
Feifei Li

(Many slides made available by Ke Yi)

R-tree: Indexing Structure for Data in Multi-

dimensional Space



Until now: Data Structures

• General planer range searching (in 2-dimensional space):

– kdB-tree:                        query,          space

q3

q2
q1

q4

)(
B
NO)( B

T
B

NO 



Other results

• Many other results for e.g.

– Higher dimensional range searching

– Range counting, range/stabbing max, and stabbing queries

– Halfspace (and other special cases) of range searching

– Queries on moving objects

– Proximity queries (closest pair, nearest neighbor, point location)

– Structures for objects other than points (bounding rectangles)

• Many heuristic structures in database community



Point Enclosure Queries

• Dual of planar range searching problem

– Report all rectangles containing query point (x,y)

• Internal memory:

– Can be solved in O(N) space and O(log N + T) time

– Persistent interval tree

x

y



Rectangle Range Searching

• Report all rectangles intersecting query rectangle Q

• Often used in practice when handling

complex geometric objects

– Store minimal bounding rectangles (MBR)

Q



Rectangle Data Structures: R-Tree [Guttman, SIGMOD84]

• Most common practically used rectangle range searching structure

• Similar to B-tree

– Rectangles in leaves (on same level)

– Internal nodes contain  MBR of rectangles below each child 

• Note: Arbitrary order in leaves/grouping order 



Example



Example



Example



Example



Example



• (Point) Query:

– Recursively visit 

relevant nodes



Query Efficiency

• The fewer rectangles intersected the better



Rectangle Order

• Intuitively

– Objects close together in same leaves

 small rectangles  queries descend in few subtrees 

• Grouping in internal nodes?

– Small area of MBRs

– Small perimeter of MBRs

– Little overlap among MBRs



R-tree Insertion Algorithm

• When not yet at a leaf (choose subtree):

– Determine rectangle whose area

increment after insertion is

smallest (small area heuristic)

– Increase this rectangle if necessary

and recurse

• At a leaf:

– Insert if room, otherwise Split Node

(while trying to minimize area)



Node Split

New MBRs



Linear Split Heuristic

• Determine the furthest pair R1 and R2 : the seeds for sets S1 and S2

• While not all MBRs distributed

– Add next MBR to the set whose MBR increases the least 



Quadratic Split Heuristic

• Determine  R1 and R2 with largest  area(MBR of R1 and R2)-

area(R1) - area(R2): the seeds for sets S1 and S2

• While not all MBRs distributed

– Determine of every not yet distributed rectangle Rj : 

d1 = area increment of S1  Rj

d2 = area increment of S2  Rj

– Choose Ri with maximal

|d1-d2| and add to the set with

smallest area increment



R-tree Deletion Algorithm

• Find the leaf (node) and delete object; determine new (possibly 

smaller) MBR

• If the node is too empty:

– Delete the node recursively at its parent

– Insert all entries of the deleted node into the R-tree 



R*-trees [Beckmann et al. SIGMOD90]

• Why try to minimize area?

– Why not overlap, perimeter,…

• R*-tree:

– Better heuristics for

Choose Subtree and Split Node



R-Tree Variants

• Many, many R-tree variants (heuristics) have been proposed

• Often bulk-loaded R-trees are used

– Much faster than repeated insertions

– Better space utilization

– Can optimize more “globally”

– Can be updated using previous update algorithms



22

How to Build an R-Tree

• Repeated insertions

– [Guttman84]

– R+-tree [Sellis et al. 87] 

– R*-tree [Beckmann et al. 90]

• Bulkloading

– Hilbert R-Tree [Kamel and Faloutos 94]

– Top-down Greedy Split [Garcia et al. 98]

– Advantages:

* Much faster than repeated insertions

* Better space utilization

* Usually produce R-trees with higher quality



23

R-Tree Variant: Hilbert R-Tree

• To build a Hilbert R-Tree (cost: O(N/B logM/BN) I/Os)

– Sort the rectangles by the Hilbert values of their centers 

– Build a B-tree on top

Hilbert Curve



Z-ordering

• Basic assumption: Finite precision in the 

representation of each co-ordinate, K bits (2K values)

• The address space is a square (image) and 

represented as a 2K x 2K array

• Each element is called a pixel



Z-ordering

• Impose a linear ordering on the pixels of the image  1 

dimensional problem

00 01 10 11

00

01

10

11

A

B

ZA = shuffle(xA, yA) = shuffle(“01”, “11”)

= 0111 = (7)10

ZB = shuffle(“01”, “01”) = 0011



Z-ordering

• Given a point (x, y) and the precision K find the pixel for the point 

and then compute the z-value

• Given a set of points, use a B+-tree to index the z-values

• A range (rectangular) query in 2-d is mapped to a set of ranges in 1-

d



Queries

• Find the z-values that contained in the query and then the ranges 

00 01 10 11

00

01

10

11

QA range [4, 7]
QA

QB

QB ranges [2,3] and [8,9]



