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Figure 1: Our system starts by capturing animated point clouds using commodity depth-sensors (a). These point clouds (b)
are used to learn the subject-specific parameters of our anatomical model, which consists of geometry (c), kinematics (d), and
skinning (e). We apply our final personalized model to reconstruct anatomically-plausible bone motion(f).

Abstract
We present a system to reconstruct subject-specific anatomy models while relying only on exterior measurements
represented by point clouds. Our model combines geometry, kinematics, and skin deformations (skinning). This
joint model can be adapted to different individuals without breaking its functionality, i.e., the bones and the skin re-
main well-articulated after the adaptation. We propose an optimization algorithm which learns the subject-specific
(anthropometric) parameters from input point clouds captured using commodity depth cameras. The resulting per-
sonalized models can be used to reconstruct motion of human subjects. We validate our approach for upper and
lower limbs, using both synthetic data and recordings of three different human subjects. Our reconstructed bone
motion is comparable to results obtained by optical motion capture (Vicon) combined with anatomically-based
inverse kinematics (OpenSIM). We demonstrate that our adapted models better preserve the joint structure than
previous methods such as OpenSIM or Anatomy Transfer.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Three Dimensional Graph-
ics and Realism—Animation

1. Introduction

The human body evolved through millennia to create a fas-
cinating mechanical device. However, the inner workings of
bones, muscles, and soft tissues are hidden to the naked eye.
During normal motions, the bones behave as rigid bodies. It

is interesting to think about what this means during everyday
activities such as twisting the arm when turning a doorknob.
The forearm contains two major bones, the radius and the
ulna, see Fig. 2. During pronation and supination, the ap-
proximately 180◦ twist of the hand is achieved by the radius
revolving around the ulna. Because the radius is rigid, the

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



L. Zhu & X. Hu & L. Kavan / Adaptable Anatomical Models for Realistic Bone Motion Reconstruction

Supination

Humerus UlnaRadius

Pronation

Figure 2: Bones of the upper extremity during supination
and pronation.

same amount of twist must occur also in the elbow joint. We
invite the reader to observe their own arm while pronating
and supinating. We see that the skin near the elbow barely
moves at all, revealing very little about the dramatic rotation
of the radius that occurs inside the body.

Anatomical models lead to stunning levels of visual realism
in computer graphics, as evidenced by visual effects e.g. in
the movie Avatar [CJ10]. Unfortunately, anatomically-based
modeling is very laborious and requires skilled technical
artists, which makes this technology hardly accessible out-
side of high-budget production. We hope our method can
democratize anatomically-based models in computer graph-
ics. Our reconstructed bone motion can be used as bound-
ary conditions driving physics-based musculoskeletal simu-
lations [FLP14]. We hope that our method will pave the way
to exciting future applications such as personalized medical
visualization or animated medical atlases.

Highly accurate skeletal motion can be observed using imag-
ing devices based on X-ray or MRI technology. While real-
time MRI does not suffer from the risks of ionizing ra-
diation, the equipment and its operation are very expen-
sive and available only in major health care centers. Even
if budget were not a concern, MRI machines offer only a
small workspace which limits the range of captured motions.
While anatomically-accurate bone motion capture seems to
be out of reach in computer animation, we argue that for
many applications in computer graphics and visualization,
high accuracy is not necessary as long as the motions look
anatomically realistic. This is similar to physics-based ani-
mation, which does not aim for physically accurate but only
physically plausible results.

Figure 3: An animation skeleton compared to a realistic one.

However, skeleton models typically used in computer ani-
mation are only very crude approximations of the real human
anatomy, see Fig. 3. Our main contribution is an adaptable
anatomically-based model describing geometry, kinematics,

and deformation behavior of the skin – in a unified way.
Our model starts with polygon meshes representing realis-
tic bones and skin in a rest pose (Fig. 1(c)). The motion of
the bones is parameterized using standard kinematic chains.
In particular, we use the kinematic models developed in the
biomechanics community [DAA∗07] (OpenSIM), which de-
scribe anatomically-realistic joints (Fig. 1(d)). The geometry
and kinematics is complemented by a skinning model, which
relates articulations of the bones to the deformations of the
skin (Fig. 1(e)). Surprisingly, we found that existing skin-
ning techniques struggle with anatomically-realistic bones,
e.g., in the forearm (often approximated by only one “bone”
in typical computer graphics models). We propose to resolve
this challenge by using custom deformers. In particular, we
design a novel deformer for the forearm which works well
with realistic radius and ulna kinematics.

Our anatomically based model is parameterized by “anthro-
pomorphic” parameters, which account for the variations
of human bodies in terms of size and shape, depending on
age, gender, ethnicity, and other anthropological factors. The
template anatomy model must be adapted to match the size
and proportions of a specific individual whose motion we in-
tend to capture. This adaptation must be done carefully be-
cause it is very easy to destroy the anatomical realism of the
model and produce artifacts such as self-intersecting bones.
As input, we use 3D point clouds corresponding to multiple
poses of the human performer. Multiple poses help us dis-
ambiguate the location and shape of the bones. For example,
the humerus head (“pointy elbow”) is much more prominent
with a bent elbow than with a straight arm. We present an al-
gorithm which optimizes for pose parameters (joint angles),
shape deformation parameters (e.g., bone lengths), and rest
pose skin geometry in order to align the adapted template
with the example shapes as closely as possible. Our tem-
plate adaptation can be viewed as a way to approximate bone
geometry without any medical imaging (X-ray or MRI), re-
lying solely on consumer-grade depth sensors. The recent
Anatomy Transfer paper [DLG∗13] shares a similar goal,
but relies on perfect meshes and correspondences provided
by the user. In spite of using only unstructured and noisy
point clouds, our technique results in higher anatomical fi-
delity of the reconstructed bones (Fig. 20).

