CIS 5930 Advanced Topics in Data Management

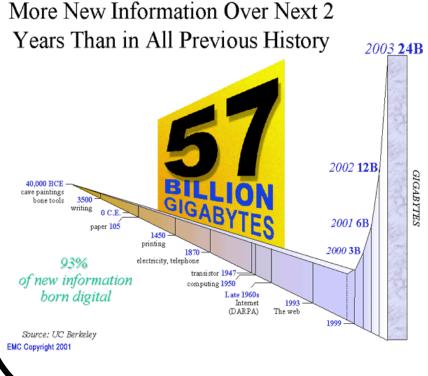
Feifei Li

Fall 2008

(Many slides were made available by Ke Yi)

Massive Data

- Massive datasets are being collected everywhere
- Storage management software is billion-\$ industry

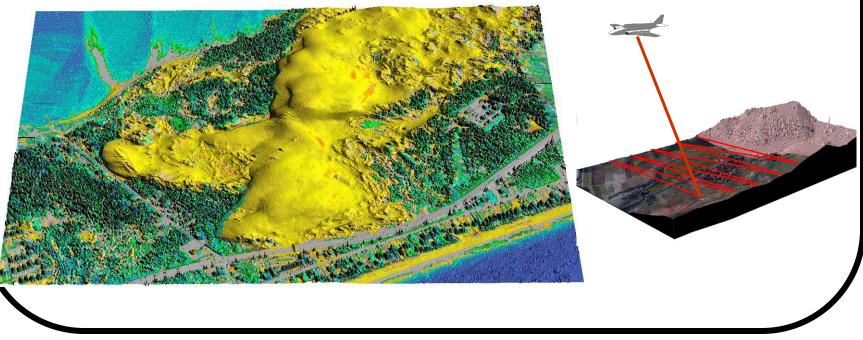


Examples (2002):

- Phone: AT&T 20TB phone call database, wireless tracking
 - Consumer: WalMart 70TB database, buying patterns
 - WEB: Web crawl of 200M pages and 2000M links, Akamai stores 7 billion clicks per day
 - Geography: NASA satellites generate 1.2TB per day

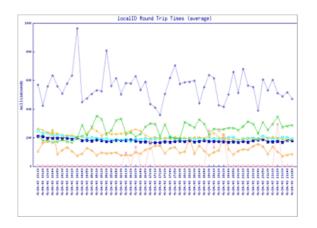
Example: LIDAR Terrain Data

- Massive (irregular) point sets (1-10m resolution)
 - Becoming relatively cheap and easy to collect
- Appalachian Mountains between 50GB and 5TB
- Exceeds memory limit and needs to be stored on disk



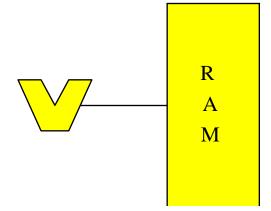
Example: Network Flow Data

- AT&T IP backbone generates 500 GB per day
- Gigascope: A data stream management system
 - Compute certain statistics



• Can we do computation without storing the data?

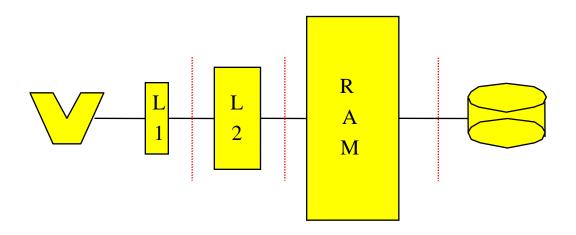
Random Access Machine Model



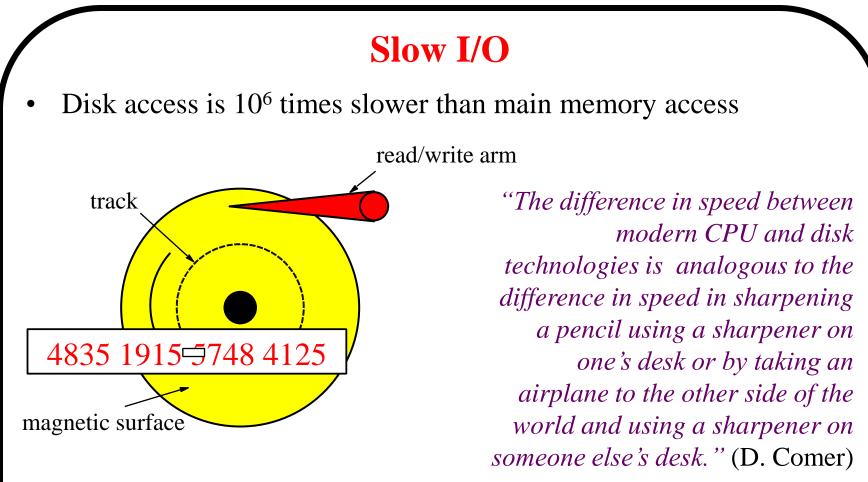
- Standard theoretical model of computation:
 - Infinite memory
 - Uniform access cost

