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Temporal Indexing

 Transaction time databases : update  the last 
version, query all versions

 Queries:

 “Find all employees that worked in the company on 
09/12/98”

 “Find the employees with salary between 35K and 
50K on 04/21/99”

 Multiversion B-tree: answers efficiently the 
queries above



Basics

 A data structure is called :

 Ephemeral: updates create a new version and the 
old version cannot be queried

 Persistent: updates can be applied at any version 
and any version can be queried

 Partially Persistent: updates applied to the last 
version and any version can be queried

 Transaction time fits with partially persistence



MVBT – The idea

 Store all versions of the state of a 
B+-tree which evolved over time, i.e. multiple 
“snapshots” of the tree

 Inserts, updates and deletes are applied to the 
present version of the tree and increase the 
version number of the whole tree

 Queries know which version of the tree they 
require the result(s) from



General method

 Transform a single version external access
structure (with high utilization of disk blocks) 
at the cost of a constant factor in time and 
space requirements compared to the original, 
single version structure

 Such increase is asymptotically optimal = 
worst-case bounds cannot decrease by adding 
multiversion capability to existing structure



Proposition Specifics

 Extend B+-tree to have multiversion capability

 Support operations:

 Insert(key, info)
Insert into current version, increase tree version

 Delete(key)
Delete from current version, increase tree version

 Exact match query(key, version)

 Range query(lowkey, highkey, version)



Overview

 The multiversion B-tree is a directed acyclic graph of 
B-tree nodes that results from incremental changes 
to original B-tree

 It has a number of B+-tree root nodes which 
partition the versions from the first to the present 
one so that each B-tree root stands for an interval of 
versions

Time

Logical view



Blocks (pages)

 Contain b data items

 Live if it has not been copied, dead otherwise

 Weak version condition:  for every version i
and each block A except the roots of versions, 
we require that the number of entries in A is 
either 0 or at least d, where b=k·d



Data Items

 Leaf node of the tree

 <key, in_version, del_version, info>

 Inner node of the tree

 <router, in_version, del_version, info>

 Said to be of version i if its lifespan contains i

 In live block, deletion version * denotes that 
this entry has not been deleted at present, in a 
dead block it means that the entry has not yet 
been deleted before the block died



Updates

 Each update creates new version

 If no structural changes:

 Insert:  lifespan is [i, *)

 Delete:  changes del_version from * to i

 A structural change is required if:

 Block overflow: can only fit b entries in a block

 Weak version underflow:  if deletion in a block with 
exactly d current version entries



Structural Modification

 Copy the block and remove all but the present 
version entries from the copy

 If block consists of primarily present version 
entries, the copy will produce an almost full 
block, resulting in a split again after a few 
subsequent insertions
 To avoid this, request that at least εd+1 insert or 

delete operations are necessary for the next block 
overflow or version underflow in that block (ε will 
be defined later)



Strong Version Constraints

 Strong version condition:  the number of 
present version entries after a version split 
must be in range from (1+ε)d to (k-ε)d.

 Strong version underflow:  result of version 
split leading to less than (1+ε)d entries
 Attempt to merge with a sibling block containing 

only its present version entries, if necessary 
followed by a version independent split by key 
values

 Strong version overflow:  if a version split 
leads to more than (k-ε)d entries in the block
 Also perform a split by key values



Simple Example

Original Tree (Version 1)

Insert(40)



Simple Example

(Version 2)

Delete(65)



Simple Example

(Version 3)



Version Split Example

(Version 7)

Insert(5) creates a block 
overflow

All currently live entries copied 
to the new live block A*, old 

block A marked dead

Also, the root block is updated 
to show that entity 10 was alive 

in the dead block A until 
version 8



Version Split Example

(Version 8)

Resulting tree



Weak V. Underflow Example

(Version 7)

Suppose b=6, d=2, ε=0.5 

(d: the minimum # of current 
version entries in the block)

