Frequency Counts
over
Data Streams

VLDB 2002



The Problem ...

OO00O0O0ORO0OROO0O0O0008d008REO0NOOO0O0000O0
EEECCOROONNOO0O000000NENCO00OECOOOOCO0COE .
ONBOCORBONOO0O0O00080O00NRERO0O0O0O0000O/.
EOECORCONRINOO000000NCOENEOOOO0ONRNO
ONBOCORCORORO0O000080d000RECBCOROOO0O00OMN
ONBEOCORCORORO0O00000NEENCONCONCO0OO0O0NO N
OO00O0ORORO0O0O0O000000NEERCORCO00000R0O0
A nl [miminf Iniminl Ininieieieininl § § § [oimie} [eisfefei = |
OROEOCORCOENOOO0C08dO00NNREEEOOO0RCON
EEECOROENO0OO00000SEENC OO0

>

Stream

> Identify all elements whose current frequency
exceeds support threshold s = 0.1%.



Formal Definition

All item whose true frequency exceeds
sN are output. There are no false
hegatives.

No item whose true frequency is less
than (s- €)N is output.

[J Estimated frequencies are less than
the true frequencies by at most eNl




A

po

elated Problem ...

(TN (1 (] [T 1] . HEEEE N
N | CT] [ ] B N
1] ] - W CITTTT] CTT1] H N
CH T B WmITT7TT7] [ B [
(TN [N [(TT] ] B N
] . EEEEE | IT10 [T 1] H B
1] N N [(ITT N (1. B N
] W N | 1] (TN (11 W]
W | | OreT] M 0 0O
] LT T | HEE DEEEEEE e | . W
Stream

» Identify all subsets of items whose
current frequency exceeds s = 0.1%.

[Frequent Itemsets / Association Rules]




Applications

Flow Identification at IP Router [EVO1]
Iceberg Queries [FSGM+98]
Iceberg Datacubes [BR99 HPDWO1]
Association Rules & Frequent Itemsets

[AS94 SON95 Toi96
Hid99 HPYO0O ...]



Presentation Outline ...

COERORRCNEN
ORORO0000ON
Oodo0OmanER
oooooooooo
Oo00oo0ooBa
oooooooooo
Oo0ooooooo
ONCANECREN
ERO0OO00ONN
OOCONEERO00
OORRO00OmaO
ERECEEERCN
ANENENEEER
ANRENEEEER
Oodo0OmanER
oooooooooo
O0EAR00000
oooooooaeEa
B0ER000000
ooooooooea
oo0ooo0oooo
Oo0ooooono
CONONERCNEN
EROOO0O00ONN
OOONERRO00
OORRO00OmO
ERECEEERCN
Ooomoo0oono
oooooooomm
COCNRERROOO0
CONECONECONEN
OmOmo0oo0m

l

2. Sticky Sampling

1. Lossy Counting

mm-um-mmum
"l 1 | PEIatat

sae.gti

cE e
NGt

ol L)1,

[

el

ol e

3. Algorithm for Frequent Itemsets



Algorithm 1: Lossy Counting

Step 1: Divide the stream into ‘windows’

Window 1

OO00O0OMOC MmO
_§ § FWEWE EWEWE § |
ONECOCOEECOLO
_FEE EWE EWE R QEE |
CONECOCONCIEC N
ONECOCOECECE
OO00OOmO MO0

v OEOOOmOoOoOm

ONCONECOCEC] N
_§ FEE EWE ENENE § |

Window 2

OO0O0O00O0O00 ..
OO0O0O00O000 .
OO0O0O00O00O0 ..
OO0O0O00O000C .
OO0O000O000 ..
OO0O0O0000 NN
OO0O0000O0 mEE
OO0O00O00O00 MmN
OO0O00O0O0O0 mENE
OO0O0O0O000mE.

Is window size a function of support s? Will fix later..

>

Window 3

EOCOROOOO0O0O
BOCOEBROOOON
BRECOOOOOO0OO
ONBCOROOO0O0O0
EORCOROO0O0O0
EORCOROCOOC N
EORCOOO0O0O0 M.
EOCOOROOOC M.
OECOEECOCOOC N
EOCERCOCO0OC .




