
VLDB 2002 1

Frequency Counts
over

Data Streams

The Problem ...

 Identify all elements whose current frequency
exceeds support threshold s = 0.1%.

Stream

Formal Definition

 All item whose true frequency exceeds
sN are output. There are no false
negatives.

 No item whose true frequency is less
than (s- ε)N is output.

 Estimated frequencies are less than
the true frequencies by at most εN!

A Related Problem ...

Stream

 Identify all subsets of items whose
current frequency exceeds s = 0.1%.

Frequent Itemsets / Association Rules

Applications

Flow Identification at IP Router [EV01]

Iceberg Queries [FSGM+98]

Iceberg Datacubes [BR99 HPDW01]

Association Rules & Frequent Itemsets
[AS94 SON95 Toi96

Hid99 HPY00 …]

Presentation Outline ...

1. Lossy Counting 2. Sticky Sampling

3. Algorithm for Frequent Itemsets

Algorithm 1: Lossy Counting

Step 1: Divide the stream into ‘windows’

Is window size a function of support s? Will fix later…

Window 1 Window 2 Window 3

Lossy Counting in Action ...

Empty

Frequency
Counts

At window boundary, decrement all counters by 1

+

First Window

Lossy Counting continued ...
Frequency
Counts

At window boundary, decrement all counters by 1

Next Window

+

Error Analysis

If current size of stream = N
and window-size = 1/ε

then #windows = εN

Rule of thumb:
Set ε = 10% of support s

Example:
Given support frequency s = 1%,
set error frequency ε = 0.1%

frequency error 

How much do we undercount?

How many counters do we need?
Worst case: 1/ε log (ε N) counters (see proof later)

Output:
Elements with counter values exceeding sN – εN

Approximation guarantees
Frequencies underestimated by at most εN
No false negatives
False positives have true frequency at least sN – εN

Enhancements ...

Frequency Errors
For counter (X, c), true frequency in [c, c+εN]

Trick: Remember window-id’s
For counter (X, c, w), true frequency in [c, c+w-1]

Batch Processing
Decrements after k windows

If (w = 1), no error!

At the time of deletion, the true frequency of X is
at most w which is less than εNw! (Nw is the number
of elements seen so far in the stream at the end of
window w)

The Enhanced Algorithm

0. The data structure we keep is D, which has entries in
the form of (X, c, ∆);

1. In window b, an element X appears, if X is in D,
increase its count c by 1; otherwise, insert (X, 1, b-1)
into D;

2. At the end of window b, delete all entries if their
c+ ∆≤b.

Worse Case Bound

How many counters do we need?
Worst case: 1/ε log (ε N) counters

Let B be the current bucket id, di denote the number of
entries we kept whose bucket id is B-i+1 for i\in [1, B]:

The item corresponding to such entry must occur at
least i times in bucket B-i+1 through B;





j

i

i Bjjwdi
1

.,2,1for , 

Bj
i

wd
j

i

j

i

i ,2,1for , :claim We
1 1

 
 

Prove By Induction.

Algorithm 2: Sticky Sampling

Stream

 Create counters by sampling
 Maintain exact counts thereafter

What rate should we sample?

34
15
30

28
31
41

23
35
19

Sticky Sampling contd...
For finite stream of length N

Sampling rate = 2/Nε log 1/(s)

Same Rule of thumb:
Set ε = 10% of support s

Example:
Given support threshold s = 1%,
set error threshold ε = 0.1%
set failure probability  = 0.01%

Output:
Elements with counter values exceeding sN – εN

Same error guarantees
as Lossy Counting
but probabilistic

Approximation guarantees (probabilistic)
Frequencies underestimated by at most εN
No false negatives
False positives have true frequency at least sN – εN

 = probability of failure

Sampling rate?

Finite stream of length N
Sampling rate: 2/Nε log 1/(s)

Independent of N!

Infinite stream with unknown N
Gradually adjust sampling rate (discussed later)

In either case,
Expected number of counters = 2/ log 1/s

Infinite Stream

Let t=1/ε log(1/s)
First 2t, sample rate =1
Next 2t, sample rate =1/2
Next 4t, sample rate=1/4
Next 8t, sample rate=1/8

And, whenever sample rate changes, do:
For each entry kept, flip coin (with p=1/2) continuously,
Until a head appears, for each tail, decrease the count
Of the entry by 1; remove the entry when its count is 0.

Result (proof in class)

Sticky sampling satisfies our requirement with
Probability at least 1-  using at most
2/ε log(1/s) expected number of entries.

Proof: In class, Please take notes.

N
o
 o

f
c
o
u
n
te

rs

Support s = 1%

Error ε = 0.1%

N (stream length)

N
o
 o

f
c
o
u
n
te

rs

Sticky Sampling Expected: 2/ log 1/s
Lossy Counting Worst Case: 1/ log N

Log10 of N (stream length)

From elements
to sets of elements …

Frequent Itemsets Problem ...

Stream

 Identify all subsets of items whose
current frequency exceeds s = 0.1%.

Frequent Itemsets => Association Rules

Three Modules

BUFFER

TRIE

SUBSET-GEN

Module 1: TRIE

Compact representation of frequent itemsets in lexicographic order.

50

40

30

31 29 32

45

42

50 40 30 31 29
45 32 42

Sets with frequency counts

Module 2: BUFFER

Compact representation as sequence of ints
Transactions sorted by item-id
Bitmap for transaction boundaries

Window 1 Window 2 Window 3 Window 4 Window 5 Window 6

In Main Memory

Module 3: SUBSET-GEN

BUFFER

3 3 3 4
2 2 1
2 1
3
1
1

Frequency counts
of subsets
in lexicographic order

Overall Algorithm ...

