
Spatial Queries

Nearest Neighbor Queries

Spatial Queries

 Given a collection of geometric objects (points, lines,
polygons, ...)

 organize them on disk, to answer efficiently

 point queries

 range queries

 k-nn queries

 spatial joins („all pairs‟ queries)

Spatial Queries

 Given a collection of geometric objects (points, lines,
polygons, ...)

 organize them on disk, to answer

 point queries

 range queries

 k-nn queries

 spatial joins („all pairs‟ queries)

Spatial Queries

 Given a collection of geometric objects (points, lines,
polygons, ...)

 organize them on disk, to answer

 point queries

 range queries

 k-nn queries

 spatial joins („all pairs‟ queries)

Spatial Queries

 Given a collection of geometric objects (points, lines,
polygons, ...)

 organize them on disk, to answer

 point queries

 range queries

 k-nn queries

 spatial joins („all pairs‟ queries)

Spatial Queries

 Given a collection of geometric objects (points, lines,
polygons, ...)

 organize them on disk, to answer

 point queries

 range queries

 k-nn queries

 spatial joins („all pairs‟ queries)

R-tree

1

2

3

4

5

6

7
8

9
10

11

12

13

1

2 3

…

R-trees - Range search

pseudocode:

check the root

for each branch,

if its MBR intersects the query rectangle

apply range-search (or print out, if this

is a leaf)

R-trees - NN search

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

R-trees - NN search

 Q: How? (find near neighbor; refine...)

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

R-trees - NN search

 A1: depth-first search; then range query

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

R-trees - NN search

 A1: depth-first search; then range query

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

R-trees - NN search

 A1: depth-first search; then range query

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

R-trees - NN search: Branch and
Bound

 A2: [Roussopoulos+, sigmod95]:

 At each node, priority queue, with promising
MBRs, and their best and worst-case distance

 main idea: Every face of any MBR contains at least
one point of an actual spatial object!

MBR face property

 MBR is a d-dimensional rectangle, which is the
minimal rectangle that fully encloses (bounds) an
object (or a set of objects)

 MBR f.p.: Every face of the MBR contains at least one
point of some object in the database

Search improvement

 Visit an MBR (node) only when necessary

 How to do pruning? Using MINDIST and MINMAXDIST

MINDIST

 MINDIST(P, R) is the minimum distance between a
point P and a rectangle R

 If the point is inside R, then MINDIST=0

 If P is outside of R, MINDIST is the distance of P to
the closest point of R (one point of the perimeter)

MINDIST computation

 MINDIST(p,R) is the minimum distance between p and R with
corner points l and u

 the closest point in R is at least this distance away

ri = li if pi < li

= ui if pi > ui

= pi otherwise

p
p

p

R

l

u

MINDIST = 0





d

i

ii rpRPMINDIST
1

2)(),(

l=(l1, l2, …, ld)

u=(u1, u2, …, ud)

),(),(, oPRPMINDISTRo 

MINMAXDIST

 MINMAXDIST(P,R): for each dimension, find the
closest face, compute the distance to the furthest
point on this face and take the minimum of all these
(d) distances

 MINMAXDIST(P,R) is the smallest possible upper
bound of distances from P to R

 MINMAXDIST guarantees that there is at least one
object in R with a distance to P smaller or equal to it.

),(),(, RPMINMAXDISToPRo 

MINMAXDIST computation

 MINMAXDIST(p,R) guarantees there is an object within the MBR at
a distance less than or equal to MINMAXDIST

 the closest point in R is less than this distance away

rmk = lk if pk < ½(lk +uk)

= tk otherwise;

rMi = ui if pi > ½(li +ui)

= li otherwise

p

p

R

l

u

MINDIST = 0

)|||(|min),(
1,

2

1






niki

iikk
dk

rMprmpRPMINMAXDIST

l=(l1, l2, …, ld)

u=(u1, u2, …, ud)

MINDIST and MINMAXDIST

 MINDIST(P, R) <= NN(P) <=MINMAXDIST(P,R)

