CI1S 5930 Advanced Topics in Data Management

Feifel LI

Fall 2008

(Many slides were made available by Ke Y1)

External Memory Data Structures

 Names:
— |/O-efficient data structures

— Disk-based data structures (index structures) used in DB
— Disk-resilient data structures (index structures) used in DB

— Secondary indexes nced in DR
- Other Data structures [Mainly used in algorithms]

— Queue, stack
* O(N/B) space, O(1/B) push, O(1/B) pop
— Priority queue
* O(N/B) space, O(1/B - log,,gN/B) insert, delete-max

External Memory Data Structures

 General-purpose data structures
— Space: linear or near-linear (very important)
— Query: logarithmic in B or 2 for any query (very important)
— Update: logarithmic in B or 2 (important)

* In some sense, more useful than I/O-algorithms

— Structure stored in disk most of the time

— DB typically maintains many data structures for many different
data sets: can’t load all of them to memory

— Nearly all index structures in large DB are disk based

External Search Trees

 Binary search tree:
— Standard method for search among N elements
— We assume elements in leaves

O(log, N)<

O O E O £ £ CF £ O £ 2 £ £ £ £ 2 £ 2 £ £ 2 £ 2 £ £ 222 £ £
— Search traces at least one root-leaf path
— If nodes stored arbitrarily on disk

= Search in O(log, N) I/Os

= Rangesearch in O(log, N +T) I/Os

External Search Trees

e

Ll

TR

©(B)
« Bottom-up BFS blocking:

— Block height O(log, N)/O(log, B) =0O(logg N)

— Output elements blocked

v/
Range query in O(logg N +T74) I/Os

» Optimal: O(N/B) space andO(logg N +T4) query

External Search Trees

« Maintaining BFS blocking during updates?
— Balance normally maintained in search trees using rotations

33\

« Seems very difficult to maintain BFS blocking during rotation
— Also need to make sure output (leaves) is blocked!

B-trees
« BFS-blocking naturally corresponds to tree with fan-out ®(B)

Z

L4

LA

L4

LA

L4

LA

LA

LA

7N

 B-trees balanced by allowing node degree to vary
— Rebalancing performed by splitting and merging nodes

%N“/N A\

(a,b)-tree

» Tisan (a,b)-tree (a>2 and b>2a-1)

— All leaves on the same level (2,4)-tree
(contain between a and b elements)

— Except for the root, all nodes have
degree between a and b

— Root has degree between 2 and b

« (a,b)-tree uses linear space and has heighO(log, N)

Y

Choosing a,b =®(B) each node/leaf stored in one disk block

/
O(N/B) space and O(logg N +T4) query

(a,b)-Tree Insert

e Insert:

Search and insert element in leaf v
DO v has b+1 elements/children
Split v:
make nodes v’ and v’’ with

(M—‘g band _%JZ aelements

Insert element (ref) in parent(v)
(make new root if necessary)

v=parent(v)

« Insert touchO(log, N) nodes

(a,b)-Tree Insert

(a,b)-Tree Delete

e Delete:

Search and delete element from leaf v
DO v has a-1 elements/children
Fuse v with sibling v’:
move children of v’ to v
delete element (ref) from parent(v)
(delete root if necessary)
If v has >b (and < a+b-1<2b) children split v
v=parent(v)

Delete touch O(log, N) nodes

(a,b)-Tree Delete

External Searching: B-Tree

e M/Ag

Each node (except root) has fan-out between B/2 and B
Size: O(N/B) blocks on disk

Search: O(loggN) 1/0Os following a root-to-leaf path
Insertion and deletion: O(loggN) 1/0s

Summary/Conclusion: B-tree
« B-trees: (a,b)-trees with a,b = ®(B)

— O(N/B) space
— O(logg N+T/B) query
— O(logg N) update

e B-trees with elements in the leaves sometimes called B*-tree
— Now B-tree and B*tree are synonyms

+ Construction in O(§-10gu, 5 1/0s
— Sort elements and construct leaves
— Build tree level-by-level bottom-up

2D Range Searching

A
Q4

*
*

s oy

Quadtree

Adaptive quadtree where no square contains more than 1 particle

« No worst-case bound!
« Hard to block!

e kd-tree:

— Recursive subdivision of point-set into two half using
vertical/horizontal line

— Horizontal line on even levels, vertical on uneven levels
— One point in each leaf

U

Linear space and logarithmic height

kd-Tree: Query

R
AN AN

e Query

— Recursively visit nodes corresponding to regions intersecting query
— Report point in trees/nodes completely contained in query
« Query analysis
— Horizontal line intersect Q(N) = 2+2Q(N/4) = O(\/ﬁ) regions
— Query covers T regions
= O(\/ﬁ +T) 1/Os worst-case

kdB-tree

T

4b db do do db db db dh

« kdB-tree:
— Bottom-up BFS blocking
— Same as B-tree
* Query as before
— Analysis as before but each region now contains @(B) points

U
O(\/%-l- 1/8) 1/0 query

Construction of kdB-tree

o

db db do db db db db d b

» Simple O(3- log, -§) algorithm

— Find median of y-coordinates (construct root)

— Distribute point based on median

— Recursively build subtrees

— Construct BFS-blocking top-down (can compute the height in advance)
+ Idea in improved O(5 logw,, -)algorithm

— Construct log,/M4 levels at a time using O(N/B) 1/0s

Construction of kdB-tree

+ Sort N points by x- and by y-coordinates using O(§-logy b =) 1/0s
- Building log /M4 levels (/M4 nodes) in O(N/B) 1/Os:
1. Construct /M4 by /M4 grid

with y\/MZ points in each slab
. Count number of points in each

grid cell and store in memory
. Find slab s with median x-coordinate B
. Scan slab s to find median x-coordinate and construct node

. Split slab containing median x-coordinate and update counts
6. Recurse on each side of median x-coordinate using grid (step 3)

= Grid grows to M4 + /M4 - [M4 = ®(M4) during algorithm
— Each node constructed in O(N /(M4 - B)) 1/0s

kdB-tree

T

4b db do do db db db dh

« kdB-tree:
— Linear space
— Query in O(\/%+%) 1/Os
— Construction in O(sort(N)) 1/0Os
— Height O(log,; N)
* Dynamic?

— Difficult to do splits/merges or rotations ...

