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The Problem ...
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Stream

> Identify all elements whose current frequency
exceeds support threshold s = 0.1%.



Formal Definition

All item whose true frequency exceeds
sN are output. There are no false
hegatives.

No item whose true frequency is less
than (s- €)N is output.

[J Estimated frequencies are less than
the true frequencies by at most eNl
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Stream

» Identify all subsets of items whose
current frequency exceeds s = 0.1%.

[Frequent Itemsets / Association Rules]




Applications

Flow Identification at IP Router [EVO1]
Iceberg Queries [FSGM+98]
Iceberg Datacubes [BR99 HPDWO1]
Association Rules & Frequent Itemsets

[AS94 SON95 Toi96
Hid99 HPYO0O ...]



Presentation Outline ...
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2. Sticky Sampling

1. Lossy Counting
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3. Algorithm for Frequent Itemsets



Algorithm 1: Lossy Counting

Step 1: Divide the stream into ‘windows’

Window 1
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Is window size a function of support s? Will fix later..
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Window 3
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Lossy Counting in Action ...

Frequency
Counts
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At window boundary, decrement all counters by 1



Lossy Counting continued ...

Frequency
Counts
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At window boundary, decrement all counters by 1



Error Analysis

How much do we undercount?

If current size of stream =N
and window-size = 1/¢
then frequency error < #windows = &N

Rule of thumb:
Set € = 10% of support s

Example:
Given support frequency s = 1%,
set error frequency e=0.1%




Output:
Elements with counter values exceeding sN - eN

Approximation guarantees
Frequencies underestimated by at most eN
No false negatives
False positives have true frequency at least sN - eN

How many counters do we need?
Worst case: 1/¢ log (¢ N) counters (see proof later)



Enhancements ...

Frequency Errors
For counter (X, c), true frequency in [c, c+eN]

Trick: Remember window-id’s
For counter (X, c, w), true frequency in [c, c+w-1]

If (w = 1), no error!

At the time of deletion, the true frequency of X is

at most w which is less than eNuw! (Nwis the number
of elements seen so far in the stream at the end of
window w)

Batch Processing
Decrements after k windows



The Enhanced Algorithm

0. The data structure we keep is D, which has entries in
the form of (X, ¢, A);

1. Inwindow b, an element X appears, if X isinD,
increase its count ¢ by 1; otherwise, insert (X, 1, b-1)
into D;

2. At the end of window b, delete all entries if their
c+ A<b.



Worse Case Bound

How many counters do we need?
Worst case: 1/¢ log (¢ N) counters

Let B be the current bucket id, di denote the number of
entries we kept whose bucket id is B-i+1 for i\in [1, B]
The item corresponding to such entry must occur at
least i times in bucket B-i+1 through B;

J
ZiXdi < jw, for j=1,2,...B.

We claim: Zd, < / for j=12,..

Prove By Induction.



Algorithm 2: Sticky Sampling
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Stream

- Create counters by sampling
- Maintain exact counts thereafter

What rate should we sample?




Sticky Sampling contd...

For finite stream of length N

Sampling rate = 2/Ne log 1/(s3) | & = probability of failure

Output:
Elements with counter values exceeding sN - eN

Approximation guarantees (probabilistic)
Frequencies underestimated by at most eN
No false negatives

False positives have true frequency at least sN - eN

Same Rule of thumb:
Same error guarantees Set € = 10% of support s

as Lossy Counting Example:

but probabilistic Given support threshold s = 1%,
set error threshold £=0.1%

set failure probability 6 = 0.01%




Sampling rate?
Finite stream of length N
Sampling rate: 2/Ne log 1/(s3)

Infinite stream with unknown N
Gradually adjust sampling rate (discussed later)

In either case,
Expected number of counters =@Iog 1/s5

Independent of NI 4/




Infinite Stream

Let t+=1/¢ log(1/s5)

First 21, sample rate =1
Next 21, sample rate =1/2
Next 41, sample rate=1/4
Next 8%, sample rate=1/8

And, whenever sample rate changes, do:

For each entry kept, flip coin (with p=1/2) continuously,
Until a head appears, for each tail, decrease the count
Of the entry by 1; remove the entry when its count is O.



Result (proof in class)

Sticky sampling satisfies our requirement with
Probability at least 1- 5 using at most
2/¢ log(1/s38) expected number of entries.

Proof: In class, Please take notes.
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From elements
to sets of elements ...
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Frequent Itemsets Problem ...
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Stream

» Identify all subsets of items whose
current frequency exceeds s = 0.1%.

