw(*p1 ,*p2,in) >= 0) {

170 // It does not turn the right way. The points may

// be colinear.

if (lh_stack ->stream_len () >= 1) {

// Move backwards to check another point.

p2 = p1;

lh_stack ->pop(&p1);

} else {

// Nothing left to pop , so we can’t move

// backwards . We’re done.

lh_stack ->push(*p1);

180 if (in != * p1) {

lh_stack ->push(in);

}

break;

}

} else {

// It turns the right way. We’re done.

lh_stack ->push(*p1);

lh_stack ->push(*p2);
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lh_stack ->push(in);

190 break;

}

}

}

}

return AMI_SCAN_CONTINUE;

}

Listing B.3: Code taken from tpie 082902/apps/convex hull/convex hull.cpp

The function ccw() computes twice the signed area of a triangle in the plane by evaluating a 3 by 3
determinant. The result is positive if and only if the the three points in order form a counterclockwise
cycle.

// ccw returns twice the signed area of the triangle p1,p2,p3. It is

// > 0 iff p1,p2,p3 is a counterclockwise cycle . If they are

// colinear , it is 0.

template <class T>

T ccw(const point <T> &p1 , const point <T> &p2 , const point <T> &p3)

{

T sa;

sa = (( p1.x * p2.y - p2.x * p1.y) -

70 (p1.x * p3.y - p3.x * p1.y) +

(p2.x * p3.y - p3.x * p2.y));

return sa;

}

Listing B.4: Code taken from tpie 082902/apps/convex hull/point.h

B.2 List-Ranking

List ranking is a fundamental problem in graph theory. The problem is as follows: We are given the
directed edges of a linked list in some arbitrary order. Each edge is an ordered pair of node ids. The
first is the source of the edge and the second is the destination of the edge. Our goal is to assign a
weight to each edge corresponding to the number of edges that would have to be traversed to get from
the head of the list to that edge.

The code given below solves the list ranking problem using a simple randomized algorithm due
to Chiang et al. [19]. As was the case in the code examples in the tutorial in Chapter 4, #include
statements for header files and definitions of some classes and functions as well as some error and
consistency checking code are left out so that the reader can concentrate on the more important
details of how TPIE is used. A complete ready to compile version of this code is included in the TPIE
source distribution.

First, we need a class to represent edges. Because the algorithm will set a flag for each edge and
then assign weights to the edges, we include fields for these values.

class edge {

public:

TPIE_OS_OFFSET from; // Node it is from

TPIE_OS_OFFSET to; // Node it is to

20 TPIE_OS_OFFSET weight ; // Position when ranked.

bool flag; // A flag used to randomly select some edges.
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friend ostream & operator <<(ostream & s, const edge &e);

};

Listing B.5: Code taken from tpie 082902/apps/list rank/list edge.h

As the algorithm runs, it will sort the edges. At times this will be done by their sources and at
times by their destinations. The following simple functions are used to compare these values:

// the node they are from or the node they are to.

30 // extern int edgefromcmp(CONST edge &s, CONST edge &t);

// extern int edgetocmp(CONST edge &s, CONST edge &t);

// extern int edgeweightcmp(CONST edge &s, CONST edge &t);

struct edgefromcmp {

int compare(CONST edge &s, CONST edge &t);

};

Listing B.6: Code taken from tpie 082902/apps/list rank/list edge.h

The first step of the algorithm is to assign a randomly chosen flag, whose value is 0 or 1 with equal
probability, to each edge. This is done using AMI_scan() with a scan management object of the class
random_flag_scan, which is defined as follows:

// //////////////////////////////////////////////////////////////////////

200

class random_flag_scan : AMI_scan_object {

public:

AMI_err initialize(void);

AMI_err operate(const edge &in , AMI_SCAN_FLAG *sfin ,

edge *out , AMI_SCAN_FLAG *sfout );

};

AMI_err random_flag_scan :: initialize(void ) {

return AMI_ERROR_NO_ERROR;

210 }

AMI_err random_flag_scan :: operate(const edge &in , AMI_SCAN_FLAG *sfin ,

edge *out , AMI_SCAN_FLAG *sfout)

{

if (!( sfout [0] = * sfin )) {

return AMI_SCAN_DONE;

}

*out = in;

out ->flag = ( TPIE_OS_RANDOM () & 1);

Listing B.7: Code taken from tpie 082902/apps/list rank/lr.cpp

The next step of the algorithm is to separate the edges into an active list and a cancel list. In order
to do this, we sort one copy of the edges by their sources (using edgefromcmp) and sort another copy
by their destinations (using edgetocmp). We then call AMI_scan() to scan the two lists and produce
an active list and a cancel list. A scan management object of class separate_active_from_cancel
is used.

