
Feifei Li

Fall 2008

(Many slides were made available by Ke Yi)

CIS 5930 Advanced Topics in Data Management

External Memory Data Structures

• Names:

– I/O-efficient data structures

– Disk-based data structures (index structures) used in DB

– Disk-resilient data structures (index structures) used in DB

– Secondary indexes used in DB

• Other Data structures

– Queue, stack

* O(N/B) space, O(1/B) push, O(1/B) pop

– Priority queue

* O(N/B) space, O(1/B ∙ logM/BN/B) insert, delete-max

Mainly used in algorithms

External Memory Data Structures

• General-purpose data structures

– Space: linear or near-linear (very important)

– Query: logarithmic in B or 2 for any query (very important)

– Update: logarithmic in B or 2 (important)

• In some sense, more useful than I/O-algorithms

– Structure stored in disk most of the time

– DB typically maintains many data structures for many different

data sets: can’t load all of them to memory

– Nearly all index structures in large DB are disk based

– If nodes stored arbitrarily on disk

 Search in I/Os

 Rangesearch in I/Os

• Binary search tree:

– Standard method for search among N elements

– We assume elements in leaves

– Search traces at least one root-leaf path

External Search Trees

)(log2 NO

)(log2 N

)(log2 TNO

External Search Trees

• Bottom-up BFS blocking:

– Block height

– Output elements blocked

Range query in I/Os

• Optimal: O(N/B) space and query

)(log2 B

)(B

)(log)(log/)(log 22 NOBONO B

)(log B
T

B N

)(log B
T

B N

• Maintaining BFS blocking during updates?

– Balance normally maintained in search trees using rotations

• Seems very difficult to maintain BFS blocking during rotation

– Also need to make sure output (leaves) is blocked!

External Search Trees

x

y

x

y

B-trees

• BFS-blocking naturally corresponds to tree with fan-out

• B-trees balanced by allowing node degree to vary

– Rebalancing performed by splitting and merging nodes

)(B

• (a,b)-tree uses linear space and has height

Choosing a,b = each node/leaf stored in one disk block

(N/B) space and query

(a,b)-tree

• T is an (a,b)-tree (a≥2 and b≥2a-1)

– All leaves on the same level

(contain between a and b elements)

– Except for the root, all nodes have

degree between a and b

– Root has degree between 2 and b

)(log NO a

)(log B
T

B N

)(B

(2,4)-tree

(a,b)-Tree Insert

• Insert:

Search and insert element in leaf v

DO v has b+1 elements/children

Split v:

make nodes v’ and v’’ with

and elements

insert element (ref) in parent(v)

(make new root if necessary)

v=parent(v)

• Insert touch nodes

 bb
2

1 ab
2

1

)(log Na

v

v’ v’’

 2
1b 2

1b

1b

(a,b)-Tree Insert

(a,b)-Tree Delete

• Delete:

Search and delete element from leaf v

DO v has a-1 elements/children

Fuse v with sibling v’:

move children of v’ to v

delete element (ref) from parent(v)

(delete root if necessary)

If v has >b (and ≤ a+b-1<2b) children split v

v=parent(v)

• Delete touch nodes)(log NO a

v

v

1-a

12 - a

(a,b)-Tree Delete

13

External Searching: B-Tree

• Each node (except root) has fan-out between B/2 and B

• Size: O(N/B) blocks on disk

• Search: O(logBN) I/Os following a root-to-leaf path

• Insertion and deletion: O(logBN) I/Os

Summary/Conclusion: B-tree
• B-trees: (a,b)-trees with a,b =

– O(N/B) space

– O(logB N+T/B) query

– O(logB N) update

• B-trees with elements in the leaves sometimes called B+-tree

– Now B-tree and B+tree are synonyms

• Construction in I/Os

– Sort elements and construct leaves

– Build tree level-by-level bottom-up

)(B

)log(
B
N

B
N

B
MO

2D Range Searching

q3

q2
q1

q4

Quadtree

• No worst-case bound!

• Hard to block!

kd-tree

• kd-tree:

– Recursive subdivision of point-set into two half using

vertical/horizontal line

– Horizontal line on even levels, vertical on uneven levels

– One point in each leaf

Linear space and logarithmic height

kd-Tree: Query

• Query

– Recursively visit nodes corresponding to regions intersecting query

– Report point in trees/nodes completely contained in query

• Query analysis

– Horizontal line intersect Q(N) = 2+2Q(N/4) = regions

– Query covers T regions

 I/Os worst-case

)(NO

)(TNO

kdB-tree

• kdB-tree:

– Bottom-up BFS blocking

– Same as B-tree

• Query as before

– Analysis as before but each region now contains Θ(B) points

I/O query)(B
T

B
NO

Construction of kdB-tree

• Simple algorithm

– Find median of y-coordinates (construct root)

– Distribute point based on median

– Recursively build subtrees

– Construct BFS-blocking top-down (can compute the height in advance)

• Idea in improved algorithm

– Construct levels at a time using O(N/B) I/Os

)log(2 B
N

B
NO

)log(
B
N

B
N

B
MO

B
Mlog

Construction of kdB-tree

• Sort N points by x- and by y-coordinates using I/Os

• Building levels (nodes) in O(N/B) I/Os:

1. Construct by grid

with points in each slab

2. Count number of points in each

grid cell and store in memory

3. Find slab s with median x-coordinate

4. Scan slab s to find median x-coordinate and construct node

5. Split slab containing median x-coordinate and update counts

6. Recurse on each side of median x-coordinate using grid (step 3)

 Grid grows to during algorithm

 Each node constructed in I/Os

B
Mlog

)log(
B
N

B
N

B
MO

B
M

B
M

B
M

N

B
M

)(B
M

B
M

B
M

B
M

))/((BNO B
M

kdB-tree

• kdB-tree:

– Linear space

– Query in I/Os

– Construction in O(sort(N)) I/Os

– Height

• Dynamic?

– Difficult to do splits/merges or rotations …

)(B
T

B
NO

)(log NO B