• Simple model crucial for success of computer industry

Hierarchical Memory



- Modern machines have complicated memory hierarchy
 - Levels get larger and slower further away from CPU
 - Data moved between levels using large blocks



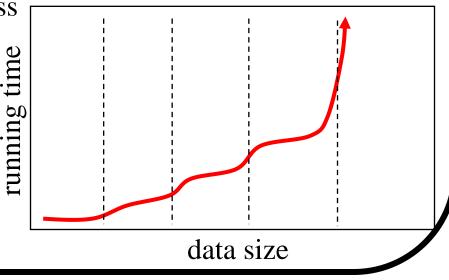
 Disk systems try to amortize large access time transferring large contiguous blocks of data (8-16Kbytes)

- Important to store/access data to take advantage of blocks (locality)

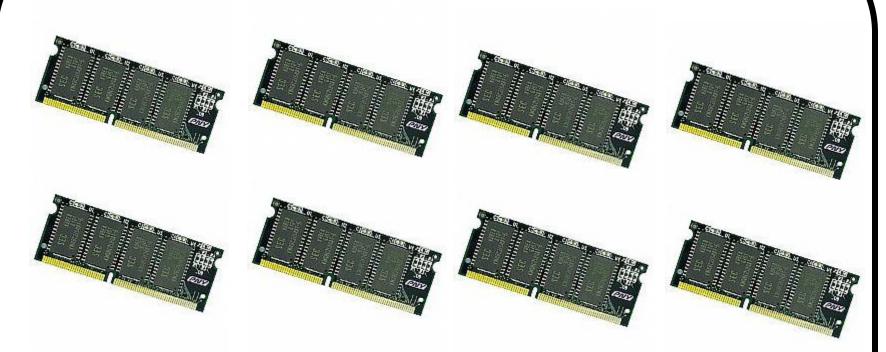
Scalability Problems

- Most programs developed in RAM-model
 - Run on large datasets because
 OS moves blocks as needed
- Moderns OS utilizes sophisticated paging and prefetching strategies
 - But if program makes scattered accesses even good OS cannot take advantage of block access

Scalability problems!



Solution 1: Buy More Memory



- Expensive
- (Probably) not scalable
 - Growth rate of data is higher than the growth of memory

- Provide approximate solution for some problems

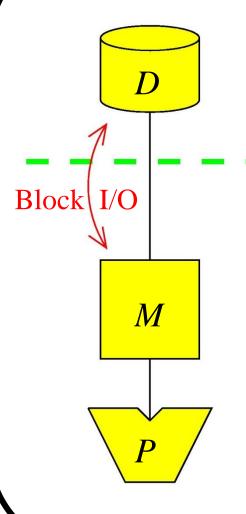
 average, frequency of an element, etc.
- What if we want the exact result?
- Many problems can't be solved by sampling
 - maximum, and all problems mentioned later

Solution 3: Using the Right Computation Model

External Memory Model

- Streaming Model
- Uncertain Data Model

External Memory Model



- N = # of items in the problem instance B = # of items per disk block
- M = # of items that fit in main memory

T = # of items in output

I/O: Move block between memory and disk

We assume (for convenience) that $M > B^2$

Fundamental Bounds

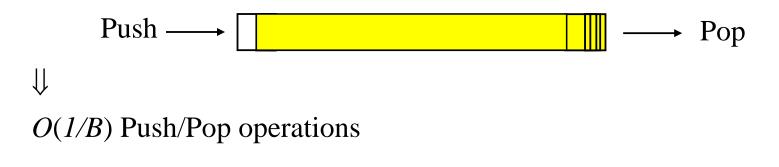
	Internal	External
• Scanning:	N	$\frac{N}{B}$
• Sorting:	$N \log N$	$\frac{N}{B}\log_{M/B}\frac{N}{B}$
• Permuting	N	$\min\{N, \frac{N}{B}\log_{M_{B}}\frac{N}{B}\}$
• Searching:	$\log_2 N$	$\log_B N$