Lossy Counting in Action ...

Frequency
Counts

O0000mO0 MO
EEECOORCOCONN
ONEOC0OREOCO
EOEONCONNCIN
ONEO0ORCORCON
+I:IIII:II:III:III:II —_—
OO00O00RCORO0
OROO0ORO00ON
ONOROC0ECO NN
_ | fmj Emi FmimE | |

Empty First Window

N

[

At window boundary, decrement all counters by 1



Lossy Counting continued ...

Frequency
Counts

OO0080000 M.
OO0080000 M.
OO0080000 M.
OO00800000Mm.

+ OO0000O000m .
OO000000 a8 ——
OO000000HE N
OO00080000 NN
OO0008000HE N
OO000O000aE N

Next Window

N

f

At window boundary, decrement all counters by 1



Error Analysis

How much do we undercount?

If current size of stream =N
and window-size = 1/¢
then frequency error < #windows = &N

Rule of thumb:
Set € = 10% of support s

Example:
Given support frequency s = 1%,
set error frequency e=0.1%




Output:
Elements with counter values exceeding sN - eN

Approximation guarantees
Frequencies underestimated by at most eN
No false negatives
False positives have true frequency at least sN - eN

How many counters do we need?
Worst case: 1/¢ log (¢ N) counters (see proof later)



Enhancements ...

Frequency Errors
For counter (X, c), true frequency in [c, c+eN]

Trick: Remember window-id’s
For counter (X, c, w), true frequency in [c, c+w-1]

If (w = 1), no error!

At the time of deletion, the true frequency of X is

at most w which is less than eNuw! (Nwis the number
of elements seen so far in the stream at the end of
window w)

Batch Processing
Decrements after k windows



The Enhanced Algorithm

0. The data structure we keep is D, which has entries in
the form of (X, ¢, A);

1. Inwindow b, an element X appears, if X isinD,
increase its count ¢ by 1; otherwise, insert (X, 1, b-1)
into D;

2. At the end of window b, delete all entries if their
c+ A<b.



Worse Case Bound

How many counters do we need?
Worst case: 1/¢ log (¢ N) counters

Let B be the current bucket id, di denote the number of
entries we kept whose bucket id is B-i+1 for i\in [1, B]
The item corresponding to such entry must occur at
least i times in bucket B-i+1 through B;

J
ZiXdi < jw, for j=1,2,...B.

We claim: Zd, < / for j=12,..

Prove By Induction.



Algorithm 2: Sticky Sampling

DO0DOomEO DDD DDDD IDI IDD OO
D- IDDDD T [mls@uln
di. DDD DDDDDII
IIDI BlE @ - m|_Ju(nin (@) IID
(;h E(i):l D+ N * 0
DDDIIDD IIIDIIIIDDDI
DD -D- N IID Ooooogd
IZIII:I |:|l lll IID@
 ENE | 1 ]
ll-

Bl L I
IIIZI l lI:lIZlI:IIZI IZII

v

Stream

- Create counters by sampling
- Maintain exact counts thereafter

What rate should we sample?




Sticky Sampling contd...

For finite stream of length N

Sampling rate = 2/Ne log 1/(s3) | & = probability of failure

Output:
Elements with counter values exceeding sN - eN

Approximation guarantees (probabilistic)
Frequencies underestimated by at most eN
No false negatives

False positives have true frequency at least sN - eN

Same Rule of thumb:
Same error guarantees Set € = 10% of support s

as Lossy Counting Example:

but probabilistic Given support threshold s = 1%,
set error threshold £=0.1%

set failure probability 6 = 0.01%




Sampling rate?
Finite stream of length N
Sampling rate: 2/Ne log 1/(s3)

Infinite stream with unknown N
Gradually adjust sampling rate (discussed later)

In either case,
Expected number of counters =@Iog 1/s5

Independent of NI 4/




Infinite Stream

Let t+=1/¢ log(1/s5)

First 21, sample rate =1
Next 21, sample rate =1/2
Next 41, sample rate=1/4
Next 8%, sample rate=1/8

And, whenever sample rate changes, do:

For each entry kept, flip coin (with p=1/2) continuously,
Until a head appears, for each tail, decrease the count
Of the entry by 1; remove the entry when its count is O.