Handling Regions

• A region breaks into one or more pieces, each one with 

different z-value

• We try to minimize the number of pieces in the representation: 

precision/space overhead trade-off

00 01 10 11

00

01

10

11ZR1 = 0010 = (2)

ZR2 = 1000 = (8)

ZG  = 11

( “11” is the common prefix)



Z-ordering for Regions

• Break the space into 4 equal quadrants: level-1 blocks

• Level-i block: one of the four equal quadrants of a level-(i-1) 

block

• Pixel: level-K blocks, image level-0 block

• For a level-i block: all its pixels have the same prefix up to 2i 

bits; the z-value of the block



Hilbert Curve

• We want points that are close in 2d to be close in the 1d

• Note that in 2d there are 4 neighbors for each point where in 1d 

only 2.

• Z-curve has some “jumps” that we would like to avoid

• Hilbert curve avoids the jumps : recursive definition



Hilbert Curve- example

• It has been shown that in general Hilbert is better than the 
other space filling curves for retrieval [Jag90]

• Hi (order-i) Hilbert curve for 2ix2i array

H1
H2 ... H(n+1)



R-trees - variations

• A: plane-sweep on HILBERT curve!



R-trees - variations

• A: plane-sweep on HILBERT curve!

• In fact, it can be made dynamic (how?), as well as to handle regions 
(how?)



R-trees - variations

• Dynamic („Hilbert R-tree):

– each point has an „h‟-value 
(hilbert value)

– insertions: like a B-tree on the h-
value

– but also store MBR, for searches



R-trees - variations

• Data structure of a node?

LHV x-low, ylow

x-high, y-high
ptr

h-value >= LHV &

MBRs: inside parent MBR

~B-tree



R-trees - variations

• Data structure of a node?

LHV x-low, ylow

x-high, y-high
ptr

h-value >= LHV &

MBRs: inside parent MBR

~ R-tree



37

Theoretical Musings

• None of existing R-tree variants has worst-case query 

performance guarantee!

– In the worst-case, a query can visit all nodes in the tree even when 

the output size is zero

• R-tree is a generalized kdB-tree, so can we achieve                            ?

• Priority R-Tree [Arge, de Berg, Haverkort, and Yi, SIGMOD04]

– The first R-tree variant that answers a query by visiting                                         

nodes in the worst case

* T: Output size

– It is optimal!

* Follows from the kdB-tree lower bound. 

)//( BTBNO 

)//( BTBNO 



38

Roadmap

• Pseudo-PR-Tree

– Has the desired                            worst-case guarantee

– Not a real R-tree

• Transform a pseudo-PR-Tree into a PR-tree

– A real R-tree

– Maintain the worst-case guarantee

• Experiments

– PR-tree

– Hilbert R-tree (2D and 4D)

– TGS-R-tree

)//( BTBNO 



Pseudo-PR-Tree

)( B
NO

)( B
T

B
NO 

1. Place B extreme rectangles from 

each direction in priority leaves

2. Split remaining rectangles by 

xmin coordinates 

(round-robin using xmin, ymin, 

xmax, ymax– like a 4d kd-tree)

3. Recursively build sub-trees

Query in                        I/Os

– O(T/B) nodes with priority leaf 

completely reported

– nodes with no priority 

leaf completely reported



Pseudo-PR-Tree: Query Complexity

• Nodes v visited where all rectangles in at least one of the priority 

leaves of v‟s parent are reported:  O(T/B)

• Let v be a node visited but none of the priority leaves at its parent 

are reported completely, consider v‟s parent u

Q

2d 4d

xmax = xmin(Q)

ymin = ymax(Q)



Pseudo-PR-Tree: Query Complexity

• The cell in the 4d kd-tree of u is intersected 

by two different 3-dimensional hyper-

planes defined by sides of query Q

• The intersection of each pair of such 3-

dimensional hyper-planes is a 2-

dimensional hyper-plane

• Lemma: # of cells in a d-dimensional kd-

tree that intersect an axis-parallel f-

dimensional hyper-plane is O((N/B)f/d)

• So, # such cells in a 4d kd-tree: 

• Total # nodes visited: 

)/( BNO

)//( BTBNO 

u



PR-tree from Pseudo-PR-Tree 



Query Complexity Remains Unchanged

# nodes visited on leaf level BTBN // 

Next level: 22 //// BTBBNBN 

3223 ////// BTBBNBBNBN 



PR-Tree

• PR-tree construction in                           I/Os

– Pseudo-PR-tree in                           I/Os 

– Cost dominated by leaf level

• Updates

– O(logB N) I/Os using known heuristics

* Loss of worst-case query guarantee

– I/Os using logarithmic method

* Worst-case query efficiency maintained

• Extending to d-dimensions

– Optimal O((N/B)1-1/d + T/B) query

)log(
B
N

BMB
NO

)log(
B
N

BMB
NO

)(log2 NO B