Delete(40) results in block A 
only having 1 current entry

1<d:  weak underflow, split A



Strong V. Underflow Example

(Processing: Version 78)

The version split of A has led to 
less than (1+ ε)d=1.5*2=3 entries 

in the new node
strong version underflow

Seek a sibling of A* (in our case, B)
Version split it (to create B*)

Merge B* and A* 
to produce block A*B*



Strong V. Underflow 
Condition Violation

(Processing: Version 78)

But now, the node A*B* violates 
the strong version overflow 

condition and must be split by key 
into nodes C and D



Resulting Tree

(Version 8)

Example 
Query:
(25, 5)



Roots Can Split, Too

Overflow Split



Roots Can Split, Too

Strong version overflow
with key split and 

allocation of the new block



Weak Version Underflow 
of the Root Node

R3 has shrunkweak underflow

Block copies of R3 and R4 are 
created and merged into R5

This causes weak version underflow 
of R2, so R5 becomes new root 

block



Algorithms

 Insertion: Find the leaf node for the new key 
e, then call blockInsert (say A)

 blockInsert: enter e in A

 If block overflow of A then 

 Version split, block insert

 If strong version underflow then

 Merge

 Else if strong version overflow  key split



Algorithms

 Delete: blockDelete A

 Check weak version underflow on A

 If true, then merge with sibling

 Note that Deletion is easier than the insertion 
in the MVBT. What about the B+-tree?



Constraints on MVBT Parameters

 What are the restrictions on choices of k and 
ε?
 (k-ε)d+1 ≥ (1/α)(1+ε)d

 α is the fraction of the entries in a block guaranteed to be 
in a new node after a key split, 0.5 for B-trees

 Before key split, A contains at least (k-ε)d+1 entries

 After a key split, both blocks must contain at least (1+ε)d 
entries.

 2d-1 ≥ (1+ε)d
 Before merge is performed, together there are at least 2d-

1 present version entries in the blocks to be merged



Efficiency Analysis

 The big result is that the MVBT is asymptotically 
optimal to the B-Tree in the worst case in time and 
space for all considered operations

 Search time is in 

 Space is O(n/b) and update 
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Additional Issues

 Can store the roots of version interval trees in 
a B-tree of their own; authors demonstrated 
that for most practical cases the depth of the 
root B-tree will never exceed two anyway.

 Store old versions on a Write Once Read Many 
(WORM) drive (optical disks), similar to 
(Kolovson and Stonebraker 1989)



Other Approach

 Overlapping B+-trees

 Idea: for each update store only the path from 
the root node to the leaf node, use the rest of 
the tree for the new version (since it is the 
same)

 Better approach, store only the new path

 Easier to implement but space is higher:

 O(n/b logb n/b)



Temporal Hashing

 Hashing is used to answer exact match queries

 Exact-match with time: “find if employee with 
id=23 was working in the company on 
09/08/98”

 One approach: Use MVBT (4-5 I/Os)

 Temporal Hashing: can achieve 2 I/Os



Temporal Hashing

 Treat objects that fall into a given bucket Bi during 
the whole evolution as an evolving set Bi(t)

 To find if key k is in S(t), reconstruct bucket Bi and 
search for key k (Bi is the bucket that the key k 
should have been placed at t)

 Simply observe how an ephemeral hashing scheme 
would map the keys of S(t) in buckets and keep 
the history of each bucket



Temporal Hashing

 For each bucket use a Snapshot Index

 Using the SI we can reconstruct the bucket

 Note that when we split a bucket we treat the 
keys that moved to the new bucket as deleted  
for the old bucket, newly inserted for the new

 Another approach is to keep an evolving list



Bi-temporal Data Indexing

 Bi-temporal Index:

 R-tree for valid time

 Partial persistence for transaction time

Partially persistent R-tree [Kumar at al. 97]

 What about the case that valid time has an 
open end_time (now)?

 A special R-tree to handle that [Saltenis et al. „99]


