CIS 5930 Advanced Topics in Data Management

Feifei Li

Fall 2008

(Many slides were made available by Ke Yi)

External Memory Data Structures

- Names:
 - I/O-efficient data structures
 - Disk-based data structures (index structures) used in DB
 - Disk-resilient data structures (index structures) used in DB
 - Secondary indexes
- Other Data structures

– Queue, stack

* O(N/B) space, O(1/B) push, O(1/B) pop

- Priority queue

* O(N/B) space, O(1/B $\cdot \log_{M/B}$ N/B) insert, delete-max

used in DR

Mainly used in algorithms

External Memory Data Structures

- General-purpose data structures
 - Space: linear or near-linear (very important)
 - Query: logarithmic in B or 2 for any query (very important)
 - Update: logarithmic in B or 2 (important)
- In some sense, more useful than I/O-algorithms
 - Structure stored in disk most of the time
 - DB typically maintains many data structures for many different data sets: can't load all of them to memory
 - Nearly all index structures in large DB are disk based

External Search Trees

- Binary search tree:
 - Standard method for search among N elements
 - We assume elements in leaves

- Bottom-up BFS blocking:
 - Block height $O(\log_2 N) / O(\log_2 B) = O(\log_B N)$
 - Output elements blocked

 \mathcal{V}

Range query in $O(\log_B N + T/B) I/Os$

• **Optimal**: O(N/B) space and $O(\log_B N + T/B)$ query

External Search Trees

- Maintaining BFS blocking during updates?
 - Balance normally maintained in search trees using rotations

Seems very difficult to maintain BFS blocking during rotation
 Also need to make sure output (leaves) is blocked!

(a,b)-tree

- *T* is an (a,b)-tree $(a \ge 2 \text{ and } b \ge 2a-1)$
 - All leaves on the same level
 (contain between *a* and *b* elements)
 - Except for the root, all nodes have degree between *a* and *b*
 - Root has degree between 2 and b

• (a,b)-tree uses linear space and has height $O(\log_a N)$ $\downarrow \downarrow$

Choosing $a,b = \Theta(B)$ each node/leaf stored in one disk block ψ

O(N/B) space and $O(\log_B N + T/B)$ query

(*a*,*b*)-Tree Insert

• Insert:

Search and insert element in leaf v DO v has b+1 elements/children Split v: make nodes v' and v'' with $\left\lceil \frac{b+1}{2} \right\rceil \le b$ and $\left\lfloor \frac{b+1}{2} \right\rfloor \ge a$ elements insert element (ref) in parent(v) (make new root if necessary) v=parent(v)

• Insert touch $O(\log_a N)$ nodes

(*a*,*b*)-Tree Delete

• Delete:

Search and delete element from leaf v DO v has a-1 elements/children Fuse v with sibling v': move children of v' to v delete element (ref) from parent(v)(delete root if necessary) If v has >b (and $\leq a+b-1 < 2b$) children split v v=parent(v)

Delete touch $O(\log_a N)$ nodes

- Each node (except root) has fan-out between B/2 and B
- Size: O(N/B) blocks on disk
- Search: $O(\log_B N)$ I/Os following a root-to-leaf path
- Insertion and deletion: $O(\log_B N)$ I/Os

Summary/Conclusion: B-tree

- **B-trees**: (a,b)-trees with $a,b = \Theta(B)$
 - -O(N/B) space
 - $O(\log_B N + T/B)$ query
 - $-O(\log_B N)$ update
- B-trees with elements in the leaves sometimes called B⁺-tree
 - Now B-tree and B⁺tree are synonyms
- Construction in $O(\frac{N}{B}\log_{M_B}\frac{N}{B})$ I/Os
 - Sort elements and construct leaves
 - Build tree level-by-level bottom-up

2D Range Searching

Quadtree

Adaptive quadtree where no square contains more than 1 particle

- No worst-case bound!
- Hard to block!

- kd-tree:
 - Recursive subdivision of point-set into two half using vertical/horizontal line
 - Horizontal line on even levels, vertical on uneven levels
 - One point in each leaf
- ₩

Linear space and logarithmic height

- Query
 - Recursively visit nodes corresponding to regions intersecting query
 - Report point in trees/nodes completely contained in query
- Query analysis
 - Horizontal line intersect $Q(N) = 2 + 2Q(N/4) = O(\sqrt{N})$ regions
 - Query covers T regions
 - $\Rightarrow O(\sqrt{N} + T)$ I/Os worst-case

- kdB-tree:
 - Bottom-up BFS blocking
 - Same as B-tree
- Query as before
 - Analysis as before but each region now contains $\Theta(B)$ points \downarrow $O(\sqrt{N/B} + T/B)$ I/O query

Construction of kdB-tree

- Simple $O(\frac{N}{B}\log_2 \frac{N}{B})$ algorithm
 - Find median of y-coordinates (construct root)
 - Distribute point based on median
 - Recursively build subtrees
 - Construct BFS-blocking top-down (can compute the height in advance)
- Idea in improved $O(\frac{N}{B}\log_{M_{/B}}\frac{N}{B})$ algorithm
 - Construct $\log \sqrt{M/B}$ levels at a time using O(N/B) I/Os

Construction of kdB-tree

- Sort N points by x- and by y-coordinates using $O(\frac{N}{B}\log_{M_B}\frac{N}{B})$ I/Os
- Building $\log \sqrt{M/B}$ levels $(\sqrt{M/B}$ nodes) in O(N/B) I/Os:
 - Construct √M/B by √M/B grid with N/√M/B points in each slab
 Count number of points in each

grid cell and store in memory

- 4. Scan slab *s* to find median *x*-coordinate and construct node
- 5. Split slab containing median *x*-coordinate and update counts
- 6. Recurse on each side of median *x*-coordinate using grid (step 3)
- ⇒ Grid grows to $\frac{M}{B} + \sqrt{\frac{M}{B}} \cdot \sqrt{\frac{M}{B}} = \Theta(\frac{M}{B})$ during algorithm ⇒ Each node constructed in $O(N/(\sqrt{\frac{M}{B}} \cdot B))$ I/Os

- kdB-tree:
 - Linear space
 - Query in $O(\sqrt{N/B} + T/B)$ I/Os
 - Construction in O(sort(N)) I/Os
 - Height $O(\log_B N)$
- Dynamic?

- Difficult to do splits/merges or rotations ...