}

// //////////////////////////////////////////////////////////////////////

// separate_active_from_cancel

//

// A class of scan object that takes two edges , one to a node and one

// from it , and writes an active edge and possibly a canceled edge.

//
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230 // Let e1 = (x,y,w1,f1) be the first edge and e2 = (y,z,w2,f2) the second.

// If e1’s flag (f1) is set and e2’s (f2) is not , then we write

// (x,z,w1+w2 ,?) to the active list and e2 to the cancel list. The

// effect of this is to bridge over the node y with the new active edge.

// f2 , which was the second half of the bridge , is saved in the cancellation

// list so that it can be ranked later after the active list is recursively

// ranked.

//

// Since all the flags should have been set randomly before this function

// is called , the expected size of the active list is 3/4 the size of the

240 // original list.

// //////////////////////////////////////////////////////////////////////

class separate_active_from_cancel : AMI_scan_object {

public:

AMI_err initialize(void);

AMI_err operate(CONST edge &e1 , CONST edge &e2 , AMI_SCAN_FLAG *sfin ,

edge *active , edge *cancel , AMI_SCAN_FLAG *sfout );

};

AMI_err separate_active_from_cancel :: initialize(void)

250 {

return AMI_ERROR_NO_ERROR;

}

// e1 is from the list of edges sorted by where they are from.

// e2 is from the list of edges sorted by where they are to.

AMI_err separate_active_from_cancel :: operate(CONST edge &e1,

CONST edge &e2 ,

AMI_SCAN_FLAG *sfin ,

edge *active , edge *cancel ,

260 AMI_SCAN_FLAG * sfout)

{

// If we have both inputs.

if (sfin [0] && sfin [1]) {

// If they have a node in common we may be in a bridging situation.

if (e2.to == e1.from ) {

// We will write to the active list no matter what.

sfout [0] = 1;

*active = e2;

if (( sfout [1] = ( e2.flag && !e1.flag ))) {

270 // Bridge . Put e1 on the cancel list and add its

// weight to the active output.

active ->to = e1.to;

active ->weight += e1.weight;

*cancel = e1;

sfout [1] = 1;

} else {

// No bridge.

sfout [1] = 0;

}

280 } else {

// They don’t have a node in common , so one of them needs

// to catch up with the other . What happened is that

// either e2 is the very last edge in the list or e1 is

// the very first or we just missed a bridge because of

// flags.

sfout [1] = 0;

if (e2.to > e1.from ) {

// e1 is behind , so just skip it.
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sfin [1] = 0;

290 sfout [0] = 0;

} else {

// e2 is behind , so put it on the active list.

sfin [0] = 0;

sfout [0] = 1;

*active = e2;

}

}

return AMI_SCAN_CONTINUE;

} else {

300 // If we only have one input , either just leave it active.

if (sfin [0]) {

*active = e1;

sfout [0] = 1;

sfout [1] = 0;

return AMI_SCAN_CONTINUE;

} else if (sfin [1]) {

*active = e2;

sfout [0] = 1;

sfout [1] = 0;

310 return AMI_SCAN_CONTINUE;

} else {

// We have no inputs , so we’re done.

sfout [0] = sfout [1] = 0;

return AMI_SCAN_DONE;

}

Listing B.8: Code taken from tpie 082902/apps/list rank/lr.cpp

The next step of the algorithm is to strip the cancelled edges away from the list of all edges. The
remaining active edges will form a recursive subproblem. Again, we use a scan management object,
this time of the class strip_active_from_cancel, which is defined as follows:

}

// A scan management object to take an active list and remove the

320 // smaller weighted edge of each pair of consecutive edges with the

// same destination . The purpose of this is to strip edges out of the

// active list that were sent to the cancel list.

class strip_cancel_from_active : AMI_scan_object {

private:

bool holding;

edge hold;

public:

AMI_err initialize(void);

AMI_err operate(const edge &active , AMI_SCAN_FLAG *sfin ,

330 edge *out , AMI_SCAN_FLAG *sfout );

};

AMI_err strip_cancel_from_active :: initialize(void ) {

holding = false;

return AMI_ERROR_NO_ERROR;

}

// Edges should be sorted by destination before being processed by

// this object.