After adapting our anatomical model to a specific human
subject, we use it for tracking an input motion sequence, cap-
tured with commodity depth sensors. Alternatively, it would
also be possible to use traditional marker-based systems in
this phase, however, we continue to rely on our depth sensors
which are much more easily accessible than professional
systems such as Vicon. We experiment with two types of
body parts: the upper and lower limb. The bone motions re-
constructed using our method look natural and the structure
of the moving joints is well preserved. This is possible due
to our anatomical models adapted to specific human subjects
which combine geometry, kinematics, and skinning. In the
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future, we hope that our work will inspire synergies between
computer graphics and biomechanics.

2. Related Work

Reconstruction of human motion is a long standing prob-
lem in graphics, vision, and biomechanics, see [Pop07,
MHKS11] for a survey. In this section we focus only on
the most closely related work. Discriminative pose estima-
tion methods, such as those used by the Microsoft Kinect
[SSK∗13], are very robust but do not achieve high accu-
racy [HBB∗13]. Using a high-quality template model, im-
pressive results have been demonstrated both for full-body
characters [YLH∗12,WZC12] and human hands [BTG∗12].
An accurate template model can be constructed by laser
scanning or multi-view stereo reconstruction of the human
subject in a rest pose. Corresponding animation skeletons
are then created manually. These skeletons are not intended
to be anatomically realistic, their role is to provide a model
explaining surface deformations. Even highly simplified lin-
earized skeletal models are useful in tracking [SHRB12].
Data-driven approaches devise a statistical model from a
database of human body shapes [ASK∗05, HSS∗09], which
can be used as an alternative method to obtain a subject-
specific model, e.g., in full body tracking [HBB∗13]. How-
ever, these databases do not contain anatomically-realistic
bone models.

An important ingredient of human body models is skinning,
i.e., a mapping between pose parameters and the resulting
deformed skin. Commonly used skinning techniques are lin-
ear blend skinning [YLH∗12, BTG∗12] or dual quaternion
skinning [LGS∗13]. We found that previous skinning tech-
niques are not sufficient with anatomically-realistic skele-
tons, especially in challenging areas such as the forearm,
where the skin is affected by a complex interplay between
two major bones. Inspired by [KS12], we propose to ex-
plain skin motion using general deformers. In particular, we
propose a novel deformer to describe anatomically-realistic
forearm deformations. In contrast to [KS12], our deformer
is not joint-based, but applies to the entire forearm region.

In this paper, we assume that our input point clouds cor-
respond to samples of the skin, i.e., the human subjects
are not wearing any loose clothing. This assumption has
been relaxed in performance capture techniques [VBMP08,
DAST∗08, GSDA∗09], which allow the reconstructed sur-
face to depart from the template model in order to bet-
ter fit the input data. The method due to Li and col-
leagues [LLV∗12] is even more flexible and allows for
changes of topology, enabling effects such as gliding cloth
or exposure of previously covered body parts.

In biomechanics and other applications where accuracy is
important, professional marker-based systems such as Vicon
or Motion Analysis are often the method of choice. Skeletal
motion reconstruction from sparse markers is a well stud-

ied problem [LO99], but the accuracy is limited due to the
assumption that markers are rigidly attached to the bones.
The resulting “soft tissue artifacts” are a prevalent problem
in biomechanics [GKM∗07, Tod07]. To overcome these ar-
tifacts, some researchers resorted to attaching markers to
pins drilled into their own bones [NJL∗07]. In this paper, we
propose to combat the soft tissue artifacts by anatomically-
based skinning models, which predict the shape of the en-
tire outer surface. In contrast to typical computer anima-
tion setups, our skinning model uses anatomically-realistic
kinematic models adapted from the OpenSIM platform
[DAA∗07]. These kinematic models have been established
via cadaver studies, stereo-photogrammetry, and in vivo
fluoroscopy. In particular we use models for the upper
[HMD05] and lower extremity [DLH∗90]. Our method com-
pares favorably to skeletal motion reconstruction obtained
using Vicon and the inverse kinematics module of OpenSIM.

Marker-less motion capture has been studied by Corazza
et al. [CMC∗06, CGMA10, CMG∗10, CSC14]. Their sys-
tem uses a multi-camera setup tracking approximately rigid
body parts using iterative closest points; deformable parts
such as joints are excluded from tracking. In contrast, our
skinning model allows us to track these deformable parts
as well, which is very helpful in locating the underlying
bones. While Corazza and colleagues achieve impressive
full-body tracking results, their work does not model skin-
ning or anatomically-realistic kinematics.

The most accurate way to obtain subject-specific anatom-
ical templates is using medical imaging, such as static
MRI [GRP10, DGFP12]. However, MRI data are often un-
available. In this case, the recent work of Dicko and col-
leagues [DLG∗13] can be used to adapt a template anatomy
model to a different body shape specified only by its bound-
ary. However, they assume the target skin is specified by a
clean polygon mesh with perfect correspondences. In spite
of the fact that our method relies only on unstructured point
clouds, our approach results in more realistic joint shapes,
see Fig. 20. We achieve this using a new non-uniform bone
scaling model, inspired by related methods for non-uniform
scaling of man-made objects [KSSCO08].