Result (proof in class)

Sticky sampling satisfies our requirement with
Probability at least 1- 5 using at most
2/¢ log(1/s38) expected number of entries.

Proof: In class, Please take notes.



No of counters

No of counters

1400
1200
1000
g00
600
400

200 |-,

Sticky Sampling Expected:

2/ log 1/s6
Lossy Counting Worst Case: 1/¢ log eN

%tickg Samhling EUnfq)
Sticky Sampling (Zipf)
ssy Counting (Uni
ossy Counting (Z2ipf)

Log10 of N (stream length)

Support s
£ =

Error

1%
0.1%

" Lossy Counting (Unig) ——

Lossy Counting (Z2ipf) ——

L~ L~
L L

2000 4000 6000 8000
N (stream length)

10000




From elements
to sets of elements ...



<

Frequent Itemsets Problem ...

(TN (1 N (] [T 1] . HEEEE N
N | N CT] [ ] B N
1] ] N - W CITTTT] CTT1] H N
CH T B T (| WmITT7TT7] [ B [
(TN [N (T N [(TT] ] B N
] . EIEEEE B B IT10 [T 1] H B
1] N . HEEEEEE | [(ITT N (1. B N
] W N . HN | 1] (TN (11 W]
W | | | OreT] M 0 0O
] LT T I | HEE DEEEEEE e | . W
>
Stream

» Identify all subsets of items whose
current frequency exceeds s = 0.1%.

[Frequent Itemsets => Association Rules ]




Three Modules

| TRIE

SUBSET—GENJ

[BUFFER




Module 1: TRIE

Compact representation of frequent itemsets in lexicographic order.

m 50
045

40
[ 32

mm 30
42

mm 31 mm 29

Sets with frequency counts




Module 2: BUFFER

Window 1

Window 2

Window 3 Window 4

Window 5

Window 6

In Main Memory

Compact representation as sequence of ints

Transactions sorted by item-id

Bitmap for transaction boundaries




Module 3: SUBSET-GEN

N |
/3 [] 3 8 3 4 )
[] 2 1IN 2] 1
B 2  HEmnE B
“En 3L =
1 requency counts
1 .— of subsets
BUFFER \ in lexicographic order'/




Overall Algorithm ...

B

/3I 3B 3 4 7
=: 2 N ZE 1

2 N 1
—— 0 3=Z

1
. N _

e 1 SUBSET-GEN

[ TRIE ] —;[new TRIE]

Problem: Number of subsets is exponential!



SUBSET-GEN Pruning Rules

A-priori Pruning Rule

If set S is infrequent, every superset of S is infrequent.

Lossy Counting Pruning Rule

At each ‘window boundary’ decrement TRIE counters by 1.

Actually, 'Batch Deletion’:
At each 'main memory buffer’ boundary,

decrement all TRIE counters by b.

See paper for details ...



Bottlenecks ...

"l
(= leNNw\

BUFFER

N W

~

w
N

mmm

+ | H==pE"

/(TRIE:D—y new TRIE

{ Consumes main memory

\

Consumes CPU ti

.me]/




Design Decisions for Performance

TRIE Main memory bottleneck
Compact linear array
- (element, counter, level) in preorder traversal
- No pointers!

Tries are on disk
- All of main memory devoted to BUFFER

Pair of tries
- old and new (in chunks)

mmap() and madvise()

SUBSET-GEN CPU bottleneck
Very fast implementation
— See paper for details



Experiments ...

IBM synthetic dataset T10.14.1000K
N = 1Million  Avg Tran Size = 10 Input Size = 49MB

IBM synthetic dataset T15.16.1000K
N = 1Million Avg Tran Size = 15 Input Size = 69MB

Frequent word pairs in 100K web documents
N = 100K Avg Tran Size = 134 Input Size = 54MB

Frequent word pairs in 806K Reuters newsreports
N = 806K Avg Tran Size = 61 Input Size = 210MB




What do we study?