- Note:
 - Linear I/O: O(N/B)
 - Permuting not linear
 - Permuting and sorting bounds are equal in all practical cases
 - *B* factor VERY important: $\frac{N}{B} < \frac{N}{B} \log_{M_{/B}} \frac{N}{B} << N$
 - Cannot sort optimally with search tree

Queues and Stacks

• Queue:

- Maintain push and pop blocks in main memory



- Stack:
 - Maintain push/pop block in main memory

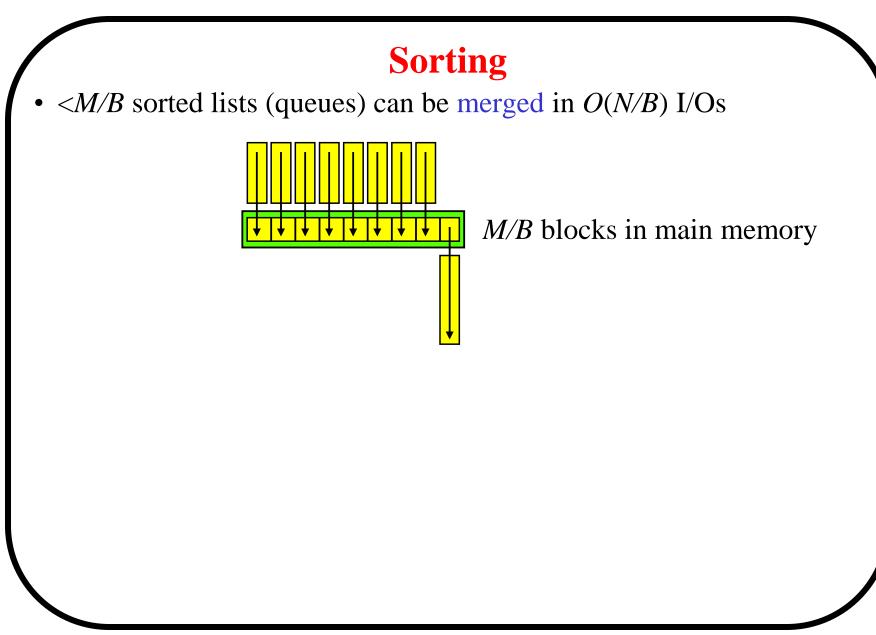
Q(1/B) Push/Pop operations

Puzzle #1: Majority Counting

f b d d b a a e С a a a a e a a a a g b

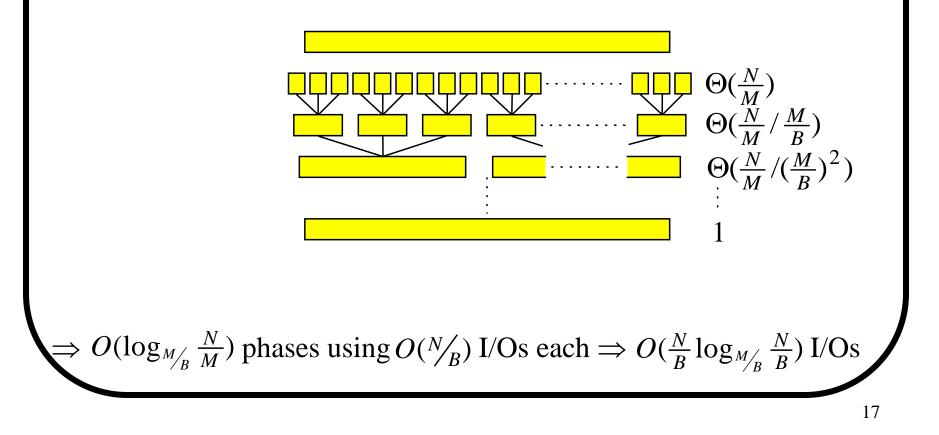
- A huge file of characters stored on disk
- Question: Is there a character that appears > 50% of the time
- Solution 1: sort + scan
 - A few passes (O($\log_{M/B} N$)): will come to it later
- Solution 2: divide-and-conquer
 - Load a chunk in to memory: *N/M* chunks
 - Count them, return majority
 - The overall majority must be the majority in >50% chunks
 - Iterate until < M
 - Very few passes ($O(\log_M N)$), geometrically decreasing