Another class of previous methods focuses on reconstruc-
tion of articulated models solely from input data, with-
out using any template priors. This approach has been ex-
plored both for input data without explicit correspondences
[PG08, CZ11] as well as for animated meshes [LD14]. Lu
et al. [LDAS13] propose a system to reconstruct a high fi-
delity outer surface of human limbs and compute their vol-
ume, however, only for static shapes. In general, it is impos-
sible to discover internal anatomical structures just from the
surface information alone. Instead, our method takes advan-
tage of anatomically-based models such as [HMD05].
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3. Method

Our anatomically-based template model consists of: 1) the
geometry of the bones and the skin, 2) bone kinematics, and
3) the skinning function. The role of the kinematic model
is to parameterize a pose, i.e., motion due to skeletal articu-
lation. We concatenate all of the pose degrees of freedom
into a vector θ. For example, our upper extremity model
has 10 degrees of freedom (6 in the shoulder, 1 for elbow
flexion, 1 for radius rotation, and 2 for the wrist). The skin-
ning function maps the pose vector θ to the shape of the
deformed skin, as illustrated in Fig. 1(c,d,e). Our current
skinning model does not contain dynamics or muscle con-
tractions, even though these would be interesting additions
in the future.

template anatomy

rest pose

deformed pose

v
v̂

v~
p̂

anthropometric
deformation

pose-based
deformation

p~

Figure 4: The template anatomy model (quantities denoted
with a hat) is adapted to personalized anatomy model by an-
thropometric deformation. After adaptation, we obtain a rest
pose (quantities denoted with a tilde) which is articulated
using pose-based deformation.

The main feature of our anatomy model is its adaptability,
i.e., the ability to reshape itself to match the anatomy of a
given human subject. The adaptation consists in deforming
the template anatomy. This is different than traditional pose-
based skinning (Fig. 1(e)), because it accounts for changes
in lengths and girths from one individual to another. To
avoid confusion, we call this anthropometric deformation
(Fig. 4). In the following section we discuss the details of
our anatomy model; subsequently, in Sec. 3.2 we describe
our method of adapting the anatomy model given a vector
a of anthropometric parameters. Sec. 3.3 presents our algo-
rithm to optimize the parameters a against a set of 3D point
clouds, corresponding to surface measurements of a given
human subject in several different poses. The bone motion
reconstruction from captured point clouds is discussed in
Sec. 3.4. In Sections 3.5 and 3.6, we discuss the details of our
anatomically-based models of the upper and lower extrem-
ities, which fit well into our general framework of anatomy
adaptation and bone motion reconstruction.

3.1. Anatomy Model

Our anatomy model builds on top of traditional kinematic
and skinning techniques. We found that the requirement of
anatomical plausibility involves interesting challenges: for
example, the forearm contains two major bones, not one, and

Chumerus

Cradius

Culna Cwrist
pflexion,0~

~pflexion,1

ptwist,0~

ptwist,1~

Rulna

Figure 5: Kinematics of the upper limb (top). Below, we
show landmarks defining the axes of rotation of the ulna
(red) and the radius bones (green).

the knee joint does not only rotate, but also translates by non-
negligible amounts [LT08]. Our model must be able to adapt
itself to different body shapes while remaining functional,
i.e., well-articulated and skinned.

Kinematics. Bone kinematics is described using standard
kinematic chains. Every bone b is associated with a coor-
dinate frame Cb which specifies the pivot point and local
coordinate system for expressing its motion. For example,
the coordinate frames of our upper extremity model are il-
lustrated in Fig. 5.

To enable subject-specific adaptability of our model, the
coordinate frames are defined using a vector of landmark
points p̃. We use standard landmarks from the biomechanics
literature [WSA∗02, WvdHV∗05]. Each axis of rotation is
defined by two landmark points, typically on the bone head;
the coordinate frame associated with this axis of rotation can
be chosen arbitrarily. We denote this (nonlinear) relationship
as Cb(p̃). An interesting case is the coordinate frame of the
radius, i.e., Cradius(p̃), because its axis of rotation specifies
revolution of the radius around the ulna; this axis is defined
by the radial head and the distal part (styloid process) of the
ulna, see Fig. 5 (bottom). The interesting fact that this axis
of rotation depends on the length of the forearm is automat-
ically accounted for in our definition of Cradius(p̃), it is not
necessary to implement any special logic.

We denote the relative transformation between coordinate
frames as Rb(p̃) = Cb(p̃)C−1

parent(b)(p̃) ∈ SE(3), e.g., see
Rulna in Fig. 5. We denote the current pose of bone b with
respect to its parent as Pb(θ, p̃) ∈ SE(3), where θ is the vec-
tor of pose parameters. In typical skeleton models used in
computer graphics, Pb would be a pure rotation and would
only depend on joint angles. However, in our case we need
to support more complicated anatomical joints such as the
knee, which requires significant translations. The final co-
ordinate frames are computed by concatenating the entire
chain of transformations from the root, i.e., Fb(θ, p̃) can be
written as:

Proot(θ, p̃) · · ·Rparent(b)(p̃)Pparent(b)(θ, p̃)Rb(p̃)Pb(θ, p̃) (1)

Note that all coordinate frames are parameterized by our
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landmark points p̃, which is the key to achieving subject-
specific adaptation.

Skinning. Transformations from the rest pose of bone
b to its articulated position are defined as Tb(θ, p̃) =
Fb(θ, p̃)Fb(0, p̃)−1, assuming the rest pose corresponds to a
zero θ vector. The resulting matrices Tb correspond to classi-
cal skinning transformations, and can be directly applied in
linear blend skinning:

vi(θ, p̃) = ∑
b

wb,iTb(θ, p̃)ṽi (2)

where wb,i denotes the skinning weight of bone b corre-
sponding to vertex i and ṽi is the rest pose of vertex i. Un-
fortunately, linear blend skinning does not always lead to
realistic skin shapes. Therefore, we generalize our skinning
model by replacing the Tb(θ, p̃)ṽi term with a more general
deformer function, D(θ, p̃, ṽi), leading to linear deformer
blending:

vi(θ, p̃) = ∑
d

wd,iDd(θ, p̃, ṽi) (3)

where d indexes individual deformers, and wd corresponds
to deformer blending weights. This formulation is more gen-
eral, linear blend skinning can be easily implemmented by
using rigid body deformers: Dd(θ, p̃, ṽi) = Td(θ, p̃)ṽi. How-
ever, more sophisticated deformers are necessary to achieve
realistic results with anatomically-realistic bone kinematics,
see Sec. 3.5.

