
Dimensionality Reduction



Multimedia DBs

 Many multimedia applications require efficient 
indexing in high-dimensions (time-series, 
images and videos, etc)

 Answering similarity queries in high-dimensions 
is a  difficult problem due to “curse of 
dimensionality”

 A solution is to use Dimensionality reduction



High-dimensional datasets

 Range queries have very small selectivity

 Surface is everything

 Partitioning the space is not so easy: 2d cells if we 
divide each dimension once

 Pair-wise distances of points are very skewed
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Dimensionality Reduction

 The main idea: reduce the dimensionality of the space.

 Project the d-dimensional points in a k-dimensional space so 
that:

 k << d

 distances are preserved as well as possible

 Solve the problem in low dimensions



Multi-Dimensional Scaling

 Map the items in a k-dimensional space trying to 
minimize the stress

 Steepest Descent algorithm:
 Start with an assignment

 Minimize stress by moving points

 But the running time is O(N2) and O(N) to add a new 
item
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Embeddings

 Given a metric distance matrix D, embed the objects in 
a k-dimensional vector space using a mapping F such 
that 

 D(i,j) is close to D’(F(i),F(j))

 Isometric mapping: 

 exact preservation of distance

 Contractive mapping:

 D’(F(i),F(j)) <= D(i,j)

 d’ is some Lp measure



GEMINI

 Using the contractive property (lower 
bounding lemma) we can show that we can 
use the index in the lower dimensional space 
to retrieve the exact answer for e-range and 
NN query.

 GEMINI framework



PCA

 Intuition: find the axis that shows the greatest 
variation, and project all points into this axis
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SVD: The mathematical formulation

 Normalize the dataset by moving 
the origin to the center of the 
dataset

 Find the eigenvectors of the data 
(or covariance)  matrix

 These define the new space

 Sort the eigenvalues in 
“goodness” order
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SVD Cont’d

 Advantages:

 Optimal dimensionality reduction (for linear 
projections)

 Disadvantages:

 Computationally hard. … but can be improved with 
random sampling

 Sensitive to outliers and non-linearities



SVD Extensions

 On-line approximation algorithm

 [Ravi Kanth et al, 1998]

 Local dimensionality reduction:

 Cluster the dataset, solve for each cluster

 [Chakrabarti and Mehrotra, 2000], [Thomasian et al]



FastMap

What if we have a finite metric space (X, d )?

Faloutsos and Lin (1995) proposed FastMap as 
metric analogue to the KL-transform (PCA). 
Imagine that the points are in a Euclidean 
space.
 Select two pivot points xa and xb that are far 

apart.

 Compute a pseudo-projection of the remaining 
points along the “line” xaxb .

 “Project” the points to an orthogonal subspace 
and recurse.



Selecting the Pivot Points

The pivot points should lie 
along the principal axes, 
and hence should be far 
apart.

 Select any point x0.

 Let x1 be the furthest from x0.

 Let x2 be the furthest from x1.

 Return (x1, x2).
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Pseudo-Projections

Given pivots (xa , xb ), for any third 
point y, we use the law of 
cosines to determine the relation 
of y along xaxb .

The pseudo-projection for y is

This is first coordinate.
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“Project to orthogonal plane”

Given distances along xaxb we 

can compute distances within 

the “orthogonal hyperplane” 

using the Pythagorean 

theorem.

Using d ’(.,.), recurse until k

features chosen.
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Example
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Example

 Pivot Objects: O1 and O4

 X1: O1:0, O2:0.005, O3:0.005, O4:100, O5:99

 For the second iteration pivots are: O2 and O5



Results

Documents /cosine similarity -> 

Euclidean distance (how?)
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FastMap Extensions

 If the original space is not a Euclidean space, 
then we may have a problem:

The projected distance may be a complex 
number!

 A solution to that problem is to define:

di(a,b) = sign(di(a,b)) (| di(a,b) |2)1/2

where, di(a,b) = di-1(a,b)2 – (xi
a-xb

i)2



Random Projections

 Based on the Johnson-Lindenstrauss lemma:

 For:

 0< e < 1/2, 

 any (sufficiently large) set S of M points in Rn

 k = O(e-2lnM)

 There exists a linear map f:S Rk, such that

 (1- e) D(S,T) < D(f(S),f(T)) < (1+ e)D(S,T) for S,T in S

 Random projection is good with constant probability



Random Projection: Application

 Set k =  O(e-2lnM)

 Select k random n-dimensional vectors 
 (an approach is to select k gaussian distributed vectors with 

variance 0 and mean value 1: N(1,0) )

 Project the original points into the k vectors.

 The resulting k-dimensional space approximately 
preserves the distances with high probability

 Monte-Carlo algorithm: we do not know if correct



Random Projection

 A very useful technique,

 Especially when used in conjunction with another technique (for 
example SVD)

 Use Random projection to reduce the dimensionality from 
thousands to hundred, then apply SVD to reduce dimensionality 
farther