340 AMI_err strip_cancel_from_active :: operate(const edge &active ,

AMI_SCAN_FLAG *sfin ,

edge *out , AMI_SCAN_FLAG *sfout)
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{

// If no input then we’re done , except that we might still be

// holding one.

if (!* sfin ) {

if ( holding ) {

*sfout = 1;

*out = hold;

350 holding = false;

return AMI_SCAN_CONTINUE;

} else {

*sfout = 0;

return AMI_SCAN_DONE;

}

}

if (! holding ) {

// If we are not holding anything , then just hold the current

360 // input.

hold = active;

holding = true;

*sfout = 0;

} else {

tp_assert(active.to >= hold.to , "Out of order inputs.");

*sfout = 1;

if ( active.to == hold.to) {

370 tp_assert(active.from != hold.from , "Same edge.");

tp_assert(active.weight != hold.weight , "Same weights.");

if ( active.weight > hold.weight ) {

*out = active;

} else {

*out = hold;

}

holding = false;

380 } else {

*out = hold;

hold = active;

}

}

Listing B.9: Code taken from tpie 082902/apps/list rank/lr.cpp

After recursion, we must patch the cancelled edges back into the recursively ranked list of active
edges. This is done using a scan with a scan management object of the class interleave_active_cancel,
which is implemented as follows:

390 // //////////////////////////////////////////////////////////////////////

// interleave_active_cancel

//

// This is a class of merge object that merges two lists of edges

// based on their to fields . The first list of edges should be active

// edges , while the second should be cancelled edges . When we see two

// edges with the same to field , we know that the second was cancelled

// when the first was made active . We then fix up the weights and

// output the two of them , one in the current call and one in the next
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// call.

400 //

// The streams this operates on should be sorted by their terminal

// (to) nodes before AMI_scan () is called.

// //////////////////////////////////////////////////////////////////////

class patch_active_cancel : AMI_scan_object {

private:

bool holding;

edge hold;

410 public:

AMI_err initialize(void);

AMI_err operate(CONST edge &active , CONST edge &cancel ,

AMI_SCAN_FLAG *sfin ,

edge *patch , AMI_SCAN_FLAG *sfout );

};

AMI_err patch_active_cancel :: initialize(void)

{

holding = false;

420 return AMI_ERROR_NO_ERROR;

}

AMI_err patch_active_cancel :: operate(CONST edge &active , CONST edge &cancel ,

AMI_SCAN_FLAG *sfin ,

edge *patch , AMI_SCAN_FLAG *sfout)

{

// Handle the special cases that occur when holding an edge and/or

// completely out of input.

if ( holding ) {

430 sfin [0] = sfin [1] = 0;

*patch = hold;

holding = false;

*sfout = 1;

return AMI_SCAN_CONTINUE;

} else if (! sfin [0]) {

tp_assert (!sfin [1], "We have cancel but no active");

*sfout = 0;

return AMI_SCAN_DONE;

}

440

tp_assert(sfin [0], "No active input.");

if (! sfin [1]) {

// If there is no cancel edge (i.e. all have been processed)

// then just pass the active edge through.

*patch = active;

} else {

tp_assert(active.to <= cancel.to , "Out of sync , or not sorted.");

450 if ( holding = ( active.to == cancel.to)) {

patch ->from = active.from;

patch ->to = cancel.from;

patch ->weight = active.weight - cancel.weight;

hold.from = cancel.from;

hold.to = active.to;

hold.weight = active.weight;

} else {
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*patch = active;

sfin [1] = 0;

460 }

}

*sfout = 1;

return AMI_SCAN_CONTINUE;

Listing B.10: Code taken from tpie 082902/apps/list rank/lr.cpp

Finally, here is the actual function to rank the list.

