
Dimensionality Reduction

Multimedia DBs

 Many multimedia applications require efficient
indexing in high-dimensions (time-series,
images and videos, etc)

 Answering similarity queries in high-dimensions
is a difficult problem due to “curse of
dimensionality”

 A solution is to use Dimensionality reduction

High-dimensional datasets

 Range queries have very small selectivity

 Surface is everything

 Partitioning the space is not so easy: 2d cells if we
divide each dimension once

 Pair-wise distances of points are very skewed

distance

freq

Dimensionality Reduction

 The main idea: reduce the dimensionality of the space.

 Project the d-dimensional points in a k-dimensional space so
that:

 k << d

 distances are preserved as well as possible

 Solve the problem in low dimensions

Multi-Dimensional Scaling

 Map the items in a k-dimensional space trying to
minimize the stress

 Steepest Descent algorithm:
 Start with an assignment

 Minimize stress by moving points

 But the running time is O(N2) and O(N) to add a new
item

||||,

)ˆ(

,

2

,

2

ijijijij

ji

ij

ji

ijij

oodandood
d

dd

stress

Embeddings

 Given a metric distance matrix D, embed the objects in
a k-dimensional vector space using a mapping F such
that

 D(i,j) is close to D’(F(i),F(j))

 Isometric mapping:

 exact preservation of distance

 Contractive mapping:

 D’(F(i),F(j)) <= D(i,j)

 d’ is some Lp measure

GEMINI

 Using the contractive property (lower
bounding lemma) we can show that we can
use the index in the lower dimensional space
to retrieve the exact answer for e-range and
NN query.

 GEMINI framework

PCA

 Intuition: find the axis that shows the greatest
variation, and project all points into this axis

f1

e1
e2

f2

SVD: The mathematical formulation

 Normalize the dataset by moving
the origin to the center of the
dataset

 Find the eigenvectors of the data
(or covariance) matrix

 These define the new space

 Sort the eigenvalues in
“goodness” order

f1

e1
e2

f2

SVD Cont’d

 Advantages:

 Optimal dimensionality reduction (for linear
projections)

 Disadvantages:

 Computationally hard. … but can be improved with
random sampling

 Sensitive to outliers and non-linearities

SVD Extensions

 On-line approximation algorithm

 [Ravi Kanth et al, 1998]

 Local dimensionality reduction:

 Cluster the dataset, solve for each cluster

 [Chakrabarti and Mehrotra, 2000], [Thomasian et al]

FastMap

What if we have a finite metric space (X, d)?

Faloutsos and Lin (1995) proposed FastMap as
metric analogue to the KL-transform (PCA).
Imagine that the points are in a Euclidean
space.
 Select two pivot points xa and xb that are far

apart.

 Compute a pseudo-projection of the remaining
points along the “line” xaxb .

 “Project” the points to an orthogonal subspace
and recurse.

Selecting the Pivot Points

The pivot points should lie
along the principal axes,
and hence should be far
apart.

 Select any point x0.

 Let x1 be the furthest from x0.

 Let x2 be the furthest from x1.

 Return (x1, x2).

x0

x2

x1

Pseudo-Projections

Given pivots (xa , xb), for any third
point y, we use the law of
cosines to determine the relation
of y along xaxb .

The pseudo-projection for y is

This is first coordinate.

xa

xb

y

cy da,y

db,y

da,b

 2 2 2 2by ay ab y abd d d c d

2 2 2

2

ay ab by

y

ab

d d d
c

d

“Project to orthogonal plane”

Given distances along xaxb we

can compute distances within

the “orthogonal hyperplane”

using the Pythagorean

theorem.

Using d ’(.,.), recurse until k

features chosen.

 2 2'(', ') (,) ()z yd y z d y z c c

xb

xa

y

z

y’ z’d’y’,z’

dy,z

cz-cy

Example

01100100100O5

10100100100O4

100100011O3

100100101O2

100100110O1

O5O4O3O2O1
~100

~1

Example

 Pivot Objects: O1 and O4

 X1: O1:0, O2:0.005, O3:0.005, O4:100, O5:99

 For the second iteration pivots are: O2 and O5

Results

Documents /cosine similarity ->

Euclidean distance (how?)

Results

recipes

bb reports

FastMap Extensions

 If the original space is not a Euclidean space,
then we may have a problem:

The projected distance may be a complex
number!

 A solution to that problem is to define:

di(a,b) = sign(di(a,b)) (| di(a,b) |2)1/2

where, di(a,b) = di-1(a,b)2 – (xi
a-xb

i)2

Random Projections

 Based on the Johnson-Lindenstrauss lemma:

 For:

 0< e < 1/2,

 any (sufficiently large) set S of M points in Rn

 k = O(e-2lnM)

 There exists a linear map f:S Rk, such that

 (1- e) D(S,T) < D(f(S),f(T)) < (1+ e)D(S,T) for S,T in S

 Random projection is good with constant probability

Random Projection: Application

 Set k = O(e-2lnM)

 Select k random n-dimensional vectors
 (an approach is to select k gaussian distributed vectors with

variance 0 and mean value 1: N(1,0))

 Project the original points into the k vectors.

 The resulting k-dimensional space approximately
preserves the distances with high probability

 Monte-Carlo algorithm: we do not know if correct

Random Projection

 A very useful technique,

 Especially when used in conjunction with another technique (for
example SVD)

 Use Random projection to reduce the dimensionality from
thousands to hundred, then apply SVD to reduce dimensionality
farther

