
Dimensionality Reduction

Multimedia DBs

 Many multimedia applications require efficient
indexing in high-dimensions (time-series,
images and videos, etc)

 Answering similarity queries in high-dimensions
is a difficult problem due to “curse of
dimensionality”

 A solution is to use Dimensionality reduction

High-dimensional datasets

 Range queries have very small selectivity

 Surface is everything

 Partitioning the space is not so easy: 2d cells if we
divide each dimension once

 Pair-wise distances of points are very skewed

distance

freq

Dimensionality Reduction

 The main idea: reduce the dimensionality of the space.

 Project the d-dimensional points in a k-dimensional space so
that:

 k << d

 distances are preserved as well as possible

 Solve the problem in low dimensions

Multi-Dimensional Scaling

 Map the items in a k-dimensional space trying to
minimize the stress

 Steepest Descent algorithm:
 Start with an assignment

 Minimize stress by moving points

 But the running time is O(N2) and O(N) to add a new
item

||||,

)ˆ(

,

2

,

2

ijijijij

ji

ij

ji

ijij

oodandood
d

dd

stress











Embeddings

 Given a metric distance matrix D, embed the objects in
a k-dimensional vector space using a mapping F such
that

 D(i,j) is close to D’(F(i),F(j))

 Isometric mapping:

 exact preservation of distance

 Contractive mapping:

 D’(F(i),F(j)) <= D(i,j)

 d’ is some Lp measure

GEMINI

 Using the contractive property (lower
bounding lemma) we can show that we can
use the index in the lower dimensional space
to retrieve the exact answer for e-range and
NN query.

 GEMINI framework

PCA

 Intuition: find the axis that shows the greatest
variation, and project all points into this axis

f1

e1
e2

f2

SVD: The mathematical formulation

 Normalize the dataset by moving
the origin to the center of the
dataset

 Find the eigenvectors of the data
(or covariance) matrix

 These define the new space

 Sort the eigenvalues in
“goodness” order

f1

e1
e2

f2

SVD Cont’d

 Advantages:

 Optimal dimensionality reduction (for linear
projections)

 Disadvantages:

 Computationally hard. … but can be improved with
random sampling

 Sensitive to outliers and non-linearities

SVD Extensions

 On-line approximation algorithm

 [Ravi Kanth et al, 1998]

 Local dimensionality reduction:

 Cluster the dataset, solve for each cluster

 [Chakrabarti and Mehrotra, 2000], [Thomasian et al]

FastMap

What if we have a finite metric space (X, d)?

Faloutsos and Lin (1995) proposed FastMap as
metric analogue to the KL-transform (PCA).
Imagine that the points are in a Euclidean
space.
 Select two pivot points xa and xb that are far

apart.

 Compute a pseudo-projection of the remaining
points along the “line” xaxb .

 “Project” the points to an orthogonal subspace
and recurse.

Selecting the Pivot Points

The pivot points should lie
along the principal axes,
and hence should be far
apart.

 Select any point x0.

 Let x1 be the furthest from x0.

 Let x2 be the furthest from x1.

 Return (x1, x2).

x0

x2

x1

Pseudo-Projections

Given pivots (xa , xb), for any third
point y, we use the law of
cosines to determine the relation
of y along xaxb .

The pseudo-projection for y is

This is first coordinate.

xa

xb

y

cy da,y

db,y

da,b

  2 2 2 2by ay ab y abd d d c d

 


2 2 2

2

ay ab by

y

ab

d d d
c

d

“Project to orthogonal plane”

Given distances along xaxb we

can compute distances within

the “orthogonal hyperplane”

using the Pythagorean

theorem.

Using d ’(.,.), recurse until k

features chosen.

  2 2'(', ') (,) ()z yd y z d y z c c

xb

xa

y

z

y’ z’d’y’,z’

dy,z

cz-cy

Example

01100100100O5

10100100100O4

100100011O3

100100101O2

100100110O1

O5O4O3O2O1
~100

~1

Example

 Pivot Objects: O1 and O4

 X1: O1:0, O2:0.005, O3:0.005, O4:100, O5:99

 For the second iteration pivots are: O2 and O5

Results

Documents /cosine similarity ->

Euclidean distance (how?)

Results

recipes

bb reports

FastMap Extensions

 If the original space is not a Euclidean space,
then we may have a problem:

The projected distance may be a complex
number!

 A solution to that problem is to define:

di(a,b) = sign(di(a,b)) (| di(a,b) |2)1/2

where, di(a,b) = di-1(a,b)2 – (xi
a-xb

i)2

Random Projections

 Based on the Johnson-Lindenstrauss lemma:

 For:

 0< e < 1/2,

 any (sufficiently large) set S of M points in Rn

 k = O(e-2lnM)

 There exists a linear map f:S Rk, such that

 (1- e) D(S,T) < D(f(S),f(T)) < (1+ e)D(S,T) for S,T in S

 Random projection is good with constant probability

Random Projection: Application

 Set k = O(e-2lnM)

 Select k random n-dimensional vectors
 (an approach is to select k gaussian distributed vectors with

variance 0 and mean value 1: N(1,0))

 Project the original points into the k vectors.

 The resulting k-dimensional space approximately
preserves the distances with high probability

 Monte-Carlo algorithm: we do not know if correct

Random Projection

 A very useful technique,

 Especially when used in conjunction with another technique (for
example SVD)

 Use Random projection to reduce the dimensionality from
thousands to hundred, then apply SVD to reduce dimensionality
farther