470 // //////////////////////////////////////////////////////////////////////

// list_rank ()

//

// This is the actual recursive function that gets the job done.

// We assume that all weigths are 1 when the initial call is made to

// this function.

//

// Returns 0 on success , nonzero otherwise.

// //////////////////////////////////////////////////////////////////////

480 int list_rank(AMI_STREAM <edge > * istream , AMI_STREAM <edge > * ostream ,

unsigned int rec_level = 0)

{

AMI_err ae;

TPIE_OS_OFFSET stream_len = istream ->stream_len ();

AMI_STREAM <edge > * edges_rand;

AMI_STREAM <edge > * active;

AMI_STREAM <edge > * active_2;

490 AMI_STREAM <edge > * cancel;

AMI_STREAM <edge > * ranked_active;

AMI_STREAM <edge > * edges_from_s;

AMI_STREAM <edge > * cancel_s;

AMI_STREAM <edge > * active_s;

AMI_STREAM <edge > * ranked_active_s;

// Scan/merge management objects.

random_flag_scan my_random_flag_scan;

500 separate_active_from_cancel my_separate_active_from_cancel;

strip_cancel_from_active my_strip_cancel_from_active;

patch_active_cancel my_patch_active_cancel;

edgefromcmp from_cmp;

edgetocmp to_cmp;

// Check if the recursion has bottomed out. If so , then read in the

// array and rank it.

{

510 size_t mm_avail;

mm_avail = MM_manager.memory_available ();

if ( stream_len * sizeof(edge) < mm_avail / 2) {

// Ww know that stream_len edges fit in main memory ,
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// so it is safe to cast.

edge * mm_buf = new edge[( TPIE_OS_SIZE_T)stream_len ];

istream ->seek (0);

istream ->read_array(mm_buf ,& stream_len );

520 main_mem_list_rank(mm_buf ,( TPIE_OS_SIZE_T)stream_len );

ostream ->write_array(mm_buf ,stream_len );

delete [] mm_buf;

// Get rid of the input stream.

if ( rec_level ) {

delete istream;

}

return 0;

}

}

530

// Flip coins for each node , setting the flag to 0 or 1 with equal

// probability.

edges_rand = new AMI_STREAM <edge >;

AMI_scan(istream , & my_random_flag_scan , edges_rand );

if ( verbose ) {

cout << "Random flag list is of length " <<

540 edges_rand ->stream_len () << "." << endl;

}

if ( rec_level ) {

delete istream;

}

// Sort one stream by source . The original input was sorted by

// destination , so we don’t need to sort it again.

550 edges_from_s = new AMI_STREAM <edge >;

ae = AMI_sort(edges_rand , edges_from_s , & from_cmp );

if ( verbose ) {

cout << "Sorted from list is of length " <<

edges_from_s ->stream_len () << "." << endl;

}

// Scan to produce and active list and a cancel list.

560

active = new AMI_STREAM <edge >;

cancel = new AMI_STREAM <edge >;

ae = AMI_scan(edges_from_s ,

edges_rand ,

&my_separate_active_from_cancel ,

active ,

cancel );

570 delete edges_from_s;

delete edges_rand;

// Strip the edges that went to the cancel list out of the active list.
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if ( verbose ) {

cout << "Cancel list is of length " <<

cancel ->stream_len () << "." << endl;

cout << "Active list is of length " <<

active ->stream_len () << "." << endl;

580 }

active_s = new AMI_STREAM <edge >;

ae = AMI_sort(active , active_s , & to_cmp );

delete active;

if ( verbose ) {

cout << "Sorted active list is of length " <<

590 active_s ->stream_len () << "." << endl;

}

active_2 = new AMI_STREAM <edge >;

ae = AMI_scan(active_s ,

&my_strip_cancel_from_active ,

active_2 );

delete active_s;

600

if ( verbose ) {

cout << "After stripping , active list is of length " <<

active_2 ->stream_len () << "." << endl;

}

// Recurse on the active list. The list we pass in is sorted by

// destination . The recursion will return a list sorted by

// source.

610 ranked_active = new AMI_STREAM <edge >;

list_rank(active_2 , ranked_active , rec_level + 1);

// This is now done inside the recursion to avoid telescoping space

// usage by intermediate streams that are no longer needed.

