
Dimensionality Reduction



Multimedia DBs

 Many multimedia applications require efficient 
indexing in high-dimensions (time-series, 
images and videos, etc)

 Answering similarity queries in high-dimensions 
is a  difficult problem due to “curse of 
dimensionality”

 A solution is to use Dimensionality reduction



High-dimensional datasets

 Range queries have very small selectivity

 Surface is everything

 Partitioning the space is not so easy: 2d cells if we 
divide each dimension once

 Pair-wise distances of points are very skewed
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Dimensionality Reduction

 The main idea: reduce the dimensionality of the space.

 Project the d-dimensional points in a k-dimensional space so 
that:

 k << d

 distances are preserved as well as possible

 Solve the problem in low dimensions



Multi-Dimensional Scaling

 Map the items in a k-dimensional space trying to 
minimize the stress

 Steepest Descent algorithm:
 Start with an assignment

 Minimize stress by moving points

 But the running time is O(N2) and O(N) to add a new 
item
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Embeddings

 Given a metric distance matrix D, embed the objects in 
a k-dimensional vector space using a mapping F such 
that 

 D(i,j) is close to D’(F(i),F(j))

 Isometric mapping: 

 exact preservation of distance

 Contractive mapping:

 D’(F(i),F(j)) <= D(i,j)

 d’ is some Lp measure



GEMINI

 Using the contractive property (lower 
bounding lemma) we can show that we can 
use the index in the lower dimensional space 
to retrieve the exact answer for e-range and 
NN query.

 GEMINI framework



PCA

 Intuition: find the axis that shows the greatest 
variation, and project all points into this axis
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SVD: The mathematical formulation

 Normalize the dataset by moving 
the origin to the center of the 
dataset

 Find the eigenvectors of the data 
(or covariance)  matrix

 These define the new space

 Sort the eigenvalues in 
“goodness” order
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SVD Cont’d

 Advantages:

 Optimal dimensionality reduction (for linear 
projections)

 Disadvantages:

 Computationally hard. … but can be improved with 
random sampling

 Sensitive to outliers and non-linearities



SVD Extensions

 On-line approximation algorithm

 [Ravi Kanth et al, 1998]

 Local dimensionality reduction:

 Cluster the dataset, solve for each cluster

 [Chakrabarti and Mehrotra, 2000], [Thomasian et al]



FastMap

What if we have a finite metric space (X, d )?

Faloutsos and Lin (1995) proposed FastMap as 
metric analogue to the KL-transform (PCA). 
Imagine that the points are in a Euclidean 
space.
 Select two pivot points xa and xb that are far 

apart.

 Compute a pseudo-projection of the remaining 
points along the “line” xaxb .

 “Project” the points to an orthogonal subspace 
and recurse.



Selecting the Pivot Points

The pivot points should lie 
along the principal axes, 
and hence should be far 
apart.

 Select any point x0.

 Let x1 be the furthest from x0.

 Let x2 be the furthest from x1.

 Return (x1, x2).
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Pseudo-Projections

Given pivots (xa , xb ), for any third 
point y, we use the law of 
cosines to determine the relation 
of y along xaxb .

The pseudo-projection for y is

This is first coordinate.
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“Project to orthogonal plane”

Given distances along xaxb we 

can compute distances within 

the “orthogonal hyperplane” 

using the Pythagorean 

theorem.

Using d ’(.,.), recurse until k

features chosen.

  2 2'( ', ') ( , ) ( )z yd y z d y z c c

xb

xa

y

z

y’ z’d’y’,z’

dy,z

cz-cy



Example
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Example

 Pivot Objects: O1 and O4

 X1: O1:0, O2:0.005, O3:0.005, O4:100, O5:99

 For the second iteration pivots are: O2 and O5



Results

Documents /cosine similarity -> 

Euclidean distance (how?)
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FastMap Extensions

 If the original space is not a Euclidean space, 
then we may have a problem:

The projected distance may be a complex 
number!

 A solution to that problem is to define:

di(a,b) = sign(di(a,b)) (| di(a,b) |2)1/2

where, di(a,b) = di-1(a,b)2 – (xi
a-xb

i)2



Random Projections

 Based on the Johnson-Lindenstrauss lemma:

 For:

 0< e < 1/2, 

 any (sufficiently large) set S of M points in Rn

 k = O(e-2lnM)

 There exists a linear map f:S Rk, such that

 (1- e) D(S,T) < D(f(S),f(T)) < (1+ e)D(S,T) for S,T in S

 Random projection is good with constant probability



Random Projection: Application

 Set k =  O(e-2lnM)

 Select k random n-dimensional vectors 
 (an approach is to select k gaussian distributed vectors with 

variance 0 and mean value 1: N(1,0) )

 Project the original points into the k vectors.

 The resulting k-dimensional space approximately 
preserves the distances with high probability

 Monte-Carlo algorithm: we do not know if correct



Random Projection

 A very useful technique,

 Especially when used in conjunction with another technique (for 
example SVD)

 Use Random projection to reduce the dimensionality from 
thousands to hundred, then apply SVD to reduce dimensionality 
farther


