
Temporal Indexing

MVBT

Temporal Indexing

 Transaction time databases : update the last
version, query all versions

 Queries:

 “Find all employees that worked in the company on
09/12/98”

 “Find the employees with salary between 35K and
50K on 04/21/99”

 Multiversion B-tree: answers efficiently the
queries above

Basics

 A data structure is called :

 Ephemeral: updates create a new version and the
old version cannot be queried

 Persistent: updates can be applied at any version
and any version can be queried

 Partially Persistent: updates applied to the last
version and any version can be queried

 Transaction time fits with partially persistence

MVBT – The idea

 Store all versions of the state of a
B+-tree which evolved over time, i.e. multiple
“snapshots” of the tree

 Inserts, updates and deletes are applied to the
present version of the tree and increase the
version number of the whole tree

 Queries know which version of the tree they
require the result(s) from

General method

 Transform a single version external access
structure (with high utilization of disk blocks)
at the cost of a constant factor in time and
space requirements compared to the original,
single version structure

 Such increase is asymptotically optimal =
worst-case bounds cannot decrease by adding
multiversion capability to existing structure

Proposition Specifics

 Extend B+-tree to have multiversion capability

 Support operations:

 Insert(key, info)
Insert into current version, increase tree version

 Delete(key)
Delete from current version, increase tree version

 Exact match query(key, version)

 Range query(lowkey, highkey, version)

Overview

 The multiversion B-tree is a directed acyclic graph of
B-tree nodes that results from incremental changes
to original B-tree

 It has a number of B+-tree root nodes which
partition the versions from the first to the present
one so that each B-tree root stands for an interval of
versions

Time

Logical view

Blocks (pages)

 Contain b data items

 Live if it has not been copied, dead otherwise

 Weak version condition: for every version i
and each block A except the roots of versions,
we require that the number of entries in A is
either 0 or at least d, where b=k·d

Data Items

 Leaf node of the tree

 <key, in_version, del_version, info>

 Inner node of the tree

 <router, in_version, del_version, info>

 Said to be of version i if its lifespan contains i

 In live block, deletion version * denotes that
this entry has not been deleted at present, in a
dead block it means that the entry has not yet
been deleted before the block died

Updates

 Each update creates new version

 If no structural changes:

 Insert: lifespan is [i, *)

 Delete: changes del_version from * to i

 A structural change is required if:

 Block overflow: can only fit b entries in a block

 Weak version underflow: if deletion in a block with
exactly d current version entries

Structural Modification

 Copy the block and remove all but the present
version entries from the copy

 If block consists of primarily present version
entries, the copy will produce an almost full
block, resulting in a split again after a few
subsequent insertions
 To avoid this, request that at least εd+1 insert or

delete operations are necessary for the next block
overflow or version underflow in that block (ε will
be defined later)

Strong Version Constraints

 Strong version condition: the number of
present version entries after a version split
must be in range from (1+ε)d to (k-ε)d.

 Strong version underflow: result of version
split leading to less than (1+ε)d entries
 Attempt to merge with a sibling block containing

only its present version entries, if necessary
followed by a version independent split by key
values

 Strong version overflow: if a version split
leads to more than (k-ε)d entries in the block
 Also perform a split by key values

Simple Example

Original Tree (Version 1)

Insert(40)

Simple Example

(Version 2)

Delete(65)

Simple Example

(Version 3)

Version Split Example

(Version 7)

Insert(5) creates a block
overflow

All currently live entries copied
to the new live block A*, old

block A marked dead

Also, the root block is updated
to show that entity 10 was alive

in the dead block A until
version 8

Version Split Example

(Version 8)

Resulting tree

Weak V. Underflow Example

(Version 7)

Suppose b=6, d=2, ε=0.5

(d: the minimum # of current
version entries in the block)

Delete(40) results in block A
only having 1 current entry

1<d: weak underflow, split A

Strong V. Underflow Example

(Processing: Version 78)

The version split of A has led to
less than (1+ ε)d=1.5*2=3 entries

in the new node
strong version underflow

Seek a sibling of A* (in our case, B)
Version split it (to create B*)

Merge B* and A*
to produce block A*B*

Strong V. Underflow
Condition Violation

(Processing: Version 78)

But now, the node A*B* violates
the strong version overflow

condition and must be split by key
into nodes C and D

Resulting Tree

(Version 8)

Example
Query:
(25, 5)

Roots Can Split, Too

Overflow Split

Roots Can Split, Too

Strong version overflow
with key split and

allocation of the new block

Weak Version Underflow
of the Root Node

R3 has shrunkweak underflow

Block copies of R3 and R4 are
created and merged into R5

This causes weak version underflow
of R2, so R5 becomes new root

block

Algorithms

 Insertion: Find the leaf node for the new key
e, then call blockInsert (say A)

 blockInsert: enter e in A

 If block overflow of A then

 Version split, block insert

 If strong version underflow then

 Merge

 Else if strong version overflow  key split

Algorithms

 Delete: blockDelete A

 Check weak version underflow on A

 If true, then merge with sibling

 Note that Deletion is easier than the insertion
in the MVBT. What about the B+-tree?

Constraints on MVBT Parameters

 What are the restrictions on choices of k and
ε?
 (k-ε)d+1 ≥ (1/α)(1+ε)d

 α is the fraction of the entries in a block guaranteed to be
in a new node after a key split, 0.5 for B-trees

 Before key split, A contains at least (k-ε)d+1 entries

 After a key split, both blocks must contain at least (1+ε)d
entries.

 2d-1 ≥ (1+ε)d
 Before merge is performed, together there are at least 2d-

1 present version entries in the blocks to be merged

Efficiency Analysis

 The big result is that the MVBT is asymptotically
optimal to the B-Tree in the worst case in time and
space for all considered operations

 Search time is in

 Space is O(n/b) and update

 )log(
d

r
mO ib 

 ib mlog5

Additional Issues

 Can store the roots of version interval trees in
a B-tree of their own; authors demonstrated
that for most practical cases the depth of the
root B-tree will never exceed two anyway.

 Store old versions on a Write Once Read Many
(WORM) drive (optical disks), similar to
(Kolovson and Stonebraker 1989)

Other Approach

 Overlapping B+-trees

 Idea: for each update store only the path from
the root node to the leaf node, use the rest of
the tree for the new version (since it is the
same)

 Better approach, store only the new path

 Easier to implement but space is higher:

 O(n/b logb n/b)

Temporal Hashing

 Hashing is used to answer exact match queries

 Exact-match with time: “find if employee with
id=23 was working in the company on
09/08/98”

 One approach: Use MVBT (4-5 I/Os)

 Temporal Hashing: can achieve 2 I/Os

Temporal Hashing

 Treat objects that fall into a given bucket Bi during
the whole evolution as an evolving set Bi(t)

 To find if key k is in S(t), reconstruct bucket Bi and
search for key k (Bi is the bucket that the key k
should have been placed at t)

 Simply observe how an ephemeral hashing scheme
would map the keys of S(t) in buckets and keep
the history of each bucket

Temporal Hashing

 For each bucket use a Snapshot Index

 Using the SI we can reconstruct the bucket

 Note that when we split a bucket we treat the
keys that moved to the new bucket as deleted
for the old bucket, newly inserted for the new

 Another approach is to keep an evolving list

Bi-temporal Data Indexing

 Bi-temporal Index:

 R-tree for valid time

 Partial persistence for transaction time

Partially persistent R-tree [Kumar at al. 97]

 What about the case that valid time has an
open end_time (now)?

 A special R-tree to handle that [Saltenis et al. „99]