3.2. Adaptation

Our skinning model discussed in the previous section de-
scribes deformations due to articulated motion of the skele-
ton. In this section, we discuss deformations due to body
shape variations, e.g., making limbs longer or shorter. These
anthropometric deformations affect all components of our
anatomy model: geometry, kinematics, and skinning. In our
system, the anthropometric deformations are applied first,
before pose-based deformations (skinning). We call the ini-
tial anatomy model, i.e., before the application of anthropo-
metric deformations, the “template anatomy” and we denote
its quantities with a hat. For example, the skin vertices in our
anatomy template are represented by vector v̂. After anthro-
pometric deformation, the model is in its rest pose, ready
to be deformed with pose-based deformation. The rest pose
quantities are denoted with a tilde, such as the ṽ and p̃; see
Fig. 4 for a visual overview.

We start from a template anatomy model corresponding to an
average male. We tetrahedralize its bone shapes β̂b and the
entire domain Ω̂, see Fig. 6. Our template adaptation pro-
ceeds in two phases. In the first phase, we reshape the bones
and the surrounding soft tissues as a whole, i.e., assuming
that the shapes of the skin and the bones are perfectly corre-
lated. In the second phase, we assume the shape of the bones

is final and we update only the shape of the skin, accounting
for individual variations in muscle mass and fat tissues.

β 
b

^

h
^
b,2

Ω^

h
^
b,1

Figure 6: Anthropometric deformation handles of our upper
limb model.

In the first phase, we use the following deformation model.
We define two anthropometric deformation handles, ĥb,1 and
ĥb,2 for each bone b, corresponding to its proximal and dis-
tal heads, see Fig. 6. This deformation model is inspired by
growth mechanisms of human bones [KL85]. In particular,
bone heads (epiphyses) do not differ much between individ-
uals, except for uniform scaling. Bone length is determined
by the length of the bone shaft (diaphysis). Therefore, we
deform each bone as follows. We pre-compute point-based
bounded biharmonic weights [JBPS11] for each of the two
handles in β̂b, and we deform the bone by applying two
affine transformations at ĥb,1 and ĥb,2. We allow only trans-
lation and uniform scaling, because rotational motion is ac-
counted for in pose-based deformation (Sec. 3.1). This way,
we ensure that the bone heads maintain their shape, while
allowing the bones to change their length. The deformations
applied to individual bones are then naturally extended to the
entire shape Ω̂, by using pre-computed bounded biharmonic
weights for the entire domain Ω̂.

We denote the vector of parameters of our handle trans-
formations as a (the anthropometric parameters). Specifi-
cally, the vector a stacks the uniform scale coefficients and
the 3D translation vectors for all handles ĥb, j. However, we
need to impose certain constraints on a in order to ensure
anatomically-realistic results. In particular, a joint can be
only scaled as a whole, i.e., all bone heads meeting at a
given joint must be scaled by the same amount. For exam-
ple, for the elbow joint, we have the following constraints:
shumerus,2 = sulna,1 = sradius,1, where s > 0 denotes the scale
factor. Similarly, every joint can be only translated as a
whole. Incompatible translations would correspond to joint
dislocation, which we do not model. For example, for the
elbow joint we have the following constraint:

(s−1)(ĥulna,1− ĥhumerus,2) = t̂ulna,1− t̂humerus,2 (4)

where s = shumerus,2 = sulna,1, ĥ represents the (constant) 3D
locations of the handles and t̂ are their translations. This for-
mula accounts for the interplay between scaling and trans-
lation; an analogous constraint also applies for the radius.
We put together all of these equality constraints, obtaining
an affine set A, because each individual constraint is affine.
In Sec. 3.3, we explain how to find the individual-specific
parameters a subject to the constraint a ∈ A. Note that the
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constraintsA are defined only by general anatomical consid-
erations and therefore apply equally to all human subjects.

To deform our anatomy template for a given vector of an-
thropometric parameters a, we apply bounded biharmonic
weights to interpolate the transformations of individual han-
dles. Because this interpolation is linear, the rest pose skin
vertices ṽ are an affine function of a and v̂; to keep the nota-
tion simple, we write this affine dependence as ṽ(a, v̂). The
rest-pose landmark points p̃ are obtained in a similar way,
using an affine function p̃(a). Note that here we do not need
the second argument because our template-pose landmarks
are assumed to be constant.

In the second phase, we adapt the template vertices v̂ in
order to account for subject-specific soft tissue shape varia-
tions. From a modeling perspective, this is straightforward:
we directly move v̂ to the desired locations, as dictated by
the input data. However, care must be taken to minimize the
effect of noise, which we elaborate on in Sec. 3.3.

Our complete deformation model, accounting for both an-
thropometric and pose-based deformations, is obtained by
substituting the anthropometric deformation into Eq. (3).
This leads to:

vi(θ,a, v̂i) = ∑
d

wd,iDd(θ, p̃(a), ṽi(a, v̂i)) (5)

This formula looks simple but encompasses a lot of function-
ality. For example, changing the anthropometric parameters
a results in a change of p̃ which in turn changes the joint
coordinate frames (Fig. 5), resulting in a change of the kine-
matic chain and, consequently, changes in the deformer ma-
trices. See Fig. 7 for a visual demonstration of the adaptabil-
ity of our model, noting that all of the models are functional
both in terms of kinematics and skinning. Animated exam-
ples can be seen in the accompanying video. In Sec. 3.3, we
will need the partial derivatives of vi(θ,a, v̂i). As an imple-
mentation note, we recommend composing Eq. (5) from ele-
mentary building blocks, allowing for unit testing. For each
of these elementary functions, we implement both the func-
tion itself and its partial derivatives; the partial derivatives
are composed according to the chain rule.