• Solution 3: O(1) memory, 2 passes (answer to be posted later)



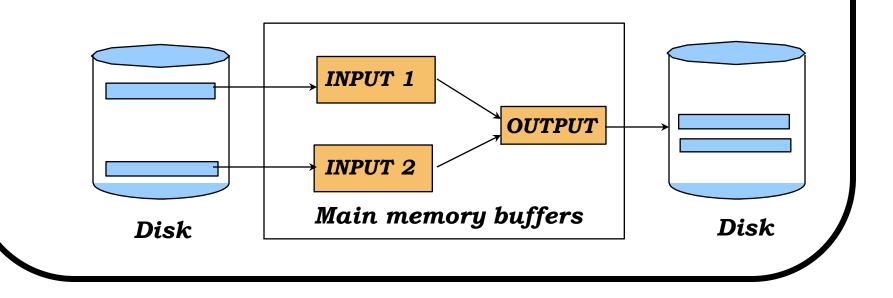
Sorting

- Merge sort:
 - Create N/M memory sized sorted lists
 - Repeatedly merge lists together $\Theta(M/B)$ at a time



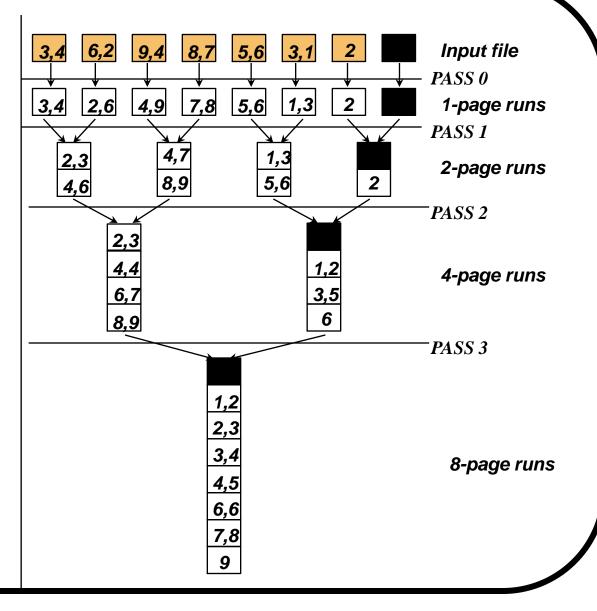
2-Way Sort: Requires 3 Buffers

- Phase 1: PREPARE.
 - Read a page, sort it, write it.
 - only one buffer page is used
- Phase 2, 3, ..., etc.: MERGE:
 - three buffer pages used.



