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1 Additional Results
Green’s strain parametrization. With our method,
Green’s strain energy can also be used to compute high-
quality parameterizations (Figure 1). Without barriers, this
produces a parameterization that is very close to an isome-
try, but with many flipped triangles. With our method, we
obtain a parameterization that is similar to the one computed
with ARAP in Figure 13 of the paper. Green’s strain energy
produces a parametrization with a slightly higher average
conformal distortion of 5.38 compared to 4.23 of ARAP with
barriers and 2.80 for ARAP without barriers. The number of
iterations increases to 417 and the computation time is 75.2
seconds.

2 Deformation Energies
In this section we review the basics of deformation modeling,
more details can be found in the literature [NMK∗06]. We
assume the input shapes and our functions are discretized
using a piecewise linear representation, made of triangles
for planar maps and tetrahedra for volumetric maps. In both
cases we will denote the positions of the input mesh vertices
(rest pose) as an n ·d column vector v0, where n is the number
of vertices and d the number of dimensions of the Euclidean
space where the mesh is embedded (we consider 2 and 3
dimensions); the deformed vertex positions are denoted as
v. We do not address the deformation of surfaces in 3D,
but rather volumetric shapes, because the notion of triangle
inversion does not exist in 3D.

We use the word element to denote either triangle (if d = 2)
or tetrahedron (if d = 3). A basic tool to study deformation of
the jth element is to look at its displacement, encoded by the
deformation gradient, which is a matrix F j ∈Rd×d mapping
rest-pose vertices of this element to their deformed pose.
Each deformation gradient is a linear function of v, whose
coefficients depend solely on v0. If v = v0 (no deformation),
each deformation gradient will be the identity matrix I ∈
Rd×d . The simplest deformation measure is the Dirichlet
energy (of the displacements):

ED = ∑
j∈E

λ j(v0)‖F j− I‖2
F (1)

where E is the set of all elements and ‖·‖F denotes Frobenius

matrix norm. The function λ j :Rdn→R+ is the Lebesgue
measure of the j-th element, i.e., area in 2D and volume in
3D. It can be shown [BS08] that

ED = (v−v0)
T L(v−v0) (2)

where L ∈Rdn×dn is the standard linear finite element stiff-
ness matrix (the cotan matrix for d = 2), extended to dn×dn
by the Kronecker product with the d×d identity matrix. This
energy is known as the Dirichlet energy of the displacements.

A somewhat similar but higher-order energy is the bi-
harmonic, or Laplacian energy EL. The biharmonic en-
ergy, that is used in the simple Laplacian editing formula-
tion [SCOL∗04, BS08], is defined as

EL = (v−v0)
T LM−1L(v−v0) (3)

where M the mass matrix of our mesh, again extended by
Kronecker product with the identity.

These energies are invariant to translation of v but penalize
global rotation, which limits their applicability only to small
deformations. One way to achieve rotation invariance is by
using a nonlinear strain measure, such as Green’s strain. The
simplest energy obtained using this recipe is

EGS = ∑
j∈E

λ j(v0)‖FT
j F j− I‖2

F . (4)

Unlike the ED and EL, EGS is indeed invariant to rotations: if
we take a decomposition F j = R jS j , where R j ∈ SO(d), we
can see that FT

j F j = ST
j S j , because RT

j R j = I. Unfortunately,
EGS is also invariant to reflections, because the sign of det(S j)

cancels out in the ST
j S j term. This means that EGS does not

penalize inverted elements at all. However, our method makes
this limitation moot because it forbids inversion.

Several works proposed a rotation-invariant energy that
penalizes inverted elements [ITF04,SA07,LZX∗08,CPSS10],
whose basic form is

EARAP = ∑
j∈E

λ j(v0)‖F j−R j‖2
F (5)

where F j = R jS j as before and R j ∈ SO(d) is the closest
rotation to F j. Due to a property of the Frobenius norm, we
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Figure 1: Two examples of mesh parameterization using the Green’s strain energy, with and without our barriers method. The
initial guess is Tutte’s mapping onto a circle. Although it is highly distorting, our method manages to converge to a reasonable
solution while avoiding any element inversions. In contrast, the original Green energy without barriers easily leads to flips since
it is insensitive to them.

can rewrite

‖F j −R j‖2
F = ‖R jS j −R j‖2

F = ‖S j − I‖2
F . (6)

To verify the broad applicability of our method, we tested it
with all of the above discussed deformation energies.

3 The gradient and Hessian of the barriers
Here we provide the gradient and Hessian of our barrier func-
tion φ j(c j(v)) for one element j. Recall c j(v) = λ j(v)− ε,
where λ j(v) is the signed area or volume function of element
j. Assuming the cubic spline g j (Equation 5 in the paper) and
its derivatives are evaluated at c j(v), we can write:

∇φ j(v) =−
g′j
g2

j
·∇λ j(v),

where the gradient of the area/volume λ j(v) is the stan-
dard perpendicular construction for the vertices of the tri-
angle/tetrahedron, and zero for the vertices not incident on
the element. Following the same conventions, for the Hessian
we obtain:

∇2φ j(v)=
2(g′j)

2 −g′′j g j

g3
j

·∇λ j(v) ·∇λ j(v)T −
g′j
g2

j
·∇2λ j(v).
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