3.3. Data-driven Anatomy Fitting

In this section we describe our algorithm to optimize the pa-
rameters of our model for given input data. The input data
consists of 3D point clouds corresponding to a given human
subject in various poses. The input point clouds are extracted
from depth images captured by two PrimeSense Carmine
1.09 sensors. We use OpenNI2 to convert depth images to
point clouds. We manually build a bounding box to cull the
human subject from the background. In order to register the
points from two depth sensors, we use a calibration box with
known dimensions. Each capture session starts by capturing
the calibration box by both of our depth sensors. The relative

Figure 7: Synthesized limb models from our adaptable
anatomy model.

rigid body transformation between the two depth sensors is
computed by registering two point clouds to a common box
with the same size as the calibration box. We denote the fi-
nal point clouds corresponding to the human performance as
Pk, where k indexes individual frames of our input anima-
tion. Every pose corresponds to different pose parameters
θk, which we need to calculate. At the same time, we also
need to compute the anthropometric deformation parameters
a and the template skin vertex positions v̂. The parameters a
and v̂ are the same for all poses, i.e., they depend only on the
human body shape but not its current pose.

Our algorithm starts by optimizing the pose parameters
(θ1,θ2, . . .) and the anthropometric parameters a. Upon con-
vergence, we optimize the template vertices v̂. The idea is
that we first deform the bones and the skin simultaneously,
i.e., as one volumetric ensemble. When no further progress
can be made, we accept the current shape of the bones and
optimize only for v̂, accounting for subject-specific differ-
ences in soft tissues.

One complication is that we do not have any a priori corre-
spondences between the skin vertices and the point clouds
Pk; in fact, every Pk represents a completely different set
of points. Therefore, we proceed as in non-rigid iterative
closest point algorithms, with Eq. (5) serving as the un-
derlying deformation model. In particular, we implement a
routine find_corres(v,Pk) which finds correspondences be-
tween mesh vertices v and the point cloud Pk, similar to
[LAGP09] [CZ11]. This routine returns a selector matrix Sk
and a vector of target values tk, such that ‖Skv− tk‖2 is a
data term attracting selected vertices from v to their desired
locations in Pk. Note that this data term allows us to weigh
each vertex by an estimate of correspondence “trustworthi-
ness”, or even drop a vertex entirely if no suitable correspon-
dence has been found. Specifically, we discard correspon-
dences which are further than 4cm away, have negative dot
product of their estimated normals, or lie on the scan bound-
ary. The rows of Sk and tk can encode either point-to-point
or point-to-plane distances. We use both, with point-to-plane
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weight 10× stronger than point-to-point, as suggested by Li
and colleagues [LAGP09]. This allows us to compensate for
the fact that our point cloud Pk is only a sparse sampling of
a smooth surface.

Algorithm 1: optimize_θ((θ1,θ2, . . .)init,a, v̂)

1 for each example k do
2 θk← θk,init
3 repeat
4 (Sk, tk)← find_corres(v(θk,a, v̂),Pk)

5 θk← argminx ‖Skv(x,a, v̂)− tk‖2

6 until convergence
7 end

Algorithm 2: optimize_a((θ1,θ2, . . .),ainit, v̂)

1 a← ainit
2 repeat
3 for each example k do
4 (Sk, tk)← find_corres(v(θk,a, v̂),Pk)
5 end
6 a←argminx ∑k ‖Skv(θk,x, v̂)− tk‖2 subj. to x ∈A
7 until convergence

Algorithm 3: optimize_v̂((θ1,θ2, . . .),a, v̂init)

1 v̂← v̂init
2 repeat
3 for each example k do
4 (Sk, tk)← find_corres(v(θk,a, v̂),Pk)
5 end
6 v̂← argminx xT Lx+∑k ‖Skv(θk,a,x)− tk‖2

7 /* L is a regularization term */
8 until convergence

Our individual optimization routines are summarized in Al-
gorithms 1, 2, and 3; the final template adaptation process
can be found in Algorithm 4. Currently, we rely on man-
ual initialization of ainit and θk,init parameters; v̂init is given
by our template geometry. In Algorithms 1 and 2, we solve
the nonlinear least squares problems using the Levenberg-
Marquardt algorithm, which converges very well in our set-
tings – typically in no more than 5 iterations. Note that aside
from A in Algorithm 2 we do not use any other constraints.
The constraintsA are only equality constraints which can be
implemented easily. In Algorithm 3, the regularization ma-
trix L is a standard cotangent Laplacian, used to suppress the
effect of noise in the input data and regularize skin vertices
that do not have any corresponding points in the input data.
We observe that the function v is linear with respect to its
last argument and therefore the optimization problem in line
(6) of Algorithm 3 reduces to solving a single linear system,
because Sk is constant.

It would be straightforward to use all of our captured frames
as input to our final template adaptation process (Algo-

Algorithm 4: template_adaptation(ainit,(θ1,θ2, . . .)init, v̂init)

1 (θ1,θ2, . . .)← (θ1,θ2, . . .)init, a← ainit, v̂← v̂init
2 repeat
3 repeat
4 (θ1,θ2, . . .)← optimize_θ((θ1,θ2, . . .),a, v̂)
5 a← optimize_a((θ1,θ2, . . .),a, v̂)
6 until convergence
7 v̂← optimize_v̂((θ1,θ2, . . .),a, v̂)
8 until convergence

rithm 4). However, as an optimization, we found that a much
smaller number of representative poses ranging from 4 to 8
is typically sufficient (as shown in Fig. 1(b)). We pick these
representative poses manually. We experimented with dif-
ferent strategies how to choose the representative poses, but
we found that the results are not particularly sensitive to this
choice as long as all important bone landmarks appear in at
least one of the poses. For example, it is very difficult to find
the exact location of the elbow from the straight arm, see
Fig. 8. When this basic principle is taken into account, we
observed that more example poses produce little improve-
ment and only slow down the computation.