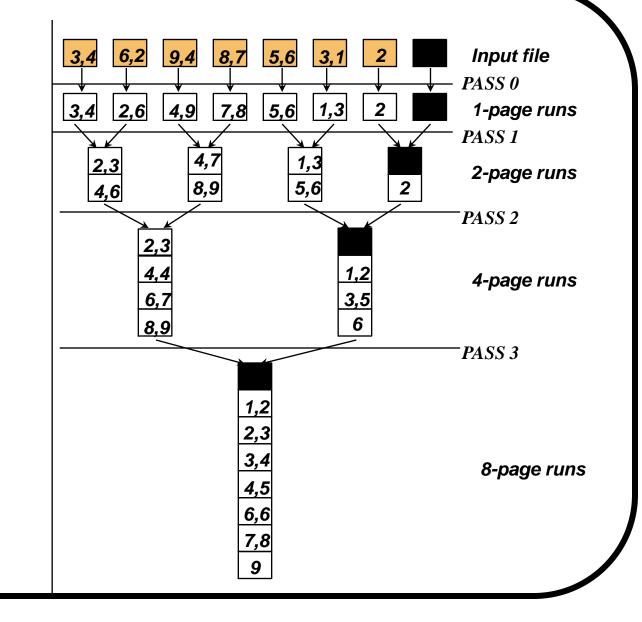
Two-Way External Merge Sort

Idea: Divide and conquer: sort subfiles and merge into larger sorts



Two-Way External Merge Sort

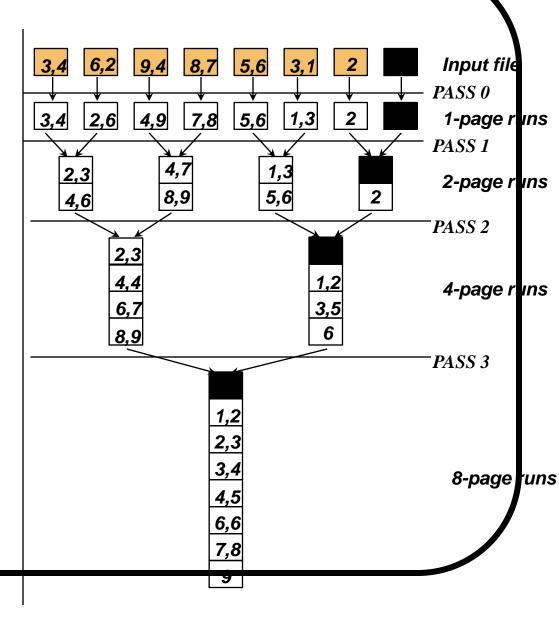
- Costs for pass : all pages
- # of passes : height of tree
- Total cost : product of above



Two-Way External Merge Sort

- Each pass we read + write each page in file.
- N/B pages in file => 2N/B
- Number of passes
 - $= \left\lceil \log_2 N / B \right\rceil + 1$
- So total cost is:

 $2N/B(\left\lceil \log_2 N/B \right\rceil + 1)$

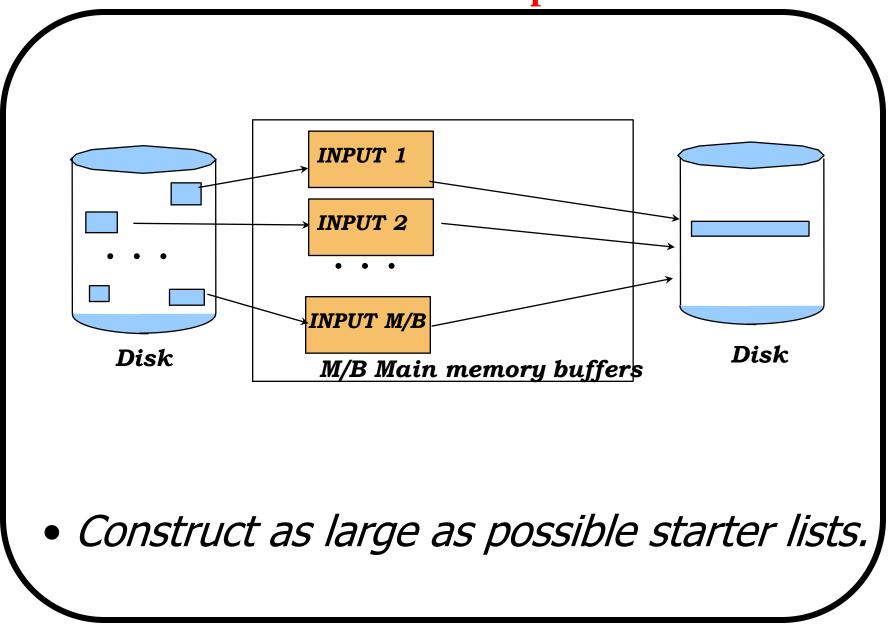


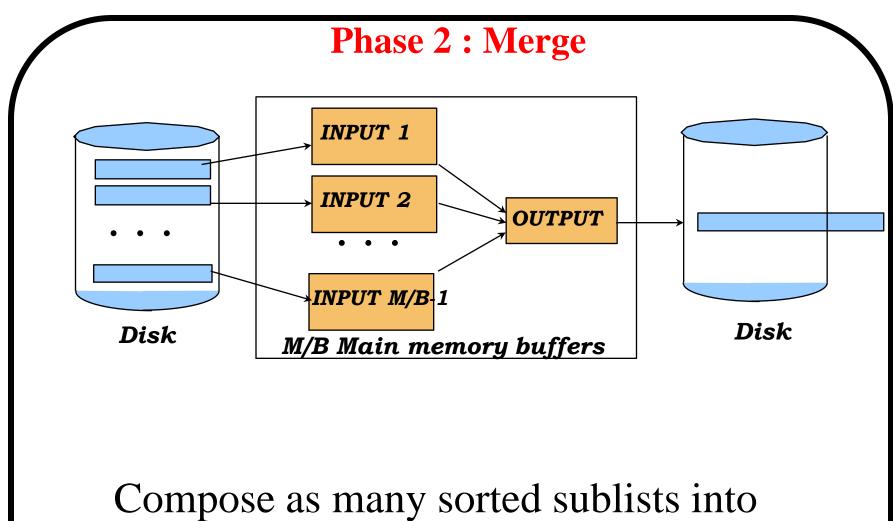
External Merge Sort

- What if we had more buffer pages?
- How do we utilize them wisely ?

\rightarrow Two main ideas !

Phase 1 : Prepare





one long sorted list.

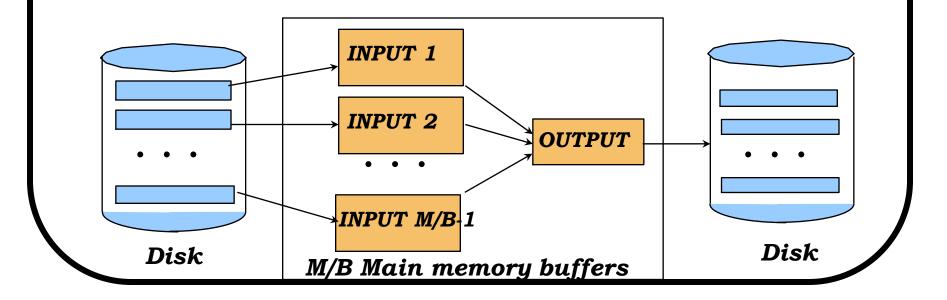
General External Merge Sort

* How can we utilize more than 3 buffer pages?

- To sort a file with *N/B* pages using M/*B* buffer pages:
 - Pass 0: use M/B buffer pages. sorted runs of M/B pages each. $\lceil N / B \rceil$

Produce

– Pass 1, 2, …, etc.: merge M/*B*-1 runs.



Selection Algorithm

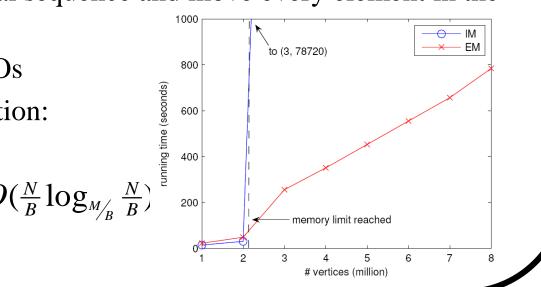
- In internal memory (deterministic) quicksort split element (median) found using linear time selection
- Selection algorithm: Finding *i*'th element in sorted order
 1) Select median of every group of 5 elements
 2) Recursively select median of ~ *N*/5 selected elements
 3) Distribute elements into two lists using computed median
 4) Recursively select in one of two lists
- Analysis:
 - Step 1 and 3 performed in O(N/B) I/Os.
 - Step 4 recursion on at most $\sim \frac{7}{10} N$ elements
 - $\Rightarrow T(N) = O(N_B) + T(N_5) + T(7N_{10}) = O(N_B) \text{ I/Os}$

Toy Experiment: Permuting

- Problem:
 - Input: N elements out of order: 6, 7, 1, 3, 2, 5, 10, 9, 4, 8

* Each element knows its correct position

- Output: Store them on disk in the right order
- Internal memory solution:
 - Just scan the original sequence and move every element in the right place!
 - O(N) time, O(N) I/Os
- External memory solution:
 - Use sorting
 - $O(N \log N)$ time, $O(\frac{N}{B} \log_{M_{/B}} \frac{N}{B})$



Takeaways

- Need to be very careful when your program's space usage exceeds physical memory size
- If program mostly makes highly localized accesses -Let the OS handle it automatically
- If program makes many non-localized accesses -Need I/O-efficient techniques
- Three common techniques (recall the majority counting puzzle):
 - -Convert to sort + scan
 - -Divide-and-conquer
 - -Other tricks