// /* delete active_2 ; */

if ( verbose ) {

cout << "After recursion , ranked active list is of length " <<

620 ranked_active ->stream_len () << "." << endl;

}

cancel_s = new AMI_STREAM <edge >;

AMI_sort(cancel , cancel_s , & to_cmp );

delete cancel;

if ( verbose ) {

630 cout << "Sorted cancel list is of length " <<

cancel_s ->stream_len () << "." << endl;

}



B.3. NAS PARALLEL BENCHMARKS 135

// The output of the recursive call is not necessarily sorted by

// destination . We’ll make it so before we try to merge in the

// cancel list.

ranked_active_s = new AMI_STREAM <edge >;

640 AMI_sort(ranked_active , ranked_active_s , & to_cmp );

delete ranked_active;

// Now merge the recursively ranked active list and the sorted cancel list.

ae = AMI_scan(ranked_active_s ,

cancel_s ,

&my_patch_active_cancel ,

ostream );

650

if ( verbose ) {

cout << "After patching in canceled edges , list is of length " <<

ostream ->stream_len () << "." << endl;

}

delete ranked_active_s;

Listing B.11: Code taken from tpie 082902/apps/list rank/lr.cpp

Our recursion bottoms out when the problem is small enough to fit entirely in main memory, in
which case we read it in and call a function to rank a list in main memory. The details of this function
are omitted here.

// //////////////////////////////////////////////////////////////////////

// main_mem_list_rank ()

//

// This function ranks a list that can fit in main memory . It is used

// when the recursion bottoms out.

//

// //////////////////////////////////////////////////////////////////////

int main_mem_list_rank(edge *edges , size_t count)

{

// Rank the list in main memory

...

return 0;

}

Listing B.12: Code taken from tpie 082902/apps/list rank/lr.cpp

B.3 NAS Parallel Benchmarks

<TO BE EXTENDED>

Code designed to implement external memory versions of a number of the NAS parallel benchmarks
is included with the TPIE distribution. Examine this code for examples of how the various primitives
TPIE provides can be combined into powerful applications capable of solving real-world problems.

Detailed descriptions of the parallel benchmarks are available from the NAS Parallel Benchmark
Report at URL http://www.nas.nasa.gov/Research/Reports/Techreports/1994/HTML/npbspec.html.

http://www.nas.nasa.gov/Research/Reports/Techreports/1994/HTML/npbspec.html
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B.4 Spatial Join

<TO BE WRITTEN>
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bution sweeping,
SSSJ, ect
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TPIE Error Codes and
Management Object Return Values

[130]: LA: I
added the man-
agment object
stuff in title since
it was there. Is
there other stuff
that needs to go
in this appendix?

C.1 AMI Error Codes

AMI entry points typically return error codes of the enumerated type AMI_err. Member functions of
operation management objects also typically return this type. Possible values for error codes include
those listed below. It is expected that in future releases of TPIE, many of these error codes will be
replaced by exceptions.

AMI_ERROR_NO_ERROR: No error occurred. The call the the entry point returned normally.

AMI_ERROR_IO_ERROR: A low level I/O error occurred.

AMI_ERROR_END_OF_STREAM: An attempt was made to read past the end of a stream or write past
the end of a substream.

AMI_ERROR_READ_ONLY: An attempt was made to write to a read-only stream.

AMI_ERROR_OS_ERROR: An unexpected operating system error occurred. Details should appear in
the log file if logging is enabled. See Section 7.3.

AMI_ERROR_BASE_METHOD: An attempt was made to call a member function of the virtual base class
of AMI_STREAM. This indicates a bug in the implementation of AMI streams.

AMI_ERROR_BTE_ERROR: An error occurred at the BTE level.

AMI_ERROR_MM_ERROR: An error occurred within the memory manager.

AMI_ERROR_OBJECT_INITIALIZATION: An AMI entry point was not able to properly initialize the
operation management object that was passed to it. This generally indicates a bug in the
operation management object’s initialization code.

AMI_ERROR_INSUFFICIENT_MAIN_MEMORY: The MM could not make adequate main memory available
to complete the requested operation. Many operations adapt themselves to use whatever main
memory is available, but in some cases, when memory is extremely tight, they may not be able
to function.