[Frequent Itemsets => Association Rules ]




Three Modules

| TRIE

SUBSET—GENJ

[BUFFER




Module 1: TRIE

Compact representation of frequent itemsets in lexicographic order.
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Module 2: BUFFER

Window 1

Window 2

Window 3 Window 4

Window 5

Window 6

In Main Memory

Compact representation as sequence of ints

Transactions sorted by item-id

Bitmap for transaction boundaries




Module 3: SUBSET-GEN
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Overall Algorithm ...
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Problem: Number of subsets is exponential!



SUBSET-GEN Pruning Rules

A-priori Pruning Rule

If set S is infrequent, every superset of S is infrequent.

Lossy Counting Pruning Rule

At each ‘window boundary’ decrement TRIE counters by 1.

Actually, 'Batch Deletion’:
At each 'main memory buffer’ boundary,

decrement all TRIE counters by b.

See paper for details ...



Bottlenecks ...
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Design Decisions for Performance

TRIE Main memory bottleneck
Compact linear array
- (element, counter, level) in preorder traversal
- No pointers!

Tries are on disk
- All of main memory devoted to BUFFER

Pair of tries
- old and new (in chunks)

mmap() and madvise()

SUBSET-GEN CPU bottleneck
Very fast implementation
— See paper for details



Experiments ...

IBM synthetic dataset T10.14.1000K
N = 1Million  Avg Tran Size = 10 Input Size = 49MB

IBM synthetic dataset T15.16.1000K
N = 1Million Avg Tran Size = 15 Input Size = 69MB

Frequent word pairs in 100K web documents
N = 100K Avg Tran Size = 134 Input Size = 54MB

Frequent word pairs in 806K Reuters newsreports
N = 806K Avg Tran Size = 61 Input Size = 210MB




What do we study?

For each dataset

Support threshold s ] _ |

L th of st N Three independent variables
ength o ream Fix one and vary two

BUFFER size B _

Time taken T } Measure time taken

Set € = 10% of support s




Time in seconds

Varying support s and BUFFER B
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Time in seconds

Varying length N and support s
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Varying BUFFER B and support s
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Comparison with fast A-priori

APriori Our Algorithm Our Algorithm
with 4MB Buffer | with 44MB Buffer
Support | Time | Memory | Time Memory Time Memory
0.001 99s| 82 MB 111s 12 MB 27 s 45 MB
0.002 25s| 53 MB 94 s 10 MB 15 s 45 MB
0.004 14s| 48 MB 65 s 7MB 8s 45 MB
0.006 13s| 48 MB 46 s 6 MB 6s 45 MB
0.008 13s| 48 MB 34 s 5 MB 4s 45 MB
0.010 14s| 48 MB 26 s 5 MB 4s 45 MB

Dataset: IBM T10.14.1000K with 1M transactions, average size 10.

A-priori by Christian Borgelt

http://fuzzy.cs.uni-magdeburg.de/~borgelt/software.html




Comparison with Iceberg Queries

Query: Identify all word pairs in 100K web documents
which co-occur in at least 0.5% of the documents.

[FSGM+98] multiple pass algorithm:
/7000 seconds with 30 MB memory

Our single-pass algorithm:
4500 seconds with 26 MB memory

Our algorithm would be much faster if allowed multiple passes!



Lessons Learnt ...

Optimizing for #passes is wrong!

Small support s = Too many frequent itemsets!
Time to redefine the problem itself?

Interesting combination of Theory and Systems.



Other Interesting Work

Frequency Counts over Sliding Windows
Multiple pass Algorithm for Frequent Itemsets

Iceberg Datacubes



Summary

Lossy Counting: A Practical algorithm for online
frequency counting.

First ever single pass algorithm for Association Rules
with user specified error guarantees.

Basic algorithm applicable to several problems.



Sticky Sampling Expected: 2/ log 1/s8 g ¢
Lossy Counting Worst Case: 1/¢ log &N

SS LC SS LC SS LC
e s worst | worst | Zipf | Zipf | Unig | Uniq

0.1% 10% |27K |9K 6K [419 |27K |1K

0.05% |05% |B8K |17K |11K |709 |58K |2K

001% |0.1% |[322K [69K |37K |2K |322K|10K

0.005% | 0.05% | 672K |124K [62K |4K |672K | 20K

LC: Lossy Counting SS: Sticky Sampling
Zipf: Zipfian distribution Uniqg: Unique elements