For each dataset

Support threshold s ] _ |

L th of st N Three independent variables
ength o ream Fix one and vary two

BUFFER size B _

Time taken T } Measure time taken

Set € = 10% of support s




Time in seconds

Varying support s and BUFFER B

120 —
100 F \
60 e e
40 F kS
i s S = 0.001
20 | B S =0.002
S S = 0.004
5 . . . == S = 0.008
0 10 20 30 40 50

BUFFER size in MB

IBM 1M transactions

Time in seconds

2000

—
o
o
o

1000

o
o
o

o

\“ “\-____ _\—-_“"——\__._
e 5= 000
TSt 5 =0.012
S =0.016
1 1 1 1 L 1 ]
0 5 10 15 20 25 30

BUFFER size in MB

Reuters 806K docs

Fixed:
Varying:

Stream length N

BUFFER size B
Support threshold s




Time in seconds

Varying length N and support s

120 1800
1600
100 = -
S 1490 S = 0.001
80 O 1200 F
Q
60 n 1000 /
40 = 800 7S =0.002
D 600 T
= o -~ S =0.004
20 = 400 e "
B e e e 200
100 200 300 400 500 600 700 800 900 1000 0 : : : S—
200 400 600 800

Length of stream in Thousands _
Length of stream in Thousands

IBM 1M transactions Reuters 806K docs
Fixed: BUFFER size B
Varying: Stream length N
Support threshold s




Varying BUFFER B and support s

120 —

Time in seconds
N o (mu] 8
o faw] [aw] o

™
<
T

AN

o

0 0.002 0.004 0.006 0.008 0.01
Support threshold s

IBM 1M transactions

(@ Noole) NN

2000 -

2]

}g

o T \

1000 | o T —

= T . T B= 4MB

e i B =

ve | & 500 RS Y
MB ] = B = 40 MB
me |

0 0.004 0.008 0.012 0.016 0.02
Support threshold s

Reuters 806K docs

Fixed:
Varying:

Stream length N

BUFFER size B
Support threshold s




Comparison with fast A-priori

APriori Our Algorithm Our Algorithm
with 4MB Buffer | with 44MB Buffer
Support | Time | Memory | Time Memory Time Memory
0.001 99s| 82 MB 111s 12 MB 27 s 45 MB
0.002 25s| 53 MB 94 s 10 MB 15 s 45 MB
0.004 14s| 48 MB 65 s 7MB 8s 45 MB
0.006 13s| 48 MB 46 s 6 MB 6s 45 MB
0.008 13s| 48 MB 34 s 5 MB 4s 45 MB
0.010 14s| 48 MB 26 s 5 MB 4s 45 MB

Dataset: IBM T10.14.1000K with 1M transactions, average size 10.

A-priori by Christian Borgelt

http://fuzzy.cs.uni-magdeburg.de/~borgelt/software.html




Comparison with Iceberg Queries

Query: Identify all word pairs in 100K web documents
which co-occur in at least 0.5% of the documents.

[FSGM+98] multiple pass algorithm:
/7000 seconds with 30 MB memory

Our single-pass algorithm:
4500 seconds with 26 MB memory

Our algorithm would be much faster if allowed multiple passes!



Lessons Learnt ...

Optimizing for #passes is wrong!

Small support s = Too many frequent itemsets!
Time to redefine the problem itself?

Interesting combination of Theory and Systems.



Other Interesting Work

Frequency Counts over Sliding Windows
Multiple pass Algorithm for Frequent Itemsets

Iceberg Datacubes



Summary

Lossy Counting: A Practical algorithm for online
frequency counting.

First ever single pass algorithm for Association Rules
with user specified error guarantees.

Basic algorithm applicable to several problems.



Sticky Sampling Expected: 2/ log 1/s8 g ¢
Lossy Counting Worst Case: 1/¢ log &N

SS LC SS LC SS LC
e s worst | worst | Zipf | Zipf | Unig | Uniq

0.1% 10% |27K |9K 6K [419 |27K |1K

0.05% |05% |B8K |17K |11K |709 |58K |2K

001% |0.1% |[322K [69K |37K |2K |322K|10K

0.005% | 0.05% | 672K |124K [62K |4K |672K | 20K

LC: Lossy Counting SS: Sticky Sampling
Zipf: Zipfian distribution Uniqg: Unique elements