AMI_ERROR_INSUFFICIENT_AVAILABLE_STREAMS: The AMI could not allocate enough intermediate
streams to perform the requested operation. Certain operating system restrictions limit the
number of streams that can be created on certain platforms. Only in unusual circumstances,
such as when the application itself has a very large number of open streams, will this error occur.

137
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AMI_ERROR_ENV_UNDEFINED: An environment variable necessary to initialize the AMI was not de-
fined.

AMI_ERROR_BIT_MATRIX_BOUNDS: A bit matrix larger than the number of bits in an offset into a
stream was passed to ami_gp().

AMI_ERROR_NOT_POWER_OF_2: The length of a stream on which a bit permutation was to be per-
formed is not a power of two.

AMI_MATRIX_BOUNDS: An attempt was made to perform a matrix operation on matrices whose bounds
did not match appropriately.

C.2 Management Object Return Values

C.2.1 Return Values for Scan Management Objects

More information on the precise semantics of these values appears in Section 5.3.

AMI_SCAN_CONTINUE: Tells AMI_scan() to continue to call the operate() member function of the
scan management object with more data.

AMI_SCAN_DONE: Tells AMI_scan() that the scan is complete.

C.2.2 Return Values for Merge Management Objects

More information on the precise semantics of these values appears in Section 5.7.

AMI_MERGE_CONTINUE: Tells AMI_merge() to continue to call the operate() member function of the
scan management object with more data.

AMI_MERGE_DONE: Tells AMI_merge() that the scan is complete.

AMI_MERGE_OUTPUT: Tells AMI_merge() that the last call generated output for the output stream.

AMI_MERGE_READ_MULTIPLE: Tells AMI_merge() that more than one input object was consumed and
thus the input flags should be consulted.
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The GNU General Public License,
Version 2

June, 1991

Copyright c©1989, 1991 Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and change
free software–to make sure the software is free for all its users. This General Public License applies
to most of the Free Software Foundation’s software and to any other program whose authors commit
to using it. (Some other Free Software Foundation software is covered by the GNU Library General
Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs; and that you know you can do
these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if
you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give
the recipients all the rights that you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and passed
on, we want its recipients to know that what they have is not the original, so that any problems
introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect making
the program proprietary. To prevent this, we have made it clear that any patent must be licensed for
everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.
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GNU GENERAL PUBLIC LICENSE TERMS AND CONDI-
TIONS FOR COPYING, DISTRIBUTION AND MODIFICA-
TION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The “Program”,
below, refers to any such program or work, and a “work based on the Program” means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program
or a portion of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on the Program (independent of
having been made by running the Program). Whether that is true depends on what the Program
does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of Section
1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work
are not derived from the Program, and can be reasonably considered independent and separate works
in themselves, then this License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as part of a whole which is a
work based on the Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or
with a work based on the Program) on a volume of a storage or distribution medium does not bring
the other work under the scope of this License.
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3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do one of
the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received
the program in object code or executable form with such an offer, in accord with Subsection b
above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of
the executable. However, as a special exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as distribution
of the source code, even though third parties are not compelled to copy the source along with the
object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do so,
and all its terms and conditions for copying, distributing or modifying the Program or works based
on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the recipients’
exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties
to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order, agree-
ment or otherwise) that contradict the conditions of this License, they do not excuse you from the
conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit royalty-free redistribution of
the Program by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.
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It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of software distributed through that
system in reliance on consistent application of that system; it is up to the author/donor to decide if
he or she is willing to distribute software through any other system and a licensee cannot impose that
choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest
of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding those countries, so that distribution
is permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and “any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is copyrighted by
the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of
our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EX-
CEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MOD-
IFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO
YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSE-
QUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INAC-
CURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
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END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the
best way to achieve this is to make it free software which everyone can redistribute and change under
these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively convey the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an interactive

mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other than ‘show
w’ and ‘show c’; they could even be mouse-clicks or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
“copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’
(which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you may consider it more useful to permit linking
proprietary applications with the library. If this is what you want to do, use the GNU Library General
Public License instead of this License.
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