Cluster Analysis

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Model-Based Clustering Methods
- Outlier Analysis
- Summary

CURE (Clustering Using REpresentatives)

D CURE: proposed by Guha, Rastogi & Shim, 1998

- Stops the creation of a cluster hierarchy if a level consists of k clusters
- Uses multiple representative points to evaluate the distance between clusters, adjusts well to arbitrary shaped clusters and avoids single-link effect

Drawbacks of Distance-Based Method

Drawbacks of single representative methods (b)

- Consider only one point as representative of a cluster
- Good only for convex shaped, similar size and density, and if k can be reasonably estimated
- Drawbacks of density-based methods (c)
 - Can merge clusters which are connected by a very narrow dense link

Cure: The Algorithm

- Draw random sample *s*.
- Partition sample to p partitions with size s/p
- Partially cluster partitions into s/pq clusters
- Eliminate outliers
 - By random sampling
 - □ If a cluster grows too slow, eliminate it.
- Cluster partial clusters.
- Label data in disk

Data Partitioning and Clustering

Cure: Shrinking Representative Points

- **\square** Shrink the multiple representative points towards the gravity center by a fraction of α .
- Multiple representatives capture the shape of the cluster

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Model-Based Clustering Methods
- Outlier Analysis
- Summary

Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as density-connected points
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Several interesting studies:
 - DBSCAN: Ester, et al. (KDD'96)
 - OPTICS: Ankerst, et al (SIGMOD'99).
 - DENCLUE: Hinneburg & D. Keim (KDD'98)
 - <u>CLIQUE</u>: Agrawal, et al. (SIGMOD'98)

Density-Based Clustering: Background

- Neighborhood of point p=all points within distance Eps from p:
 - N_{Eps}(p)={q | dist(p,q) <= Eps}</p>
- Two parameters:
 - **Eps**: Maximum radius of the neighbourhood
 - MinPts: Minimum number of points in an Eps-neighbourhood of that point
- If the number of points in the Eps-neighborhood of p is at least *MinPts*, then p is called a core object.
- Directly density-reachable: A point *p* is directly density-reachable from a point *q* wrt. *Eps*, *MinPts* if
 - 1) *p* belongs to *N_{Eps}(q)*
 - 2) core point condition:

MinPts = 5

Eps = 1 cm

Density-Based Clustering: Background (II)

Density-reachable:

A point p is density-reachable from a point q wrt. Eps, MinPts if there is a chain of points p₁, ..., p_n, p₁ = q, p_n = p such that p_{i+1} is directly density-reachable from p_i

Density-connected

A point p is density-connected to a point q wrt. Eps, MinPts if there is a point o such that both, p and q are density-reachable from o wrt. Eps and MinPts.

DBSCAN: Density Based Spatial Clustering of Applications with Noise

- Relies on a *density-based* notion of cluster: A *cluster* is defined as a maximal set of densityconnected points
- Discovers clusters of arbitrary shape in spatial databases with noise

DBSCAN: The Algorithm

- Arbitrary select a point *p*
- Retrieve all points density-reachable from *p* wrt *Eps* and *MinPts*.
- If **p** is a core point, a cluster is formed.
- If *p* is a border point, no points are density-reachable from *p* and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Model-Based Clustering Methods
- Outlier Analysis
- Summary

Grid-Based Clustering Method

- Using multi-resolution grid data structure
- Several interesting methods
 - STING (a STatistical INformation Grid approach) by Wang, Yang and Muntz (1997)
 - WaveCluster by Sheikholeslami, Chatterjee, and Zhang (VLDB'98)
 - A multi-resolution clustering approach using wavelet method
 - CLIQUE: Agrawal, et al. (SIGMOD'98)

CLIQUE (Clustering In QUEst)

- Agrawal, Gehrke, Gunopulos, Raghavan (SIGMOD'98).
- Automatically identifying subspaces of a high dimensional data space that allow better clustering than original space
- CLIQUE can be considered as both density-based and grid-based
 - It partitions each dimension into the same number of equal length interval
 - It partitions an m-dimensional data space into nonoverlapping rectangular units
 - A unit is dense if the fraction of total data points contained in the unit exceeds the input model parameter
 - A cluster is a maximal set of connected dense units within a subspace

CLIQUE: The Major Steps

- Partition the data space and find the number of points that lie inside each cell of the partition.
- Identify the subspaces that contain clusters using the Apriori principle
- Identify clusters:
 - Determine dense units in all subspaces of interests
 - Determine connected dense units in all subspaces of interests.

□ Generate minimal description for the clusters

- Determine maximal regions that cover a cluster of connected dense units for each cluster
- Determination of minimal cover for each cluster
- CLIQUE can find projected clusters in subspaces of the dimensional space

Strength and Weakness of CLIQUE

Strength

- It <u>automatically</u> finds subspaces of the <u>highest</u> <u>dimensionality</u> such that high density clusters exist in those subspaces
- It is *insensitive* to the order of records in input and does not presume some canonical data distribution
- It scales *linearly* with the size of input and has good scalability as the number of dimensions in the data increases

Weakness

The accuracy of the clustering result may be degraded at the expense of simplicity of the method

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Model-Based Clustering Methods
- Outlier Analysis
- Summary

Model based clustering

- Assume data generated from K probability distributions
- Typically Gaussian distribution Soft or probabilistic version of K-means clustering
- Need to find distribution parameters.
- EM Algorithm

EM Algorithm

■ Initialize K cluster centers ■ Iterate between two steps ■ Expectation step: assign points to clusters $P(d_i \in c_k) = w_k \Pr(d_i | c_k) / \sum_j w_j \Pr(d_i | c_j)$ $w_k = \frac{\sum_i \Pr(d_i \in c_k)}{N}$

Maximation step: estimate model parameters

$$\mu_k = \frac{1}{m} \sum_{i=1}^m \frac{d_i P(d_i \in c_k)}{\sum_k P(d_i \in c_j)}$$

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Model-Based Clustering Methods
- Outlier Analysis
- Summary

What Is Outlier Discovery?

What are outliers?

- The set of objects are considerably dissimilar from the remainder of the data (exceptions or noise)
- Problem
 - Find top n outlier points
- Applications:
 - Credit card fraud detection
 - Telecom fraud detection
 - Customer segmentation
 - Medical analysis

- Data Values
- Assume a model underlying distribution that generates data set (e.g. normal distribution)
- Use discordancy tests depending on
 - data distribution
 - distribution parameter (e.g., mean, variance)
 - number of expected outliers
- Drawbacks
 - most tests are for single attribute (not applicable for multidimensional data)
 - In many cases, data distribution may not be known

Outlier Discovery: Distance-Based Approach

- Introduced to counter the main limitations imposed by statistical methods
 - We need multi-dimensional analysis without knowing data distribution.
- Distance-based outlier: A DB(p, D)-outlier is an object O in a dataset T such that at least a fraction p of the objects in T lies at a distance greater than D from O
- Algorithms for mining distance-based outliers
 - Index-based algorithm
 - Nested-loop algorithm
 - Cell-based algorithm