
Distinct Counting Problem



COUNT Sketches

 Problem: Estimate the number of distinct item IDs 
in a data set with only one pass.

 Constraints: 

– Small space relative to stream size.

– Small per item processing overhead.

– Union operator on sketch results.

 Exact COUNT is impossible without linear space.

 First approximate COUNT sketch in [FM’85].

– O(log N) space, O(1) processing time per item.



Counting Paintballs

 Imagine the following 
scenario:

– A bag of n paintballs is 
emptied at the top of a 
long stair-case.

– At each step, each 
paintball either bursts 
and marks the step, or 
bounces to the next 
step. 50/50 chance 
either way.

Looking only at the pattern of 
marked steps, what was n?



Counting Paintballs (cont)

 What does the 
distribution of paintball 
bursts look like?

– The number of bursts at 
each step follows a 
binomial distribution.

– The expected number of 
bursts drops 
geometrically.

– Few bursts after log2 n
steps
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Counting Paintballs (cont)

 Many different estimator ideas 
[FM'85,AMS'96,GGR'03,DF'03,...]

 Example: Let pos denote the position of the 
highest unmarked stair,

E(pos) ≈ log2(0.775351 n)

2(pos) ≈ 1.12127

 Standard variance reduction methods apply

 Either O(log n) or O(log log n) space



Back to COUNT Sketches

 The COUNT sketches of 
[FM'85] are equivalent to 
the paintball process.

– Start with a bit-vector of all 
zeros.

– For each item, 

 Use its ID and a hash 
function for coin flips.

 Pick a bit-vector entry.

 Set that bit to one.

 These sketches are 
duplicate-insensitive:

1 0 0 0 0{x}

0 0 1 0 0{y}

1 0 1 0 0{x,y}

"A,B  (Sketch(A)  Sketch(B)) = Sketch(A  B)



SUM Sketches

 Problem: Estimate the sum of values of 
distinct <key, value> pairs in a data stream 
with repetitions. (value ≥ 0, integral).

 Obvious start: Emulate value insertions into a 
COUNT sketch and use the same estimators.

– For <k,v>, imagine inserting

<k, v, 1>, <k, v, 2>, …, <k, v, v>



SUM Sketches (cont)

 But what if the value is 1,000,000?

 Main Idea (details on next slide):  

– Recall that all of the low-order bits will be set to 
1 w.h.p. inserting such a value.

– Just set these bits to one immediately.

– Then set the high-order bits carefully.



Simulating a set of 
insertions

 Set all the low-order bits in  the “safe” region.

– First S = log v – 2 log log v bits are set to 1 w.h.p.

 Statistically estimate number of trials going beyond 
“safe” region

– Probability of a trial doing so is simply 2-S

– Number of trials ~ B (v, 2-S).  [Mean = O(log2 v)]

 For trials and bits outside “safe” region, set those bits 
manually.

– Running time is O(1) for each outlying trial.

Expected running time:                                        
O(log v) + time to draw from B (v, 2-S) + O(log2 v)



Sampling for Sensor 
Networks

 We need to generate samples from B (n, p).

– With a slow CPU, very little RAM, no floating point hardware

 General problem:  sampling from a discrete pdf.

 Assume can draw uniformly at random from [0,1].

 With an event space of size N:

– O(log N) lookups are immediate.

 Represent the cdf in an array of size N.

 Draw from [0, 1] and do binary search.

– Cleverer methods for O(log log N), O(log* N) time

Amazingly, this can be done in constant time!



Walker’s Alias Method

n 

1
/n

A – 0.10

B – 0.25

C – 0.05

D – 0.25
E – 0.35

n 

1
/n

A – 0.10
B – 0.15

C – 0.05

D – 0.25
E – 0.35

B – 0.10

n 

1
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A – 0.10
B – 0.15

C – 0.05

D – 0.20

E – 0.35
B – 0.10

D – 0.05

n 

1
/n

A – 0.10
B – 0.15

C – 0.05

D – 0.20 E – 0.20
B – 0.10

D – 0.05
E – 0.15

 Theorem [Walker ’77]:  For any discrete pdf 
D over a sample space of size n, a table of 
size O(n) can be constructed in O(n) time 
that enables random variables to be drawn 
from D using at most two table lookups.

n

1/n



Binomial Sampling for 
Sensors

 Recall we want to sample from B(v,2-S) for 
various values of v and S.
– First, reduce to sampling from G(1 – 2-S).

– Truncate distribution to make range finite                          
(recursion to handle large values).

– Construct tables of size 2S for each S of interest.

– Can sample B(v,2-S) in O(v · 2-S) expected time.



Fact

 Suppose we have a method to repeatedly 
draw at random from G(1-p). Let d be the 
random variable that records the number of 
draws from G(1-p) until the sum of the 
draws exceeds n. The value d-1 is then 
equivalent to a random draw from B(n, p).



The Bottom Line

– SUM inserts in

 O(log2(v)) time with O(v / log2(v)) space

 O(log(v)) time with O(v / log(v)) space

 O(v) time with naïve method

– Using O(log2(v)) method, 16 bit values (S ≤ 8) 
and 64 bit probabilities

 Resulting lookup tables are ~ 4.5KB

 Recursive nature of G(1 – 2-S) lets us tune size further

– Can achieve O(log v) time at the cost of bigger 
tables


