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What is Cluster Analysis?

 Cluster: a collection of data objects

 Similar to one another within the same cluster

 Dissimilar to the objects in other clusters

 Cluster analysis

 Grouping a set of data objects into clusters

 Clustering is unsupervised classification: no 
predefined classes 

 Clustering is used:

 As a stand-alone tool to get insight into data distribution

 Visualization of clusters may unveil important information

 As a preprocessing step for other algorithms

 Efficient indexing or compression often relies on clustering



General Applications of Clustering 

 Pattern Recognition

 Spatial Data Analysis 
 create thematic maps in GIS by clustering feature spaces

 detect spatial clusters and explain them in spatial data 
mining

 Image Processing
 cluster images based on their visual content

 Economic Science (especially market research)

 WWW and IR
 document classification

 cluster Weblog data to discover groups of similar access 
patterns



What Is Good Clustering?

 A good clustering method will produce high 

quality clusters with

 high intra-class similarity

 low inter-class similarity 

 The quality of a clustering result depends on both 

the similarity measure used by the method and its 

implementation.

 The quality of a clustering method is also 

measured by its ability to discover some or all of 

the hidden patterns.



Requirements of Clustering in Data 

Mining 

 Scalability

 Ability to deal with different types of attributes

 Discovery of clusters with arbitrary shape

 Minimal requirements for domain knowledge to 

determine input parameters

 Able to deal with noise and outliers

 Insensitive to order of input records

 High dimensionality

 Incorporation of user-specified constraints

 Interpretability and usability



Outliers 

 Outliers are objects that do not belong to any 

cluster or form clusters of very small cardinality

 In some applications we are interested in 

discovering outliers, not clusters (outlier 

analysis)

cluster

outliers
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Data Structures

 data matrix

 (two modes)

 dissimilarity or distance

matrix

 (one mode)
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Measuring Similarity in Clustering

 Dissimilarity/Similarity metric:

 The dissimilarity d(i, j) between two objects i and j is 
expressed in terms of a distance function, which is 
typically a metric:

 d(i, j)0 (non-negativity)
 d(i, i)=0 (isolation)
 d(i, j)= d(j, i) (symmetry)
 d(i, j) ≤ d(i, h)+d(h, j) (triangular inequality)

 The definitions of distance functions are usually 
different for interval-scaled, boolean, categorical, 
ordinal and ratio-scaled variables.

 Weights may be associated with different variables 
based on applications and data semantics.



Type of data in cluster analysis

 Interval-scaled variables

 e.g., salary, height

 Binary variables

 e.g., gender (M/F), has_cancer(T/F)

 Nominal (categorical) variables

 e.g., religion (Christian, Muslim, Buddhist, Hindu, etc.)

 Ordinal variables

 e.g., military rank (soldier, sergeant, lutenant, captain, etc.)

 Ratio-scaled variables

 population growth (1,10,100,1000,...)

 Variables of mixed types

 multiple attributes with various types



Similarity and Dissimilarity Between Objects

 Distance metrics are normally used to measure 

the similarity or dissimilarity between two data 

objects

 The most popular conform to Minkowski distance:

where  i = (xi1, xi2, …, xin) and j = (xj1, xj2, …, xjn) are two 

n-dimensional data objects, and p is a positive integer

 If p = 1, L1 is the Manhattan (or city block) 

distance:
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Similarity and Dissimilarity Between 

Objects (Cont.)

 If p = 2, L2 is the Euclidean distance:

 Properties

d(i,j)  0

d(i,i) = 0

d(i,j) = d(j,i)

d(i,j)  d(i,k) + d(k,j)

 Also one can use weighted distance:

)||...|||(|),( 22

22

2

11 nn j
x

i
x

j
x

i
x

j
x

i
xjid 

)||...||
2

||
1

(),( 22

22

2

11 nn j
x

i
xnw

j
x

i
xw

j
x

i
xwjid 



Binary Variables
 A binary variable has two states: 0 absent, 1 present

 A contingency table for binary data

 Simple matching coefficient distance (invariant, if the binary 

variable is symmetric):

 Jaccard coefficient distance (noninvariant if the binary 

variable is asymmetric): 
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Binary Variables
 Another approach is to define the similarity of two 

objects and not their distance.

 In that case we have the following:

 Simple matching coefficient similarity:

 Jaccard coefficient similarity:
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Note that:  s(i,j) = 1 – d(i,j)



Dissimilarity between Binary Variables

 Example (Jaccard coefficient)

 all attributes are asymmetric binary

 1 denotes presence or positive test

 0 denotes absence or negative test

Name Fever Cough Test-1 Test-2 Test-3 Test-4 

Jack 1 0 1 0 0 0 

Mary 1 0 1 0 1 0 

Jim 1 1 0 0 0 0 
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 Each variable is mapped to a bitmap (binary vector)

 Jack: 101000

 Mary: 101010

 Jim: 110000

 Simple match distance:

 Jaccard coefficient:

A simpler definition

Name Fever Cough Test-1 Test-2 Test-3 Test-4 

Jack 1 0 1 0 0 0 

Mary 1 0 1 0 1 0 

Jim 1 1 0 0 0 0 
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Variables of Mixed Types

 A database may contain all the six types of 
variables

 symmetric binary, asymmetric binary, nominal, ordinal, 
interval and ratio-scaled.