Figure 8: Using only one pose corresponding to straight
arm, our template adaptation may produce inaccurate joint
location estimates (top); increasing the number of input
poses solves this problem (bottom). From left to right: in-
put poses, adapted anatomy models and reconstructed bone
motions for arm flexion. The top model fails in tracking.

3.4. Bone Motion Reconstruction

After our anatomy model has been adapted to a given hu-
man subject, we use it to reconstruct the corresponding
bone motions. The input is a sequence of point clouds
{P f } f=1,2,... and the output is a sequence of pose parame-
ters {θ f } f=1,2,.... We use a small modification of Algorithm
1 to reconstruct bone motions from the input point clouds.
In frame f , we use θ

f−1 as an initial guess; the first frame is
initialized manually. Even with well-adapted models, Algo-
rithm 1 may occasionally converge to the wrong local min-
imum and loose the tracking. This typically happens due to
occlusions and insufficient resolution of the point clouds. In
our current system we resolve these issues by user interac-
tion, similar to the post-processing routinely performed with
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professional motion capture systems such as Vicon. It would
certainly be possible to apply more advanced tracking tech-
niques, e.g., the probabilistic method combined with robust
pose detection [WZC12]. However, we observed the track-
ing errors were typically infrequent and easily correctable by
user interaction.

3.5. Upper Limb Model

radius: BBW radius: our weight

ulna: our weightulna: BBW

Figure 9: Bounded biharmonic weights (BBW) lead to un-
desirable influence regions. We redistribute their influence to
match realistic deformations of the forearm.

The kinematics of our upper extremity model is based on
the Stanford VA Upper Limb Model [HMD05]. We encoun-
tered certain interesting challenges when developing skin-
ning compatible with this model. The first issue is relatively
benign: bounded biharmonic weights [JBPS11] give us un-
desirable weights for the ulna and radius bones. We fix this
by summing the radius and ulna weights together and mod-
ulating them with a linear ramp function along the length of
the forearm, similar to stretchable-twistable bones [JS11],
see Fig. 9.

Unfortunately, even after correcting the
weights, it is difficult to produce realistic
deformation of the forearm. Linear blend
skinning leads to a typical candy-wrapper ar-
tifact, see Fig. 10(b). Dual quaternion skinning
removes the candy-wrapper, but unnaturally
bends the forearm, see Fig. 10(c). The reason
for the failure of dual quaternion skinning
is the displacement of the wrist induced by
the “carrying angle”, i.e., translation of the
hand away from the body, allowing us to carry
objects without colliding with the hips, see
the inset figure to the right. Physics-based
skinning using corotated elasticity [MZS∗11] leads to
“pinching” of the soft tissue between the two bones (see
Fig. 10(d)). This is because this model treats the body as a
whole and does not account for sliding between the tendons
and bones. Algorithms that take collision and contact into
account exist [FLP14] but are very complex and would
require the modeling of individual muscles. Another way to
produce realistic forearm deformations would be using Pose
Space Deformation [LCF00], however this would require
additional data (corrective shapes).

We propose a light-weight deformer which leads to natural
skin shapes. We start by defining two auxiliary coordinate

(a) (b) (c) (d) (e)

Figure 10: Challenges in skinning the forearm: pronation
pose (a), linear blend skinning (b), dual quaternion skinning
(c), corotated elasticity (d), our method (e).
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Figure 11: Forearm deformer applied to a cylinder: rest-
pose (left), 180◦ twist with our deformer (middle) and dual
quaternion skinning (right). Note that the axis of rotation is
not aligned with the axis of symmetry of the cylinder.

frames in the forearm, Fproximal and Fdistal, see Fig. 11 (left).
The proximal frame is parented to the ulna: Fproximal(θ, p̃) =
Fulna(θ, p̃)Rproximal(p̃), while the distal frame is parented
to the radius: Fdistal(θ, p̃) = Fradius(θ, p̃)Rdistal(p̃). The key
to realistic deformations is to combine spherical blending
of the twist with linear shearing due to the carrying an-
gle translation, see Fig. 11 (middle). We define a blended
frame Fblend(θ, p̃, t) for t ∈ [0,1], interpolating between
Fproximal(θ, p̃) and Fdistal(θ, p̃) in the following way: the ori-
gins are blended linearly and the orientations (rotation ma-
trices) are blended using SLERP. The forearm deformer then
applies the transformation specified by Fblend:

Dforearm(θ, p̃, ṽi)=Fblend(θ, p̃, t(ṽi))Fblend(0, p̃, t(ṽi))
−1ṽi

where t(ṽi) assigns 1 to vertices near the elbow, 0 to vertices
near the wrist, with linear transition in between. Note that
while this deformer does not produce a smooth transition in
the upper arm or the hand regions, smooth blending between
individual body parts is achieved by smooth deformer blend-
ing weights wd (see Eq. (3)). We believe that our Dforearm is
the simplest deformer capable of achieving realistic forearm
shapes, see Fig. 10(e).

It is interesting to note that our method can still successfully
track the pronation and supination motions even though the
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forearm is mostly cylindrical and does not contain many vis-
ible features. This success stems from the fact that the radius
bone drives the rotations of the hand, which helps our al-
gorithm to disambiguate the orientation of the radius. This
works reliably only with our proposed deformer; with dual
quaternions we encountered hard-to-correct tracking prob-
lems due to the systematic error in the resulting skin shapes.

3.6. Lower Limb Model

Cfemur

Cpatella

Ctibia

Cfeet
pankle,0~

pankle,1~Rtibia

Rpatella Rfeet

Figure 12: Kinematics of the lower limb. We show the land-
marks defining the axis of rotation of the foot (green).

t4
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n3

n4 t3 t2 t1 t0
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p4~

p3~

Figure 13: The kinematics of the knee. The vectors ni are
normals at landmark points p̃i.