BUFFER

3 3 3 4
2 2 1
2 1
3
1

1 SUBSET-GEN

TRIE new TRIE

Problem: Number of subsets is exponential!

SUBSET-GEN Pruning Rules

A-priori Pruning Rule

If set S is infrequent, every superset of S is infrequent.

See paper for details ...

Lossy Counting Pruning Rule

At each ‘window boundary’ decrement TRIE counters by 1.

Actually, ‘Batch Deletion’:
At each ‘main memory buffer’ boundary,

decrement all TRIE counters by b.

Bottlenecks ...

BUFFER

3 3 3 4
2 2 1
2 1
3
1

1 SUBSET-GEN

TRIE new TRIE

Consumes main memory Consumes CPU time

Design Decisions for Performance

TRIE Main memory bottleneck

Compact linear array
 (element, counter, level) in preorder traversal

 No pointers!

Tries are on disk
 All of main memory devoted to BUFFER

Pair of tries
 old and new (in chunks)

mmap() and madvise()

SUBSET-GEN CPU bottleneck
Very fast implementation
 See paper for details

Experiments ...

IBM synthetic dataset T10.I4.1000K
N = 1Million Avg Tran Size = 10 Input Size = 49MB

IBM synthetic dataset T15.I6.1000K
N = 1Million Avg Tran Size = 15 Input Size = 69MB

Frequent word pairs in 100K web documents
N = 100K Avg Tran Size = 134 Input Size = 54MB

Frequent word pairs in 806K Reuters newsreports
N = 806K Avg Tran Size = 61 Input Size = 210MB

What do we study?

For each dataset
Support threshold s
Length of stream N
BUFFER size B

Time taken t

Set ε = 10% of support s

Three independent variables
Fix one and vary two

Measure time taken

Varying support s and BUFFER B

IBM 1M transactions Reuters 806K docs

BUFFER size in MB BUFFER size in MB

T
im

e
 i
n
 s

e
c
o
n
d
s

T
im

e
 i
n
 s

e
c
o
n
d
s

Fixed: Stream length N

Varying: BUFFER size B

Support threshold s

S = 0.001
S = 0.002
S = 0.004
S = 0.008

S = 0.004
S = 0.008
S = 0.012
S = 0.016
S = 0.020

Varying length N and support s

IBM 1M transactions Reuters 806K docs

T
im

e
 i
n
 s

e
c
o
n
d
s

T
im

e
 i
n
 s

e
c
o
n
d
s

Length of stream in Thousands
Length of stream in Thousands

Fixed: BUFFER size B
Varying: Stream length N

Support threshold s

S = 0.001

S = 0.002

S = 0.004

S = 0.001

S = 0.002

S = 0.004

Varying BUFFER B and support s

T
im

e
 i
n
 s

e
c
o
n
d
s

T
im

e
 i
n
 s

e
c
o
n
d
s

IBM 1M transactions Reuters 806K docs

Support threshold s Support threshold s

Fixed: Stream length N

Varying: BUFFER size B

Support threshold s

B = 4 MB
B = 16 MB
B = 28 MB
B = 40 MB

B = 4 MB

B = 16 MB
B = 28 MB
B = 40 MB

Comparison with fast A-priori

APriori Our Algorithm
with 4MB Buffer

Our Algorithm

with 44MB Buffer

Support Time Memory Time Memory Time Memory

0.001 99 s 82 MB 111 s 12 MB 27 s 45 MB

0.002 25 s 53 MB 94 s 10 MB 15 s 45 MB

0.004 14 s 48 MB 65 s 7MB 8 s 45 MB

0.006 13 s 48 MB 46 s 6 MB 6 s 45 MB

0.008 13 s 48 MB 34 s 5 MB 4 s 45 MB

0.010 14 s 48 MB 26 s 5 MB 4 s 45 MB

Dataset: IBM T10.I4.1000K with 1M transactions, average size 10.

A-priori by Christian Borgelt http://fuzzy.cs.uni-magdeburg.de/~borgelt/software.html

Comparison with Iceberg Queries

Query: Identify all word pairs in 100K web documents
which co-occur in at least 0.5% of the documents.

[FSGM+98] multiple pass algorithm:
7000 seconds with 30 MB memory

Our single-pass algorithm:
4500 seconds with 26 MB memory

Our algorithm would be much faster if allowed multiple passes!

Lessons Learnt ...

Optimizing for #passes is wrong!

Small support s  Too many frequent itemsets!
Time to redefine the problem itself?

Interesting combination of Theory and Systems.

Other Interesting Work

Frequency Counts over Sliding Windows

Multiple pass Algorithm for Frequent Itemsets

Iceberg Datacubes

Summary

Lossy Counting: A Practical algorithm for online
frequency counting.

First ever single pass algorithm for Association Rules
with user specified error guarantees.

Basic algorithm applicable to several problems.

 s

SS
worst

LC
worst

SS
Zipf

LC
Zipf

SS
Uniq

LC
Uniq

0.1% 1.0% 27K 9K 6K 419 27K 1K

0.05% 0.5% 58K 17K 11K 709 58K 2K

0.01% 0.1% 322K 69K 37K 2K 322K 10K

0.005% 0.05% 672K 124K 62K 4K 672K 20K

LC: Lossy Counting SS:Sticky Sampling
Zipf: Zipfian distribution Uniq: Unique elements

Sticky Sampling Expected: 2/ log 1/s
Lossy Counting Worst Case: 1/ log N

But ...

