
Feifei Li

Fall 2008

(Many slides were made available by Ke Yi)

CIS 5930 Advanced Topics in Data Management

2

Massive Data
• Massive datasets are being collected everywhere

• Storage management software is billion-$ industry

Examples (2002):

• Phone: AT&T 20TB phone call

database, wireless tracking

• Consumer: WalMart 70TB

database, buying patterns

• WEB: Web crawl of 200M

pages and 2000M links, Akamai

stores 7 billion clicks per day

• Geography: NASA satellites

generate 1.2TB per day

3

Example: LIDAR Terrain Data

• Massive (irregular) point sets (1-10m resolution)

– Becoming relatively cheap and easy to collect

• Appalachian Mountains between 50GB and 5TB

• Exceeds memory limit and needs to be stored on disk

4

Example: Network Flow Data

• AT&T IP backbone generates 500 GB per day

• Gigascope: A data stream management system

– Compute certain statistics

• Can we do computation without storing the data?

5

Random Access Machine Model

• Standard theoretical model of computation:

– Infinite memory

– Uniform access cost

• Simple model crucial for success of computer industry

R

A

M

6

Hierarchical Memory

• Modern machines have complicated memory hierarchy

– Levels get larger and slower further away from CPU

– Data moved between levels using large blocks

L

1

L

2

R

A

M

7

Slow I/O

– Disk systems try to amortize large access time transferring large

contiguous blocks of data (8-16Kbytes)

– Important to store/access data to take advantage of blocks (locality)

• Disk access is 106 times slower than main memory access

track

magnetic surface

read/write arm

“The difference in speed between

modern CPU and disk

technologies is analogous to the

difference in speed in sharpening

a pencil using a sharpener on

one’s desk or by taking an

airplane to the other side of the

world and using a sharpener on

someone else’s desk.” (D. Comer)

4835 1915 5748 4125

8

Scalability Problems

• Most programs developed in RAM-model

– Run on large datasets because

OS moves blocks as needed

• Moderns OS utilizes sophisticated paging and prefetching strategies

– But if program makes scattered accesses even good OS cannot

take advantage of block access



Scalability problems!

data size

ru
n

n
in

g
 t

im
e

9

Solution 1: Buy More Memory

• Expensive

• (Probably) not scalable

– Growth rate of data is higher than the growth of memory

10

Solution 2: Cheat! (by random sampling)

• Provide approximate solution for some problems

– average, frequency of an element, etc.

• What if we want the exact result?

• Many problems can’t be solved by sampling

– maximum, and all problems mentioned later

Solution 3: Using the Right Computation Model

• External Memory Model

• Streaming Model

• Uncertain Data Model

12

N = # of items in the problem instance

B = # of items per disk block

M = # of items that fit in main memory

T = # of items in output

I/O: Move block between memory and disk

We assume (for convenience) that M >B2

D

P

M

Block I/O

External Memory Model

13

Fundamental Bounds

Internal External

• Scanning: N

• Sorting: N log N

• Permuting

• Searching:

• Note:

– Linear I/O: O(N/B)

– Permuting not linear

– Permuting and sorting bounds are equal in all practical cases

– B factor VERY important:

– Cannot sort optimally with search tree

NBlog

B
N

B
N

B
Mlog

B
N

N
B
N

B
N

B
N

B
M  log

}log,min{
B
N

B
N

B
MNN

N2log

14

Queues and Stacks
• Queue:

– Maintain push and pop blocks in main memory



O(1/B) Push/Pop operations

• Stack:

– Maintain push/pop block in main memory



O(1/B) Push/Pop operations

Push Pop

15

Puzzle #1: Majority Counting

• A huge file of characters stored on disk

• Question: Is there a character that appears > 50% of the time

• Solution 1: sort + scan

– A few passes (O(logM/B N)): will come to it later

• Solution 2: divide-and-conquer

– Load a chunk in to memory: N/M chunks

– Count them, return majority

– The overall majority must be the majority in >50% chunks

– Iterate until < M

– Very few passes (O(logM N)), geometrically decreasing

• Solution 3: O(1) memory, 2 passes (answer to be posted later)

b a e c a d a a d a a e a b a a f a g b

16

Sorting
• <M/B sorted lists (queues) can be merged in O(N/B) I/Os

M/B blocks in main memory

17

Sorting

• Merge sort:

– Create N/M memory sized sorted lists

– Repeatedly merge lists together Θ(M/B) at a time

 phases using I/Os each  I/Os)(B
NO)(log

M
N

B
MO)log(

B
N

B
N

B
MO

)(
M
N

)/(
B
M

M
N

))/((2

B
M

M
N

1

2-Way Sort: Requires 3 Buffers

• Phase 1: PREPARE.

– Read a page, sort it, write it.

– only one buffer page is used

• Phase 2, 3, …, etc.: MERGE:

– three buffer pages used.

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk

Two-Way External Merge Sort

• Idea: Divide and

conquer: sort subfiles

and merge into larger

sorts

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5

6

1,2

2,3

3,4

4,5

6,6

7,8

Two-Way External Merge Sort

• Costs for pass :

all pages

• # of passes :

height of tree

• Total cost :

product of
above

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5

6

1,2

2,3

3,4

4,5

6,6

7,8

Two-Way External Merge Sort

• Each pass we read + write
each page in file.

• N/B pages in file => 2N/B

• Number of passes

• So total cost is:

  1/log2  BN

  1/log/2 2 BNBN

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5

6

1,2

2,3

3,4

4,5

6,6

7,8

External Merge Sort

• What if we had more buffer pages?

• How do we utilize them wisely ?

- Two main ideas !

Phase 1 : Prepare

M/B Main memory buffers

INPUT 1

INPUT M/B

DiskDisk

INPUT 2

.

• Construct as large as possible starter lists.

Phase 2 : Merge

Compose as many sorted sublists into

one long sorted list.

M/B Main memory buffers

INPUT 1

INPUT M/B-1

OUTPUT

DiskDisk

INPUT 2

.

General External Merge Sort

• To sort a file with N/B pages using M/B buffer pages:

– Pass 0: use M/B buffer pages. Produce

sorted runs of M/B pages each.

– Pass 1, 2, …, etc.: merge M/B-1 runs.

 N B/

M/B Main memory buffers

INPUT 1

INPUT M/B-1

OUTPUT

DiskDisk

INPUT 2

.

* How can we utilize more than 3 buffer pages?

26

Selection Algorithm

• In internal memory (deterministic) quicksort split element (median)

found using linear time selection

• Selection algorithm: Finding i’th element in sorted order

1) Select median of every group of 5 elements

2) Recursively select median of ~ N/5 selected elements

3) Distribute elements into two lists using computed median

4) Recursively select in one of two lists

• Analysis:

– Step 1 and 3 performed in O(N/B) I/Os.

– Step 4 recursion on at most ~ elements

 I/Os

N
10
7

)()()()()(10
7

5 B
NNN

B
N OTTONT 

27

Toy Experiment: Permuting

• Problem:

– Input: N elements out of order: 6, 7, 1, 3, 2, 5, 10, 9, 4, 8

* Each element knows its correct position

– Output: Store them on disk in the right order

• Internal memory solution:

– Just scan the original sequence and move every element in the

right place!

– O(N) time, O(N) I/Os

• External memory solution:

– Use sorting

– O(N log N) time, I/Os)log(
B
N

B
N

B
MO

28

Takeaways

• Need to be very careful when your program’s space
usage exceeds physical memory size

• If program mostly makes highly localized accesses

– Let the OS handle it automatically

• If program makes many non-localized accesses

– Need I/O-efficient techniques

• Three common techniques (recall the majority counting
puzzle):

– Convert to sort + scan

– Divide-and-conquer

– Other tricks