The kinematics of the lower limb used in our system is
shown in Fig. 12. Different from the upper limb, there is no
twist between the tibia and fibula and therefore, both bones
share one common transformation Ctibia. The ankle can be
represented as a simple hinge joint, but the knee requires a
more elaborate model. Because the head of the femur bone
is not cylindrical, the knee joint introduces translations to
the tibia. We use the standard spline model from OpenSIM
[DAA∗07] to model the kinematics of the knee. In this sec-
tion we explain how our adaptable anatomy models support
these more complicated joint models. Let us focus on the
kinematics of the femurotibial joint. The total transforma-
tion of the tibia Ptibia(θ, p̃) ∈ SE(3) consists of a translation
t(θ) and rotation with angle α(θ). Note that the knee flexion
parameter in θ is not the angle of rotation of the lower leg;
the actual angle and the translation depend nonlinearly on
θ. This nonlinear relationship is approximated using a cubic
spline. Specifically, t(θ) = ∑i tibi(θ), where ti are vectors
pointing from the center of rotation to landmark points p̃i
(see Fig. 13); bi(θ) are standard cubic spline basis functions.
Similarly, the angle α(θ) = ∑i αibi(θ), where αi are the an-
gles between normals ni and n0 (see Fig. 13). The control

points p̃i of this spline are copying the shape of the joint and
we include them in the vector of landmark points p̃. This
way, the adjustments of the spline due to anthropometric de-
formations are handled automatically in our framework: the
spline control points are scaled just like any other landmarks,
which consequently updates the knee kinematics. This fits
our general framework beautifully, there is no need for any
special logic.

4. Results

To prepare our template, we started with the bone and skin
meshes of a 50th percentile male model, commercially avail-
able from the Zygote company. We took kinematic models
from OpenSIM [DAA∗07] and adapted them to our bones.
Subsequently, we calculated bounded biharmonic weights
[JBPS11] to obtain the skinning weights of our template
model. Model preparation took about 30 minutes for each
limb.

Fig. 1(a) shows the setup of our data capture, which starts by
converting two depth image sequences into animated point
clouds. We use two PrimeSense Carmine 1.09 sensors and a
single thread implementation of our algorithms running on
a 2.5GHz processor. It takes around 1 minute to manually
initialize the anthropometric parameters a and 1 minute to
initialize the pose parameters θk for each pose, assuming 6
input poses. Our data-driven anatomy fitting (Algorithm 4)
usually takes 2 to 3 iterations in the outer loop and 5 to 8 iter-
ations in the inner loop to converge. In pose parameter opti-
mization and anthropometric parameter optimization, vertex
correspondences are dynamically updated. In Algorithms 1
and 2 we repeat correspondence finding and optimization for
10 to 15 iterations. For an upper limb model with 8175 skin
vertices and 6 example poses, solving the nonlinear least
squares optimization (line 5 of Algorithm 1) takes less than
0.7 seconds (per pose) and solving for the optimal anthropo-
metric parameters (line 6 in Algorithm 2) takes less than 6
seconds (for all 6 poses simultaneously). The template ver-
tex optimization (line 6 in Algorithm 3) costs around 0.5 sec-
onds and is iterated with correspondences updated 3 times.
Each example pose is represented as a point cloud with about
3000 to 4000 points. Our lower limb model has 8359 skin
vertices. Pose parameter optimization exhibits performance
similar to the upper limb case. For 6 input poses, each with
about 4000 to 5000 points, each iteration of anthropomet-
ric parameter optimization and template vertex optimiza-
tion takes around 2.8 seconds and 0.3 seconds, respectively.
Overall, the entire adaptation process for upper and lower
limbs takes around 10 to 30 minutes, depending on the ac-
curacy of the initialization.

We first validate our algorithm with synthetic motions. In
Fig. 14, we study a bend-and-twist motion of a manually
adapted arm, created by a ground truth keyframed sequence,
with point clouds artificially sampled on the animating skin
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Figure 14: Results (thin blue curves) on synthetic arm bend-
and-twist data without (upper row) and with (lower row)
white noise, compared with the ground truth (thick red
curves). (a) Trajectory of the elbow and wrist joints, (b) joint
angles of elbow flexion and twist.

meshes. We add white noise to simulate the measurement in-
accuracies. We select 6 point clouds as example poses for the
template adaptation. We compare the locations of elbow and
wrist to verify that bones are correctly adapted. For this com-
parison, we reconstruct bone motions and project the trajec-
tory of elbow and wrist onto the frontal plane. The distance
between the reconstructed joint trajectory and the ground
truth is plotted in Fig. 14(a). Specifically, we plot the ori-
gin of Cradius as the elbow and the origin of Cwrist as wrist.
We also graph the elbow flexion angle and elbow twist angle
in Fig. 14(b) to show that our algorithm comes close to the
ground truth with synthetic data.

Our experiments with real data involve three different sub-
jects (an Indian female, an Asian male, and a Caucasian

Figure 15: Adapted upper limb models (top) and recon-
structed bone motions (bottom) for three different subjects.

Figure 16: Adapted lower limb models (top) and recon-
structed bone motions (bottom) for three different subjects.

male). For each subject, we captured a range of motions of
both the upper and lower limbs. The top rows of Fig. 15 and
Fig. 16 display the resulting adapted anatomy models for
each subject. Sample motions are shown in the bottom rows
of Fig. 15 and Fig. 16; please see the accompanying video
for more example motions. Due to the low resolution of our
depth sensors, we cannot reliably capture the details of the
hand. Therefore, we decided not to model the hand articu-
lation, assuming the fingers are not moving significantly in
our test motions.

Fig. 17 demonstrates how our adaptable anatomy model
(left) fits to the input data. In the middle, we can see that
the tibia is shortened to fit the captured data. In this phase
(phase one), the skin is deformed in unison with the bones.
To capture the individual differences in soft tissues, we sub-
sequently optimize the template vertices (Algorithm 3). The
result after this step (phase two) is shown in Fig. 17 (right).