 One may use a weighted formula to combine their 
effects.
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Major Clustering Approaches
 Partitioning algorithms: Construct random partitions and 

then iteratively refine them by some criterion

 Hierarchical algorithms: Create a hierarchical 

decomposition of the set of data (or objects) using some 

criterion

 Density-based: based on connectivity and density 

functions

 Grid-based: based on a multiple-level granularity structure

 Model-based: A model is hypothesized for each of the 

clusters and the idea is to find the best fit of that model to 

each other
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Partitioning Algorithms: Basic Concepts

 Partitioning method: Construct a partition of a 

database D of n objects into a set of k clusters

 Given a k, find a partition of k clusters that 

optimizes the chosen partitioning criterion

 Global optimal: exhaustively enumerate all partitions

 Heuristic methods: k-means and k-medoids algorithms

 k-means (MacQueen’67): Each cluster is represented by 

the center of the cluster

 k-medoids or PAM (Partition around medoids) (Kaufman & 

Rousseeuw’87): Each cluster is represented by one of the 

objects in the cluster  



The k-means Clustering Method

 Given k, the k-means algorithm is 
implemented in 4 steps:

1. Partition objects into k nonempty subsets

2. Compute seed points as the centroids of 
the clusters of the current partition.  The 
centroid is the center (mean point) of the 
cluster.

3. Assign each object to the cluster with the 
nearest seed point.  

4. Go back to Step 2, stop when no more new 
assignment.



The k-means Clustering Method

 Example
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Comments on the k-means Method

 Strength

 Relatively efficient: O(tkn), where n is # objects, k is # 
clusters, and t  is # iterations. Normally, k, t << n.

 Often terminates at a local optimum. 

 Weaknesses

 Applicable only when mean is defined, then what about 
categorical data?

 Need to specify k, the number of clusters, in advance

 Unable to handle noisy data and outliers

 Not suitable to discover clusters with non-convex shapes



The K-Medoids Clustering Method

 Find representative objects, called medoids, in 

clusters

 PAM (Partitioning Around Medoids, 1987)

 starts from an initial set of medoids and iteratively 

replaces one of the medoids by one of the non-medoids if 

it improves the total distance of the resulting clustering

 PAM works effectively for small data sets, but does not 

scale well for large data sets

 CLARA (Kaufmann & Rousseeuw, 1990)

 CLARANS (Ng & Han, 1994): Randomized 

sampling



PAM (Partitioning Around Medoids) 

(1987)

 PAM (Kaufman and Rousseeuw, 1987), built in 

statistical package S+

 Use real object to represent the cluster

1. Select k representative objects arbitrarily

2. For each pair of non-selected object h and selected 

object i, calculate the total swapping cost TCih

3. For each pair of i and h, 

 If TCih < 0, i is replaced by h

 Then assign each non-selected object to the most 

similar representative object

4. repeat steps 2-3 until there is no change



PAM Clustering: Total swapping cost 

TCih=jCjih

 i is a current medoid, h is a non-
selected object

Assume that i is replaced by h in the 
set of medoids

TCih = 0;

 For each non-selected object j ≠ h:
 TCih += d(j,new_medj)-d(j,prev_medj):

new_medj = the closest medoid to j after i is 
replaced by h

prev_medj = the closest medoid to j before i 
is replaced by h



PAM Clustering: Total swapping cost 

TCih=jCjih
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CLARA (Clustering Large Applications)

 CLARA (Kaufmann and Rousseeuw in 1990)

 Built in statistical analysis packages, such as S+

 It draws multiple samples of the data set, applies 

PAM on each sample, and gives the best 

clustering as the output

 Strength: deals with larger data sets than PAM

 Weakness:

 Efficiency depends on the sample size

 A good clustering based on samples will not necessarily 

represent a good clustering of the whole data set if the 

sample is biased



CLARANS (“Randomized” CLARA)

 CLARANS (A Clustering Algorithm based on Randomized 

Search)  (Ng and Han’94)

 CLARANS draws sample of neighbors dynamically

 The clustering process can be presented as searching a graph 

where every node is a potential solution, that is, a set of k

medoids

 If the local optimum is found, CLARANS starts with new 

randomly selected node in search for a new local optimum

 It is more efficient and scalable than both PAM and CLARA

 Focusing techniques and spatial access structures may 

further improve its performance (Ester et al.’95)