R1

R2

R3
R4

MINDIST

MINMAXDIST

MINDIST

MINMAXDIST

MINMAXDIST

MINDIST

Pruning in NN search

 Downward pruning: An MBR R is discarded if there exists
another R‟ s.t. MINDIST(P,R)>MINMAXDIST(P,R‟)

 Downward pruning: An object O is discarded if there
exists an R s.t. the Actual-Dist(P,O) > MINMAXDIST(P,R)

 Upward pruning: An MBR R is discarded if an object O is
found s.t. the MINDIST(P,R) > Actual-Dist(P,O)

Pruning 1 example

 Downward pruning: An MBR R is discarded if there exists
another R‟ s.t. MINDIST(P,R)>MINMAXDIST(P,R‟)

MINDIST

MINMAXDIST

R

R‟

Pruning 2 example

 Downward pruning: An object O is discarded if there
exists an R s.t. the Actual-Dist(P,O) > MINMAXDIST(P,R)

Actual-Dist

MINMAXDIST

O

R

Pruning 3 example

 Upward pruning: An MBR R is discarded if an object O is
found s.t. the MINDIST(P,R) > Actual-Dist(P,O)

MINDIST

Actual-Dist

R

O

Ordering Distance

 MINDIST is an optimistic distance where MINMAXDIST is
a pessimistic one.

P

MINDIST

MINMAXDIST

NN-search Algorithm

1. Initialize the nearest distance as infinite distance

2. Traverse the tree depth-first starting from the root. At each
Index node, sort all MBRs using an ordering metric and put them
in an Active Branch List (ABL).

3. Apply pruning rules 1 and 2 to ABL

4. Visit the MBRs from the ABL following the order until it is empty

5. If Leaf node, compute actual distances, compare with the best
NN so far, update if necessary.

6. At the return from the recursion, use pruning rule 3

7. When the ABL is empty, the NN search returns.

K-NN search

 Keep the sorted buffer of at most k current nearest
neighbors

 Pruning is done using the k-th distance

Another NN search: Best-First

 Global order [HS99]
 Maintain distance to all entries in a common Priority

Queue

 Use only MINDIST

 Repeat

 Inspect the next MBR in the list

 Add the children to the list and reorder

 Until all remaining MBRs can be pruned

Nearest Neighbor Search (NN) with R-Trees

 Best-first (BF) algorihm:

E

20 4 6 8 10

2

4

6

8

10

x axis

y axis

b

E f

query point

omitted

1 E2e

d

c

a

h

g

E3

E5

E6

E4

E7

8

search
region

contents

E9
i

E 11
E 22Visit Root

E 137

follow E
1 E 22

E 54
E 55

E 83
E 96

E 83

Action Heap

follow E
2 E 28

E 54
E 55

E 83
E 96

follow E
8

Report h and terminate

E 179

E 137
E

54
E 55

E 83
E 96

E 179

Result

{empty}

{empty}

{empty}

{(h, 2)}

a

5

b

13

c

18

d

13

e

13

f

10

h

2

g

13

E
1
1

E
2
2

E
3
8

E
4
5

E
5
5

E
6
9

E
7
13

E
8
2

Root

E
9
17

i

10

E
1

E
2

E
4

E
5

E
8

i 10E
54

E 55
E 83

E 96
E 137

g
13

HS algorithm

Initialize PQ (priority queue)

InesrtQueue(PQ, Root)

While not IsEmpty(PQ)
R= Dequeue(PQ)

If R is an object
Report R and exit (done!)

If R is a leaf page node
For each O in R, compute the Actual-Dists, InsertQueue(PQ, O)

If R is an index node
For each MBR C, compute MINDIST, insert into PQ

Best-First vs Branch and Bound

 Best-First is the “optimal” algorithm in the sense that
it visits all the necessary nodes and nothing more!

 But needs to store a large Priority Queue in main
memory. If PQ becomes large, we have thrashing…

 BB uses small Lists for each node. Also uses
MINMAXDIST to prune some entries