Figure 17: Template leg anatomy (left), the result of our
adaptation algorithm before template vertex optimization
(middle) and after template vertex optimization (right). We
overlay the silhouette of the skin before template vertex opti-
mization in the final result (right) to highlight the differences.

In Fig. 18 we study the convergence of the entire template
adaptation algorithm (Algorithm 4). The graph plots an aver-
age distance between the target point clouds and our model
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XXXXXXXXXmotions
angles elbow flexion elbow twist

mean SD mean SD
bend 3.306 1.677 10.114 5.470
twist 5.839 2.710 9.930 6.501

bend&twist 4.106 3.670 6.229 4.481

Table 1: Comparison of our system with OpenSIM + Vicon.
For each joint angle and test motion we report the mean and
standard deviation (SD) of the absolute value of the differ-
ence (in degrees).

during the iterative optimization. We examine four differ-
ent starting points. Even though each of them converges to
a slightly different local minimum due to the iterative corre-
spondence updates, the final results are similar in shape.
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Figure 18: Convergence of our data-driven anatomy fitting
model with different initializations. Five iterations in the
outer loops of Algorithm 4 are taken in this experiment. The
sudden drops of the error are due to template vertex opti-
mization (Algorithm 3).

An ideal way to validate our system would be using medi-
cal imaging, such as X-ray fluoroscopy. Unfortunately, the
use of such devices is problematic and hard to justify with
healthy human subjects. A radiation-free alternative is MRI,
but these machines are very expensive and offer only a lim-
ited workspace. As a more viable alternative, we compare
against traditional motion capture workflows used in biome-
chanics. In particular, we use the open source OpenSIM plat-
form [DAA∗07]. While the main strength of OpenSIM is
dynamic simulation, it also implements state-of-the-art in-
verse kinematics which uses pre-recorded trajectories of mo-
tion capture markers. While it would be ideal to run Open-
SIM directly on our point clouds, OpenSIM does not provide
any skinning models or correspondence finding algorithms.
Therefore, we capture the same performance simultaneously
with a 12-camera Vicon and our depth sensors. This puts our
method at a slight disadvantage, because the Vicon mark-
ers introduce systematic errors in our point clouds – visible
small balls corresponding to the markers. We did not attempt
to remove these points. We process the marker trajectories
captured by Vicon using the OpenSIM inverse kinematics
module. In Fig. 19, we compare the results of our system

Figure 19: A bend-and-twist motion reconstructed with our
system (top) and OpenSIM (bottom).

and OpenSIM visually and, in Table 1, we measure the dif-
ference of two joint angles in three example motions.

The chief advantage of our method is that our model better
fits the human subject and models not only bone kinemat-
ics but also skin deformations. In contrast, OpenSIM uses
only axis-aligned scaling of the bones and assumes the Vicon
markers are rigidly attached to the bones. The higher fidelity
of our joints is visible in the close up views in Fig. 19.

In Fig. 20 we compare our results to Anatomy Transfer
[DLG∗13], which assumes a clean target mesh with perfect
correspondences as input. The unnatural shapes of the bone
heads are due to the fact that Anatomy Transfer applies one
affine transformation to the entire bone. Our algorithm ob-
tains a more natural joint structure as shown in Fig. 20 (left).
Note that we achieve a better result in spite of the fact that
our input data are noisy and do not come with user-specified
correspondences.

Figure 20: Adapted bone heads with our method (left) and
anatomy transfer [DLG∗13] (right).

5. Limitations and Future Work

A major topic of future work is to develop full-body adapt-
able anatomical models. While the kinematics of body
parts such as the shoulder, pelvis, or spine is well studied
[DAA∗07], developing efficient and anatomically-realistic
skinning models for the corresponding body parts will be
non-trivial. Our forearm deformer is the first step in this di-
rection. More accurate skinning functions should also model
effects such as muscle activations and dynamics: the effects
of inertia will be particularly important in modeling passive
organs such as fat tissues. Our current methodology may not
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be adequate for highly muscular or obese subjects. One pos-
sibility to handle these cases would be using pose space de-
formation [LCF00].

Another interesting direction would be to consider patholo-
gies such as joint sprain or dislocation, which may open up
new and exciting opportunities to study, e.g., sports injuries.
For example, it is conceivable that in the future, a fencing
match would be recorded by multiple sensors to allow for
after-the-fact analysis of the eventual mishaps. Our system
assumes healthy human subjects, because our template adap-
tation mechanism is unable to account for anatomical abnor-
malities such as malformed bones; subtle abnormalities may
be only detectable via medical imaging.

This paper focuses on adaptable anatomical models and does
not aspire to compete with state-of-the-art motion capture
solutions in terms of generality and robustness. The complex
optimization routines and correspondence finding employed
by our method currently hamper its use in real-time motion
reconstruction. In the future, we are planning to incorpo-
rate automatic recovery from tracking failures. In our cur-
rent system we do not model realistic articulation of hands
and feet, because our sensors are not sufficiently accurate
to resolve the finger motion. However, this might be possi-
ble with next generation depth sensors, perhaps already with
Kinect for Xbox One.

6. Conclusions

We presented an adaptable anatomical model for realistic
bone motion reconstruction. The main feature of our model
is that all of its three components (geometry, kinematics, and
skinning) remain functional and well-articulated after the
model is adapted to different human subjects. We presented
an algorithm that derives the anthropometric parameters of
our model from a sequence of input point clouds, and we
used the resulting personalized models to reconstruct bone
motions of human subjects. In the near term, we hope that
our work will help to promote anatomically-based model-
ing in computer graphics and visualization. In the long run,
we foresee new technologies combining computer graphics,
biomechanics, and orthopedic surgery.
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